[Objective] This study was conducted to select wheat varieties with high P use efficiency. [Method] A field experiment was carried out with 112 wheat germplasm varieties as experiment materials under normal (NP) and...[Objective] This study was conducted to select wheat varieties with high P use efficiency. [Method] A field experiment was carried out with 112 wheat germplasm varieties as experiment materials under normal (NP) and low phosphorus (LP) conditions, and with Jimai 22 as control, genotypes with high P use efficiency and excellent yield traits were selected. [Result] Compared with NP treatment, 8 wheat yield-related traits, spike number per plant, thousand-grain weight plant height, spike length, fertile spikelet number per spike, grain number per spike, grain weight per plant and above-land weight per plant, and 3 P content traits, grain, straw and above-land P contents per plant decreased significantly under LP condition (P〈〈 0.05), while 3 P utilization efficiency traits, grain, straw and aboveground P utilization efficiencies increased obviously, indicating that low P stress would greatly reduce yield and P content of wheat at adult stage, but would remarkably improve P utilization efficiency. Correlation analysis showed that plant height, fertile spikelet number per spike and grain weight per plant and straw and above-land P concentrations were in significant positive correlation with 3 P content traits, grain, straw and above-land P contents per plant, and in significant negative correlation with 2 Putilization efficiency traits, straw and above-land P utilization efficiencies (P〈0.01), and could serve as indexes for preliminary rapid evaluation of P use efficiency. Under NP treatment, 17 genotypes with high P use efficiency were selected, and among them, Hanxuan H28, 2010 Pin 4891 and Zhoumai 28 showed grain weights per plant higher than Jimai 22 by 36.07%, 31.96% and 37.44%, respectively, and above-land P utilization efficiency higher than Jimai 22 by 49.34%, 49.42% and 33.05%, respectively; and under LP treatment, 10 genotypes with high P use efficiency were selected, and among them, Henong 826 showed grain weight per plant and above-land P utilization efficiency higher than Jimai 22 by 37.60% and 20.42%, respectively. Furthermore, Hanxuan H23, Hanxuan H28 and Xumai 856 were identified as genotypes with high P use efficiency under both NP and LP treatments. [Conclusion] This study provides good parent materials for breeding of varieties with high P use efficiency.展开更多
Phosphorus (P) is one of the most widely occurring nutrients for development and growth of wheat. In this study, the effects of P application amount on grain yield, protein content, and phosphorus use efficiency (...Phosphorus (P) is one of the most widely occurring nutrients for development and growth of wheat. In this study, the effects of P application amount on grain yield, protein content, and phosphorus use efficiency (PUE) were studied by agronomic management of P fertilizer on spring weak-gluten wheat (Triticum aestivum L.) grown under field conditions for 2 yr. The experiments were performed at five levels of P205 application amount, including 0, 72, 108, 144, and 180 kg ha-1. As a result, with increase in P fertilizer, grain yield, and P agricultural efficiency (AEp) increased in a quadratic equitation, but partial factor productivity of P (PFPp) decreased in a logarithmic eq. When 108 kg ha-1 P2Os was applied, the grain yield reached the highest level, but the protein content in gain was lower than 11.5%, a threshold for the protein content to evaluate weak-gluten wheat suitable for production of cake and biscuit. Yangmai 13 and Ningmai 9 could tolerate to higher P level of soils than Yangmai 9 that had more loss in grain yield when P fertilizer was over-applied. AEp had a concomitant relationship with grain yield and was a better descriptor for P use efficiency in the wheat. A high P use efficiency resulted in leaf area index (LAI), increased chlorophyll content and photosynthetic rate, and stable acid phophatase (APase) activity to accumulate more dry matter after anthesis, which explained that the optimum P fertilizer increased grain yield and improved grain quality of weak-gluten wheat.展开更多
The success of the Green Revolution largely relies on fertilizers, and a new Green Revolution is very much needed to use fertilizers more economically and efficiently, as well as with more environmental responsibility...The success of the Green Revolution largely relies on fertilizers, and a new Green Revolution is very much needed to use fertilizers more economically and efficiently, as well as with more environmental responsibility. The use efficiency of nitrogen, phosphorus, and potassium is controlled by complex gene networks that co-ordinate uptake, re-distribution, assimilation, and storage of these nutrients. Great progress has been made in breeding nutrient-efficient crops by molecularly engineering root traits desirable for efficient acquisition of nutrients from soil, transporters for uptake, redistribution and homeostasis of nutrients, and enzymes for efficient assimilation. Regulatory and transcription factors modulating these processes are also valuable in breeding crops with improved nutrient use efficiency and yield performance.展开更多
With decreasing availability of water for agriculture and increasing demand for rice production, an optimum use of irrigation water and phosphorus may guarantee sustainable rice production. Field experiments were cond...With decreasing availability of water for agriculture and increasing demand for rice production, an optimum use of irrigation water and phosphorus may guarantee sustainable rice production. Field experiments were conducted in 2003 and 2004 to investigate the effect of phosphorus and irrigation levels on yield, water productivity (WP), phosphorus use efficiency (PUE) and income of low land rice. The experiment was laid out in randomized complete block design with split plot arrangements replicated four times. Main plot consisted of five phosphorus levels, viz. 0 (P0), 50 (P50), 100 (P100), 150 (P15o), and 200 (P200) kg/hm2, while subplots contained of irrigation times, i.e. 8 (I8), 10 (I10), 12 (I12), and 14 (I14) irrigation levels, each with a water depth of 7.5 cm. Mean values revealed that P150 in combination with I10 produced the highest paddy yield (9.8 t/hm2) and net benefit (1 231.8 US$/hm2) among all the treatments. Phosphorus enhanced WP when applied in appropriate combination with irrigation level. The highest mean WP [13.3 kg/(hm2-mm)] could be achieved at Plso with 18 and decreased with increase in irrigation level, while the highest mean PUE (20.1 kg/kg) could be achieved at P100 with I10 and diminished with higher P levels. The overall results indicate that P150 along with I10 was the best combination for sustainable rice cultivation in silty clay soil.展开更多
[Objectives]This study was conducted to explore the rational formula for rice fertilization in Jianghan Plain.[Methods]An experiment on the combined application of nitrogen,phosphorus and potassium fertilizers was car...[Objectives]This study was conducted to explore the rational formula for rice fertilization in Jianghan Plain.[Methods]An experiment on the combined application of nitrogen,phosphorus and potassium fertilizers was carried out in Jianghan Plain,an important rice producing area in Hubei,with a total of five treatments to study the effects of nitrogen,phosphorus and potassium fertilizers on the fertilizer use efficiency and yield of rice.[Results]Fertilization had a significant effect on improving rice yield,and nitrogen fertilizer had the greatest effect on rice yield,followed by potassium fertilizer and phosphorous fertilizer.[Conclusions]This study provides a scientific basis for the application of rice fertilizers and the reduction and efficiency improvement of chemical fertilizers in Jianghan Plain.展开更多
Wheat is one of the most important grain crops in China with great demand. It plays an important role to use phosphorus fertilizer for improving wheat yield. Therefore,application and foundation studies on wheat phosp...Wheat is one of the most important grain crops in China with great demand. It plays an important role to use phosphorus fertilizer for improving wheat yield. Therefore,application and foundation studies on wheat phosphorus use efficiency are so vital nowadays. Here,we have a simple review on definition of phosphorus use efficiency,response to phosphate starvation in plant,relevant genes cloning,impact factors,screening high phosphorus efficiency genotype and QTL analysis of phosphorus utilization efficiency in wheat.展开更多
[Objective] This study aimed to investigate the phosphorus nutrition effi- ciency of different soybean genotypes at blooming stage under low phosphorus stress. [Method] By using four "low phosphorus efficiency" soyb...[Objective] This study aimed to investigate the phosphorus nutrition effi- ciency of different soybean genotypes at blooming stage under low phosphorus stress. [Method] By using four "low phosphorus efficiency" soybean genotypes (D03, D05, D17 and D18) and four "high phosphorus efficiency" soybean genotypes (D31, D34, D37 and D38) as experimental materials, soil culture experiment was conduct- ed with two treatments of high phosphorus (+P) and low phosphorus (-P), to analyze the relationship between phosphorus content, phosphorus uptake, phosphorus use efficiency and phosphorus efficiency of soybean genotypes with different phos- phorus efficiency. [Result] Under low phosphorus conditions, four soybean genotypes with high phosphorus efficiency showed significant advantage in phosphorus uptake at seedling stage, to be specific, D34 showed relatively high phosphorus absorption capacity but no advantage in adaptability of phosphorus use efficiency, while only D37 showed relatively high phosphorus absorption capacity and phosphorus use ca- pacity. Correlation analysis and path analysis showed that the level of phosphorus efficiency of soybean at blooming stage under (-P) and (+P) treatments was mainly determined by phosphorus absorption capacity, and that under (-P) treatment was significantly greater than (+P) treatment. Phosphorus uptake and phosphorus use ef- ficiency under (-P) and (+P) treatments both showed great direct effects on phos- phorus efficiency, and phosphorus uptake made greater contribution; however, the indirect effects were relatively low, Under low phosphorus stress, the mechanisms for various soybean genotypes with high phosphorus efficiency to adapt to low phospho- rus stress were different, and phosphorus absorption efficiency (phosphorus uptake) was the main variation source of the phosphorus efficiency of various soybean genotypes at blooming stage. [Conclusion] This study revealed the contribution made by phosphorus absorption efficiency and phosphorus use efficiency to phosphorus efficiency of soybean.展开更多
The development of green super rice varieties with improved nutrient use efficiency(NuUE)is a vital target area to increase yield and make it more stable under rainfed conditions.In the present study, we followed an e...The development of green super rice varieties with improved nutrient use efficiency(NuUE)is a vital target area to increase yield and make it more stable under rainfed conditions.In the present study, we followed an early backcross(BC) breeding approach by using a highyielding and widely adapted Xian variety, Weed Tolerant Rice 1(WTR-1), as a recipient and a Geng variety, Hao-An-Nong(HAN), as a donor.Starting from the BC1F2 generation, the BC population went through one generation of selection under irrigated, low-input, and rainfed conditions, followed by four consecutive generations of screening and selection for high grain yield(GY) under six different nutrient conditions(NPK, 75 N,-N,-P,-NP, and-NPK), leading to the development of 230 BC1F6 introgression lines(ILs).These 230 ILs were evaluated under the same six nutrient conditions for 13 agro-morphological and grain yield component traits in comparison to four checks and parents.Significant trait variations were observed between the treatments and ILs.Positive correlations were identified for GY with biomass, panicle length, flag-leaf area, flag-leaf width, filled grain number per panicle,1000-grain weight, and tiller number under-N,-P,-NP, and-NPK conditions.Out of 230 ILs,12 were identified as promising under two or more nutrient deficiency conditions.The results demonstrated an efficient inter-subspecific BC breeding procedure with a first round of selection under rainfed-drought conditions, followed by four generations of progeny testing for yield performance under six nutrient conditions.The promising ILs can be useful resources for molecular genetic dissection and understanding the physiological mechanisms of NuUE.展开更多
Phosphorus (P) is an essential element for plant growth and yield. Improving phosphorus use efficiency of crops could potentially reduce the application of chemical fertilizer and alleviate environmental damage. Soy...Phosphorus (P) is an essential element for plant growth and yield. Improving phosphorus use efficiency of crops could potentially reduce the application of chemical fertilizer and alleviate environmental damage. Soybean (Glycine max (L.) Merr.) is sensitive to phosphorus (P) in the whole life history. Soybean cultivars with different P efficiencies were used to study P uptake and dry matter accumulation under different P levels. Under low P conditions, the P contents of leaf in high P efficiency cultivars were greater than those in low P efficiency cultivars at the branching stage. The P accumulation in stems of high P efficiency cultivars and in leaves of low P efficiency cultivars increased with increasing P concentration at the branching stage. At the late podding stage, the P accumulation of seeds in high and low P efficiency cultivars were 22.5 and 26.0%, respectively; and at the mature stage were 69.8 and 74.2%, respectively. In average, the P accumulation in whole plants and each organ was improved by 24.4% in high P efficiency cultivars compared to low P efficiency cultivars. The biomass between high and low P efficiency cultivars were the same under extended P condition, while a significant difference was observed at late pod filling stage. At the pod setting stage, the biomass of high P efficiency cultivars were significant greater (17.4%) than those of low P efficiency cultivars under high P condition. Meanwhile, under optimum growth conditions, there was little difference ofbiomass between the two types of cultivars, however, the P agronomic efficiency and P harvest index were significant higher in high P efficiency cultivars than those in low P efficiency cultivars.展开更多
A soil pot culture experiment with four supplied P levels (i.e. P30, P50, P100, P200, representing supplemental P 30, 50, 100, 200 mg/kg, respectively) was conducted to investigate uptake and use ability to P and Zn...A soil pot culture experiment with four supplied P levels (i.e. P30, P50, P100, P200, representing supplemental P 30, 50, 100, 200 mg/kg, respectively) was conducted to investigate uptake and use ability to P and Zn in the rice genotypes with different P-efficiency, of which rice genotypes 508, 99011, 580, 99112 were Iow-P tolerant and 99056, 99012 were Iow-P sensitive. Low-P tolerant rice 580 and 99011 absorbed more P than the others, and rice genotype 580 had stronger uptake ability especially at Iow-P level such as P50 and P30. 508 could absorb considerable P, and had the lowest P percentage of shoot, indicating it had good performance in P-use efficiency. These three rice genotypes had larger biomass and less response to changed P level than rice genotype 99112, 99056 and 99012. Rice genotype 99112 showed Low-P tolerance mainly by sacrificing biomass to maintain high relative grain yield. The least amount of P absorbed by 99056 showed it had the lowest P uptake efficiency, and the highest P percentage in shoot of 99012 meant it had the lowest P use efficiency. So they two showed Iow-P sensitivity. Zn contents in shoot under P200, P100 and P50 were similar, but P30 increased Zn content in shoot significantly. The Zn contents in shoot of 99112, 99056 and 99012 were higher than those of 508, 99011 and 580, especially at tillering stage and booting stage. As for total Zn content in shoot, Low-P tolerant rice genotype 580 had the largest amount and followed by 99011 and 508, Iow-P tolerant rice genotype 99012 had the smallest amount at the three sampling stage and followed by 99056. Furthermore, P/Zn in shoot of 99012 was the highest, and that of 99056 was the smallest at the same P level.展开更多
Common bean (Phaseolus vulgaris L.) is an important legume in the tropics, with production limited by low availability of soil phosphorus (P). An experiment was conducted in the glasshouse to evaluate P use efficiency...Common bean (Phaseolus vulgaris L.) is an important legume in the tropics, with production limited by low availability of soil phosphorus (P). An experiment was conducted in the glasshouse to evaluate P use efficiency of eight dry bean genotypes (G122, Montcalm, Taylor Horticulture, Cardinal, Bukoba, Kijivu, Rojo and CAL 143) of Andean origin. The treatments included: no P (0 kg P ha-1), normal P (50 kg P ha-1), and high P (100 kg P ha-1). There was variation for the measured traits shoot biomass (g), shoot P (mg kg-1), root P (mg kg-1), seed P (mg kg-1) and seed yield (g) among genotypes and P treatments. Biomass and all P concentrations increased with increasing P level and the genotypes Kijivu, Bukoba, Montcalm and Taylor Horticulture had higher P concentrations than Rojo, G122, Cardinal and CAL 143 across treatments. Genotype × treatment interactions were observed for shoot biomass. For the no P treatment, shoot and root biomass were positively correlated with PUE (phosphorus use efficiency). PUE had higher values and varied more among genotypes in the no P treatment compared to the normal P and high P treatments. The results suggest that seed yield in dry bean can be improved by selecting for genotypes with higher PUE under limiting P. The genotypes Bukoba, Kijivu and Montcalm with the highest values for PUE under no P treatment may be exhibiting some level of tolerance to low soil phosphorus. Higher shoot weight may provide simple criteria for selecting genotypes with greater yield and PUE (phosphorus use efficiency) under limiting P conditions. Therefore, a genotype is desired that can efficiently uptake and utilize available P under limited availability of this nutrient.展开更多
Phosphorus(P)is a nonrenewable resource and a critical element for plant growth that plays an important role in improving crop yield.Excessive P fertilizer application is widespread in agricultural production,which no...Phosphorus(P)is a nonrenewable resource and a critical element for plant growth that plays an important role in improving crop yield.Excessive P fertilizer application is widespread in agricultural production,which not only wastes phosphate resources but also causes P accumulation and groundwater pollution.Here,we hypothesized that the apparent P balance of a crop system could be used as an indicator for identifying the critical P input in order to obtain a high yield with high phosphorus use efficiency(PUE).A 12-year field experiment with P fertilization rates of 0,45,90,135,180,and 225 kg P_(2)O_(5)ha^(-1)was conducted to determine the crop yield,PUE,and soil Olsen-P value response to P balance,and to optimize the P input.Annual yield stagnation occurred when the P fertilizer application exceeded a certain level,and high yield and PUE levels were achieved with annual P fertilizer application rates of 90-135 kg P_(2)O_(5)ha^(-1).A critical P balance range of 2.15-4.45 kg P ha^(-1)was recommended to achieve optimum yield with minimal environmental risk.The critical P input range estimated from the P balance was 95.7-101 kg P_(2)O_(5)ha^(-1),which improved relative yield(>90%)and PUE(90.0-94.9%).In addition,the P input-output balance helps in assessing future changes in Olsen-P values,which increased by 4.07 mg kg^(-1)of P for every 100 kg of P surplus.Overall,the P balance can be used as a critical indicator for P management in agriculture,providing a robust reference for limiting P excess and developing a more productive,efficient and environmentally friendly P fertilizer management strategy.展开更多
Phosphorus use efficiency(PUE)can be improved through cultivation techniques and breeding.However,little is known about rice(Oryza sativa L.)agronomic and physiological traits associated with high PUE.We characterized...Phosphorus use efficiency(PUE)can be improved through cultivation techniques and breeding.However,little is known about rice(Oryza sativa L.)agronomic and physiological traits associated with high PUE.We characterized the agronomic and physiological traits of rice varieties with different tolerances to low phosphorus in nutrient solution.Two varieties with strong tolerance to low phosphorus(STVs)and two with weak tolerance(WTVs)were grown at normal(NP,control)and low phosphorus(LP,1/20 of NP)concentrations.Plants grown at LP produced significantly lower grain yield than those grown at NP.WTVs yields were lower than STVs yields.Compared to NP,LP significantly increased phosphorus translocation efficiency(PTE),internal phosphorus efficiency(IPE)and phosphorus harvest index(PHI).Under the LP condition,PTE and IPE were higher for STVs than for WTVs.LP also reduced tiller number,shoot biomass,leaf area index(LAI),leaf photosynthetic rate,and mean root diameter of both kinds of varieties at the main growth stages,but to a lower extent in STVs.LP significantly increased the number of productive tillers,root biomass,root-shoot ratio,root bleeding rate,and root acid phosphatase(RAP)activity.Total root length,root oxidation activity(ROA),and root total and active absorbing surface areas for STVs were significantly increased under LP,whereas the opposite responses were observed for WTVs.Total root length,ROA,root bleeding rate,root active absorbing surface area,and RAP activity were positively and significantly correlated with grain yield,PTE,and IPE.These results suggest that the tolerance of rice varieties to a low-phosphorus growth condition is closely associated with root growth with higher biomass and activity.展开更多
The continued supply of phosphate fertilizers that underpin global food production is an imminent crisis.The rock phosphate deposits on which the world depends are not only finite,but some are contaminated,and many ar...The continued supply of phosphate fertilizers that underpin global food production is an imminent crisis.The rock phosphate deposits on which the world depends are not only finite,but some are contaminated,and many are located in geopolitically unstable areas,meaning that fundamental changes will have to take place in order to maintain food production for a growing global population.No single solution exists,but a combination of approaches to phosphorus management is required not only to extend the lifespan of the remaining non-renewable rock phosphate reserves,but to result in a more efficient,sustainable phosphorus cycle.Solutions include improving the efficiency of fertilizer applications to agricultural land,alongside a better understanding of phosphorus cycling in soil-plant systems,and the interactions between soil physics,chemistry and biology,coupled with plant traits.Opportunities exist for the development of plants that can access different forms of soil phosphorus(e.g.,organic phosphorus)and that use internal phosphorus more efficiently.The development of different sources of phosphorus fertilizers are inevitably required given the finite nature of the rock phosphate supplies.Clear opportunities exist,and it is now important that a concerted effort to make advances in phosphorus use efficiency is prioritized.展开更多
Phosphorus is the second most important macronutrient after nitrogen and it has many vital functions in the life of plants.Most soils have a low available P content,which has become a key limiting factor for increasin...Phosphorus is the second most important macronutrient after nitrogen and it has many vital functions in the life of plants.Most soils have a low available P content,which has become a key limiting factor for increasing crop production.Also,low P use efficiency(PUE)of crops in conjunction with excessive application of P fertilizers has resulted in serious environmental problems.Thus,dissecting the genetic architecture of crop PUE,mining related quantitative trait loci(QTL)and using molecular breeding methods to improve high PUE germplasm are of great significance and serve as an efficient approach for the development of sustainable agriculture.In this review,molecular and phenotypic characteristics of maize inbred lines with high PUE,related QTL and genes as well as low-P responses are summarized.Based on this,a breeding strategy applying genomic selection as the core,and integrating the existing genetic information and molecular breeding techniques is proposed for breeding high PUE maize inbred lines and hybrids.展开更多
Aims The functions of global forests are threatened by the increasing frequency of severe drought.Due to drought inducing reductions in soil nutrient availability,efficiencies of nutrient use and resorption of trees b...Aims The functions of global forests are threatened by the increasing frequency of severe drought.Due to drought inducing reductions in soil nutrient availability,efficiencies of nutrient use and resorption of trees become crucial for forest functions and biogeochemical cycles.However,understanding the dynamics of responses of foliar nutrient use and resorption efficiencies to drought,especially in tropical or subtropical forests,is still limited.Our goal was to detect whether and how the importance of leaf nutrient use and resorption changes across different species in the hot and wet forests when suffering drought stress in different months.Methods Based on a 70%throughfall exclusion experiment in a subtropical forest,we collected green and senesced leaves of Schima superba and Lithocarpus glaber in different months from October 2016 to May 2019,to estimate the effects of drought on leaf nitrogen(N)and phosphorus(P)use and resorption efficiencies(i.e.NUE and PUE,NRE and PRE).Important Findings The effects of drought on nutrient use and resorption efficiencies varied between species and months.Based on a 2-year observation,drought had no effect on S.superba,but significantly decreased NUE,NRE and PRE of L.glaber by 3.4%,20.2%and 7.1%,respectively.Furthermore,the negative drought effects were aggravated by the natural summer drying in 2017.As a result,NUE and PUE of L.glaber were significantly depressed by 17.2%and 58.1%,while NRE and PRE were significantly reduced by 56.5%and 53.8%in August 2017.Moreover,the responses of NRE,PRE and NUE to drought were related with soil moisture(SM)for L.glaber,and when SM decreased to a threshold near 9 v/v%,drought effects were shifted from unresponsive to negative.Our results highlight a species-specific threshold response of nutrient use under drought in a subtropical forest.展开更多
The use of digestates or cattle slurries as fertilisers could contribute to the recycling of nutrients and organic matter, thus meeting the goals of the circular economy in agriculture. This work aims at evaluating th...The use of digestates or cattle slurries as fertilisers could contribute to the recycling of nutrients and organic matter, thus meeting the goals of the circular economy in agriculture. This work aims at evaluating the fertilising properties of a solid digestate (DG) in comparison with undigested cattle slurry (CS) and mineral fertilisation (MF). The experiment was performed in pots with ryegrass (<em>Lolium multiflorum</em> Lam.) grown in an acidic soil during a 163 days crop cycle. The results showed that throughout the crop cycle neither DG nor CS increased soil organic matter. DG significantly increased (P < 0.001) the sum of the soil exchangeable bases and soil P availability compared with CS or MF. Also, DG significantly increased (P < 0.05) the apparent P recovery of ryegrass (43%) compared with MF (27%). In the first cut, the ryegrass yield was higher in DG and CS than in MF, decreasing in the second and third cuts as a consequence of a decrease in N availability. Nevertheless, the fertilisation with DG or CS could replace the half amount of mineral N fertilisation, without a significant decrease in the ryegrass forage production. In addition, DG enables greater efficiency in the use of P than CS or MF.展开更多
Phosphorus(P)is an essential nutrient for plant growth and reproduction.Plants preferentially absorb P as orthophosphate(Pi),an ion that displays low solubility and that is readily fixed in the soil,making P limita-ti...Phosphorus(P)is an essential nutrient for plant growth and reproduction.Plants preferentially absorb P as orthophosphate(Pi),an ion that displays low solubility and that is readily fixed in the soil,making P limita-tion a condition common to many soils and Pi fertilization an inefficient practice.To cope with Pi limitation,plants have evolved a series of developmental and physiological responses,collectively known as the Pi starvation rescue system(PSR),aimed to improve Pi acquisition and use efficiency(PUE)and protect from Pi-starvation-induced stress.Intensive research has been carried out during the last 20 years to un-ravel the mechanisms underlying the control of the PSR in plants.Here we review the results of this research effort that have led to the identification and characterization of several core Pi starvation signaling components,including sensors,transcription factors,microRNAs(miRNAs)and miRNA inhibitors,kinases,phosphatases,and components of the proteostasis machinery.We also refer to recent results revealing the existence of intricate signaling interplays between Pi and other nutrients and antagonists,N,Fe,Zn,and As,that have changed the initial single-nutrient-centric view to a more integrated view of nutrient homeostasis.Finally,we discuss advances toward improving PUE and future research priorities.展开更多
Vegetable production systems involve high rates of chemical and organic fertilizer applications,leading to significant P accumulation in vegetable soils,as well as a decrease in P use efficiency(PUE),which is one of t...Vegetable production systems involve high rates of chemical and organic fertilizer applications,leading to significant P accumulation in vegetable soils,as well as a decrease in P use efficiency(PUE),which is one of the key limiting factors in vegetable production.This review introduces the vegetable production systems in China and their fertilization status,and analyzes probable causes of overfertilization of vegetable fields.Poorly developed root systems and high P demand have led to the need to maintain much higher available P concentrations in the root zone for regular growth of vegetables,which might necessitate higher phosphate fertilizer input than the plants require.Research on strategies to improve vegetable PUE and the mechanisms of these strategies are summarized in this review.Increasing the P uptake by vegetables by supplying P during the critical growth stage and effectively utilizing the accumulated P by optimizing the C:P ratio in soils can substantially increase PUE.These advances will provide a basis for improving PUE and optimizing phosphate fertilizer applications in vegetable production through regulatory measures.In addition,some policies are recommended that could ensure the safety of vegetables and improve product quality.This review also aims to improve understanding of P cycling in vegetable fields and assist in the development of best practices to manage P reserves globally.展开更多
Phosphorus is a major nutrient vital for plant growth and development,with a substantial amount of cellular phosphorus being used for the biosynthesis of membrane phospholipids.Here,we report that NON-SPECIFIC PHOSPHO...Phosphorus is a major nutrient vital for plant growth and development,with a substantial amount of cellular phosphorus being used for the biosynthesis of membrane phospholipids.Here,we report that NON-SPECIFIC PHOSPHOLIPASE C4(NPC4)in rapeseed(Brassica napus)releases phosphate from phospholipids to promote growth and seed yield,as plants with altered NPC4 levels showed significant changes in seed production under different phosphate conditions.Clustered regularly interspaced short palindromic repeat(CRISPR)/CRISPR-associated nuclease 9(Cas9)-mediated knockout of Bna NPC4 led to elevated accumulation of phospholipids and decreased growth,whereas overexpression(OE)of Bna NPC4resulted in lower phospholipid contents and increased plant growth and seed production.We demonstrate that Bna NPC4 hydrolyzes phosphosphingolipids and phosphoglycerolipids in vitro,and plants with altered Bna NPC4 function displayed changes in their sphingolipid and glycerolipid contents in roots,with a greater change in glycerolipids than sphingolipids in leaves,particularly under phosphate deficiency conditions.In addition,Bna NPC4-OE plants led to the upregulation of genes involved in lipid metabolism,phosphate release,and phosphate transport and an increase in free inorganic phosphate in leaves.These results indicate that Bna NPC4 hydrolyzes phosphosphingolipids and phosphoglycerolipids in rapeseed to enhance phosphate release from membrane phospholipids and promote growth and seed production.展开更多
基金Supported by Jinan Agricultural Science and Technology Innovation Project(201313,201404)Jinan Science and Technology Planning Project(201401103)~~
文摘[Objective] This study was conducted to select wheat varieties with high P use efficiency. [Method] A field experiment was carried out with 112 wheat germplasm varieties as experiment materials under normal (NP) and low phosphorus (LP) conditions, and with Jimai 22 as control, genotypes with high P use efficiency and excellent yield traits were selected. [Result] Compared with NP treatment, 8 wheat yield-related traits, spike number per plant, thousand-grain weight plant height, spike length, fertile spikelet number per spike, grain number per spike, grain weight per plant and above-land weight per plant, and 3 P content traits, grain, straw and above-land P contents per plant decreased significantly under LP condition (P〈〈 0.05), while 3 P utilization efficiency traits, grain, straw and aboveground P utilization efficiencies increased obviously, indicating that low P stress would greatly reduce yield and P content of wheat at adult stage, but would remarkably improve P utilization efficiency. Correlation analysis showed that plant height, fertile spikelet number per spike and grain weight per plant and straw and above-land P concentrations were in significant positive correlation with 3 P content traits, grain, straw and above-land P contents per plant, and in significant negative correlation with 2 Putilization efficiency traits, straw and above-land P utilization efficiencies (P〈0.01), and could serve as indexes for preliminary rapid evaluation of P use efficiency. Under NP treatment, 17 genotypes with high P use efficiency were selected, and among them, Hanxuan H28, 2010 Pin 4891 and Zhoumai 28 showed grain weights per plant higher than Jimai 22 by 36.07%, 31.96% and 37.44%, respectively, and above-land P utilization efficiency higher than Jimai 22 by 49.34%, 49.42% and 33.05%, respectively; and under LP treatment, 10 genotypes with high P use efficiency were selected, and among them, Henong 826 showed grain weight per plant and above-land P utilization efficiency higher than Jimai 22 by 37.60% and 20.42%, respectively. Furthermore, Hanxuan H23, Hanxuan H28 and Xumai 856 were identified as genotypes with high P use efficiency under both NP and LP treatments. [Conclusion] This study provides good parent materials for breeding of varieties with high P use efficiency.
基金the National Natural Science Foundation of China (30971729)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Chinathe Science and Technology Support Program of Jiangsu Province, China (BE2009426)
文摘Phosphorus (P) is one of the most widely occurring nutrients for development and growth of wheat. In this study, the effects of P application amount on grain yield, protein content, and phosphorus use efficiency (PUE) were studied by agronomic management of P fertilizer on spring weak-gluten wheat (Triticum aestivum L.) grown under field conditions for 2 yr. The experiments were performed at five levels of P205 application amount, including 0, 72, 108, 144, and 180 kg ha-1. As a result, with increase in P fertilizer, grain yield, and P agricultural efficiency (AEp) increased in a quadratic equitation, but partial factor productivity of P (PFPp) decreased in a logarithmic eq. When 108 kg ha-1 P2Os was applied, the grain yield reached the highest level, but the protein content in gain was lower than 11.5%, a threshold for the protein content to evaluate weak-gluten wheat suitable for production of cake and biscuit. Yangmai 13 and Ningmai 9 could tolerate to higher P level of soils than Yangmai 9 that had more loss in grain yield when P fertilizer was over-applied. AEp had a concomitant relationship with grain yield and was a better descriptor for P use efficiency in the wheat. A high P use efficiency resulted in leaf area index (LAI), increased chlorophyll content and photosynthetic rate, and stable acid phophatase (APase) activity to accumulate more dry matter after anthesis, which explained that the optimum P fertilizer increased grain yield and improved grain quality of weak-gluten wheat.
基金supported by the National Key Research and Development Program of China (2016YFD0100706)the National Transgenic Key Project from the Ministry of Agriculture of China (2016ZX08002-005)
文摘The success of the Green Revolution largely relies on fertilizers, and a new Green Revolution is very much needed to use fertilizers more economically and efficiently, as well as with more environmental responsibility. The use efficiency of nitrogen, phosphorus, and potassium is controlled by complex gene networks that co-ordinate uptake, re-distribution, assimilation, and storage of these nutrients. Great progress has been made in breeding nutrient-efficient crops by molecularly engineering root traits desirable for efficient acquisition of nutrients from soil, transporters for uptake, redistribution and homeostasis of nutrients, and enzymes for efficient assimilation. Regulatory and transcription factors modulating these processes are also valuable in breeding crops with improved nutrient use efficiency and yield performance.
基金Gomal University, Dera IsmailKhan, Pakistan for partial support
文摘With decreasing availability of water for agriculture and increasing demand for rice production, an optimum use of irrigation water and phosphorus may guarantee sustainable rice production. Field experiments were conducted in 2003 and 2004 to investigate the effect of phosphorus and irrigation levels on yield, water productivity (WP), phosphorus use efficiency (PUE) and income of low land rice. The experiment was laid out in randomized complete block design with split plot arrangements replicated four times. Main plot consisted of five phosphorus levels, viz. 0 (P0), 50 (P50), 100 (P100), 150 (P15o), and 200 (P200) kg/hm2, while subplots contained of irrigation times, i.e. 8 (I8), 10 (I10), 12 (I12), and 14 (I14) irrigation levels, each with a water depth of 7.5 cm. Mean values revealed that P150 in combination with I10 produced the highest paddy yield (9.8 t/hm2) and net benefit (1 231.8 US$/hm2) among all the treatments. Phosphorus enhanced WP when applied in appropriate combination with irrigation level. The highest mean WP [13.3 kg/(hm2-mm)] could be achieved at Plso with 18 and decreased with increase in irrigation level, while the highest mean PUE (20.1 kg/kg) could be achieved at P100 with I10 and diminished with higher P levels. The overall results indicate that P150 along with I10 was the best combination for sustainable rice cultivation in silty clay soil.
文摘[Objectives]This study was conducted to explore the rational formula for rice fertilization in Jianghan Plain.[Methods]An experiment on the combined application of nitrogen,phosphorus and potassium fertilizers was carried out in Jianghan Plain,an important rice producing area in Hubei,with a total of five treatments to study the effects of nitrogen,phosphorus and potassium fertilizers on the fertilizer use efficiency and yield of rice.[Results]Fertilization had a significant effect on improving rice yield,and nitrogen fertilizer had the greatest effect on rice yield,followed by potassium fertilizer and phosphorous fertilizer.[Conclusions]This study provides a scientific basis for the application of rice fertilizers and the reduction and efficiency improvement of chemical fertilizers in Jianghan Plain.
基金Supported by Jinan Agricultural Science and Technology Innovation Project(201313)Jinan Municipal Science and Technology Program(201401103)
文摘Wheat is one of the most important grain crops in China with great demand. It plays an important role to use phosphorus fertilizer for improving wheat yield. Therefore,application and foundation studies on wheat phosphorus use efficiency are so vital nowadays. Here,we have a simple review on definition of phosphorus use efficiency,response to phosphate starvation in plant,relevant genes cloning,impact factors,screening high phosphorus efficiency genotype and QTL analysis of phosphorus utilization efficiency in wheat.
基金Supported by Doctoral Scientific Research Start-up Project of Mudanjiang Normal University(MSB200912)"12th Five-Year Plan" Educational Science and Research Project of Heilongjiang Association of Higher Education(HGJXHB1110053)Teaching Reform Project of Mudanjiang Normal University(10-XY01067)~~
文摘[Objective] This study aimed to investigate the phosphorus nutrition effi- ciency of different soybean genotypes at blooming stage under low phosphorus stress. [Method] By using four "low phosphorus efficiency" soybean genotypes (D03, D05, D17 and D18) and four "high phosphorus efficiency" soybean genotypes (D31, D34, D37 and D38) as experimental materials, soil culture experiment was conduct- ed with two treatments of high phosphorus (+P) and low phosphorus (-P), to analyze the relationship between phosphorus content, phosphorus uptake, phosphorus use efficiency and phosphorus efficiency of soybean genotypes with different phos- phorus efficiency. [Result] Under low phosphorus conditions, four soybean genotypes with high phosphorus efficiency showed significant advantage in phosphorus uptake at seedling stage, to be specific, D34 showed relatively high phosphorus absorption capacity but no advantage in adaptability of phosphorus use efficiency, while only D37 showed relatively high phosphorus absorption capacity and phosphorus use ca- pacity. Correlation analysis and path analysis showed that the level of phosphorus efficiency of soybean at blooming stage under (-P) and (+P) treatments was mainly determined by phosphorus absorption capacity, and that under (-P) treatment was significantly greater than (+P) treatment. Phosphorus uptake and phosphorus use ef- ficiency under (-P) and (+P) treatments both showed great direct effects on phos- phorus efficiency, and phosphorus uptake made greater contribution; however, the indirect effects were relatively low, Under low phosphorus stress, the mechanisms for various soybean genotypes with high phosphorus efficiency to adapt to low phospho- rus stress were different, and phosphorus absorption efficiency (phosphorus uptake) was the main variation source of the phosphorus efficiency of various soybean genotypes at blooming stage. [Conclusion] This study revealed the contribution made by phosphorus absorption efficiency and phosphorus use efficiency to phosphorus efficiency of soybean.
基金the Bill & Melinda Gates Foundation (BMGF) for providing a research grant to Z.L.for the Green Super Rice project under ID OPP1130530the Department of Agriculture of the Philippines for providing funds to J.A.under the Next-Gen project.
文摘The development of green super rice varieties with improved nutrient use efficiency(NuUE)is a vital target area to increase yield and make it more stable under rainfed conditions.In the present study, we followed an early backcross(BC) breeding approach by using a highyielding and widely adapted Xian variety, Weed Tolerant Rice 1(WTR-1), as a recipient and a Geng variety, Hao-An-Nong(HAN), as a donor.Starting from the BC1F2 generation, the BC population went through one generation of selection under irrigated, low-input, and rainfed conditions, followed by four consecutive generations of screening and selection for high grain yield(GY) under six different nutrient conditions(NPK, 75 N,-N,-P,-NP, and-NPK), leading to the development of 230 BC1F6 introgression lines(ILs).These 230 ILs were evaluated under the same six nutrient conditions for 13 agro-morphological and grain yield component traits in comparison to four checks and parents.Significant trait variations were observed between the treatments and ILs.Positive correlations were identified for GY with biomass, panicle length, flag-leaf area, flag-leaf width, filled grain number per panicle,1000-grain weight, and tiller number under-N,-P,-NP, and-NPK conditions.Out of 230 ILs,12 were identified as promising under two or more nutrient deficiency conditions.The results demonstrated an efficient inter-subspecific BC breeding procedure with a first round of selection under rainfed-drought conditions, followed by four generations of progeny testing for yield performance under six nutrient conditions.The promising ILs can be useful resources for molecular genetic dissection and understanding the physiological mechanisms of NuUE.
基金supported by the National Natural Science Foundation of China(31101104,31271643)the Specialized Research Fund for the Doctoral Program of Higher Education of China(20102103120011)
文摘Phosphorus (P) is an essential element for plant growth and yield. Improving phosphorus use efficiency of crops could potentially reduce the application of chemical fertilizer and alleviate environmental damage. Soybean (Glycine max (L.) Merr.) is sensitive to phosphorus (P) in the whole life history. Soybean cultivars with different P efficiencies were used to study P uptake and dry matter accumulation under different P levels. Under low P conditions, the P contents of leaf in high P efficiency cultivars were greater than those in low P efficiency cultivars at the branching stage. The P accumulation in stems of high P efficiency cultivars and in leaves of low P efficiency cultivars increased with increasing P concentration at the branching stage. At the late podding stage, the P accumulation of seeds in high and low P efficiency cultivars were 22.5 and 26.0%, respectively; and at the mature stage were 69.8 and 74.2%, respectively. In average, the P accumulation in whole plants and each organ was improved by 24.4% in high P efficiency cultivars compared to low P efficiency cultivars. The biomass between high and low P efficiency cultivars were the same under extended P condition, while a significant difference was observed at late pod filling stage. At the pod setting stage, the biomass of high P efficiency cultivars were significant greater (17.4%) than those of low P efficiency cultivars under high P condition. Meanwhile, under optimum growth conditions, there was little difference ofbiomass between the two types of cultivars, however, the P agronomic efficiency and P harvest index were significant higher in high P efficiency cultivars than those in low P efficiency cultivars.
文摘A soil pot culture experiment with four supplied P levels (i.e. P30, P50, P100, P200, representing supplemental P 30, 50, 100, 200 mg/kg, respectively) was conducted to investigate uptake and use ability to P and Zn in the rice genotypes with different P-efficiency, of which rice genotypes 508, 99011, 580, 99112 were Iow-P tolerant and 99056, 99012 were Iow-P sensitive. Low-P tolerant rice 580 and 99011 absorbed more P than the others, and rice genotype 580 had stronger uptake ability especially at Iow-P level such as P50 and P30. 508 could absorb considerable P, and had the lowest P percentage of shoot, indicating it had good performance in P-use efficiency. These three rice genotypes had larger biomass and less response to changed P level than rice genotype 99112, 99056 and 99012. Rice genotype 99112 showed Low-P tolerance mainly by sacrificing biomass to maintain high relative grain yield. The least amount of P absorbed by 99056 showed it had the lowest P uptake efficiency, and the highest P percentage in shoot of 99012 meant it had the lowest P use efficiency. So they two showed Iow-P sensitivity. Zn contents in shoot under P200, P100 and P50 were similar, but P30 increased Zn content in shoot significantly. The Zn contents in shoot of 99112, 99056 and 99012 were higher than those of 508, 99011 and 580, especially at tillering stage and booting stage. As for total Zn content in shoot, Low-P tolerant rice genotype 580 had the largest amount and followed by 99011 and 508, Iow-P tolerant rice genotype 99012 had the smallest amount at the three sampling stage and followed by 99056. Furthermore, P/Zn in shoot of 99012 was the highest, and that of 99056 was the smallest at the same P level.
文摘Common bean (Phaseolus vulgaris L.) is an important legume in the tropics, with production limited by low availability of soil phosphorus (P). An experiment was conducted in the glasshouse to evaluate P use efficiency of eight dry bean genotypes (G122, Montcalm, Taylor Horticulture, Cardinal, Bukoba, Kijivu, Rojo and CAL 143) of Andean origin. The treatments included: no P (0 kg P ha-1), normal P (50 kg P ha-1), and high P (100 kg P ha-1). There was variation for the measured traits shoot biomass (g), shoot P (mg kg-1), root P (mg kg-1), seed P (mg kg-1) and seed yield (g) among genotypes and P treatments. Biomass and all P concentrations increased with increasing P level and the genotypes Kijivu, Bukoba, Montcalm and Taylor Horticulture had higher P concentrations than Rojo, G122, Cardinal and CAL 143 across treatments. Genotype × treatment interactions were observed for shoot biomass. For the no P treatment, shoot and root biomass were positively correlated with PUE (phosphorus use efficiency). PUE had higher values and varied more among genotypes in the no P treatment compared to the normal P and high P treatments. The results suggest that seed yield in dry bean can be improved by selecting for genotypes with higher PUE under limiting P. The genotypes Bukoba, Kijivu and Montcalm with the highest values for PUE under no P treatment may be exhibiting some level of tolerance to low soil phosphorus. Higher shoot weight may provide simple criteria for selecting genotypes with greater yield and PUE (phosphorus use efficiency) under limiting P conditions. Therefore, a genotype is desired that can efficiently uptake and utilize available P under limited availability of this nutrient.
基金This study was funded by the National Key Research and Development Program of China(2021YFD1700900).
文摘Phosphorus(P)is a nonrenewable resource and a critical element for plant growth that plays an important role in improving crop yield.Excessive P fertilizer application is widespread in agricultural production,which not only wastes phosphate resources but also causes P accumulation and groundwater pollution.Here,we hypothesized that the apparent P balance of a crop system could be used as an indicator for identifying the critical P input in order to obtain a high yield with high phosphorus use efficiency(PUE).A 12-year field experiment with P fertilization rates of 0,45,90,135,180,and 225 kg P_(2)O_(5)ha^(-1)was conducted to determine the crop yield,PUE,and soil Olsen-P value response to P balance,and to optimize the P input.Annual yield stagnation occurred when the P fertilizer application exceeded a certain level,and high yield and PUE levels were achieved with annual P fertilizer application rates of 90-135 kg P_(2)O_(5)ha^(-1).A critical P balance range of 2.15-4.45 kg P ha^(-1)was recommended to achieve optimum yield with minimal environmental risk.The critical P input range estimated from the P balance was 95.7-101 kg P_(2)O_(5)ha^(-1),which improved relative yield(>90%)and PUE(90.0-94.9%).In addition,the P input-output balance helps in assessing future changes in Olsen-P values,which increased by 4.07 mg kg^(-1)of P for every 100 kg of P surplus.Overall,the P balance can be used as a critical indicator for P management in agriculture,providing a robust reference for limiting P excess and developing a more productive,efficient and environmentally friendly P fertilizer management strategy.
基金supported by the National Key Research and Development Program(2016YFD0300206-4,2018YFD0300800)the National Natural Science Foundation of China(31461143015,31771710,31871559)+4 种基金Young Elite Scientists Sponsorship Program by CAST(2016QNRC001)Six Talent Peaks Project in Jiangsu Province(SWYY-151)the Jiangsu Provincial Key Research and Development Program(Modern Agriculture)(BE2015320)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Top Talent Supporting Program of Yangzhou University(2015-01)。
文摘Phosphorus use efficiency(PUE)can be improved through cultivation techniques and breeding.However,little is known about rice(Oryza sativa L.)agronomic and physiological traits associated with high PUE.We characterized the agronomic and physiological traits of rice varieties with different tolerances to low phosphorus in nutrient solution.Two varieties with strong tolerance to low phosphorus(STVs)and two with weak tolerance(WTVs)were grown at normal(NP,control)and low phosphorus(LP,1/20 of NP)concentrations.Plants grown at LP produced significantly lower grain yield than those grown at NP.WTVs yields were lower than STVs yields.Compared to NP,LP significantly increased phosphorus translocation efficiency(PTE),internal phosphorus efficiency(IPE)and phosphorus harvest index(PHI).Under the LP condition,PTE and IPE were higher for STVs than for WTVs.LP also reduced tiller number,shoot biomass,leaf area index(LAI),leaf photosynthetic rate,and mean root diameter of both kinds of varieties at the main growth stages,but to a lower extent in STVs.LP significantly increased the number of productive tillers,root biomass,root-shoot ratio,root bleeding rate,and root acid phosphatase(RAP)activity.Total root length,root oxidation activity(ROA),and root total and active absorbing surface areas for STVs were significantly increased under LP,whereas the opposite responses were observed for WTVs.Total root length,ROA,root bleeding rate,root active absorbing surface area,and RAP activity were positively and significantly correlated with grain yield,PTE,and IPE.These results suggest that the tolerance of rice varieties to a low-phosphorus growth condition is closely associated with root growth with higher biomass and activity.
基金supported by funding from the UK Biotechnology and Biological Sciences Research Council (BBS/E/C/ 000I0310, BBS/E/C/000I0320, BBS/E/C/000I0120)funded by the UK Biotechnology and Biological Sciences Research Council through the Tailoring Plant Metabolism Institute Strategic Grant BBS/E/C/000I0420
文摘The continued supply of phosphate fertilizers that underpin global food production is an imminent crisis.The rock phosphate deposits on which the world depends are not only finite,but some are contaminated,and many are located in geopolitically unstable areas,meaning that fundamental changes will have to take place in order to maintain food production for a growing global population.No single solution exists,but a combination of approaches to phosphorus management is required not only to extend the lifespan of the remaining non-renewable rock phosphate reserves,but to result in a more efficient,sustainable phosphorus cycle.Solutions include improving the efficiency of fertilizer applications to agricultural land,alongside a better understanding of phosphorus cycling in soil-plant systems,and the interactions between soil physics,chemistry and biology,coupled with plant traits.Opportunities exist for the development of plants that can access different forms of soil phosphorus(e.g.,organic phosphorus)and that use internal phosphorus more efficiently.The development of different sources of phosphorus fertilizers are inevitably required given the finite nature of the rock phosphate supplies.Clear opportunities exist,and it is now important that a concerted effort to make advances in phosphorus use efficiency is prioritized.
基金supported by the National Key Research and Development Program of China (2018YFD0100201 and 2016YFD0101201)the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of Chinathe Sino-German International Research Training Group “Adaptation of maize-based food-feed-energy systems to limited phosphate resources.”
文摘Phosphorus is the second most important macronutrient after nitrogen and it has many vital functions in the life of plants.Most soils have a low available P content,which has become a key limiting factor for increasing crop production.Also,low P use efficiency(PUE)of crops in conjunction with excessive application of P fertilizers has resulted in serious environmental problems.Thus,dissecting the genetic architecture of crop PUE,mining related quantitative trait loci(QTL)and using molecular breeding methods to improve high PUE germplasm are of great significance and serve as an efficient approach for the development of sustainable agriculture.In this review,molecular and phenotypic characteristics of maize inbred lines with high PUE,related QTL and genes as well as low-P responses are summarized.Based on this,a breeding strategy applying genomic selection as the core,and integrating the existing genetic information and molecular breeding techniques is proposed for breeding high PUE maize inbred lines and hybrids.
基金supported by the National Natural Science Foundation of China(31800400 and 31722009)and the Natural Science Foundation of Shanghai(18ZR1412100).
文摘Aims The functions of global forests are threatened by the increasing frequency of severe drought.Due to drought inducing reductions in soil nutrient availability,efficiencies of nutrient use and resorption of trees become crucial for forest functions and biogeochemical cycles.However,understanding the dynamics of responses of foliar nutrient use and resorption efficiencies to drought,especially in tropical or subtropical forests,is still limited.Our goal was to detect whether and how the importance of leaf nutrient use and resorption changes across different species in the hot and wet forests when suffering drought stress in different months.Methods Based on a 70%throughfall exclusion experiment in a subtropical forest,we collected green and senesced leaves of Schima superba and Lithocarpus glaber in different months from October 2016 to May 2019,to estimate the effects of drought on leaf nitrogen(N)and phosphorus(P)use and resorption efficiencies(i.e.NUE and PUE,NRE and PRE).Important Findings The effects of drought on nutrient use and resorption efficiencies varied between species and months.Based on a 2-year observation,drought had no effect on S.superba,but significantly decreased NUE,NRE and PRE of L.glaber by 3.4%,20.2%and 7.1%,respectively.Furthermore,the negative drought effects were aggravated by the natural summer drying in 2017.As a result,NUE and PUE of L.glaber were significantly depressed by 17.2%and 58.1%,while NRE and PRE were significantly reduced by 56.5%and 53.8%in August 2017.Moreover,the responses of NRE,PRE and NUE to drought were related with soil moisture(SM)for L.glaber,and when SM decreased to a threshold near 9 v/v%,drought effects were shifted from unresponsive to negative.Our results highlight a species-specific threshold response of nutrient use under drought in a subtropical forest.
文摘The use of digestates or cattle slurries as fertilisers could contribute to the recycling of nutrients and organic matter, thus meeting the goals of the circular economy in agriculture. This work aims at evaluating the fertilising properties of a solid digestate (DG) in comparison with undigested cattle slurry (CS) and mineral fertilisation (MF). The experiment was performed in pots with ryegrass (<em>Lolium multiflorum</em> Lam.) grown in an acidic soil during a 163 days crop cycle. The results showed that throughout the crop cycle neither DG nor CS increased soil organic matter. DG significantly increased (P < 0.001) the sum of the soil exchangeable bases and soil P availability compared with CS or MF. Also, DG significantly increased (P < 0.05) the apparent P recovery of ryegrass (43%) compared with MF (27%). In the first cut, the ryegrass yield was higher in DG and CS than in MF, decreasing in the second and third cuts as a consequence of a decrease in N availability. Nevertheless, the fertilisation with DG or CS could replace the half amount of mineral N fertilisation, without a significant decrease in the ryegrass forage production. In addition, DG enables greater efficiency in the use of P than CS or MF.
基金the Ministry of Science and Innovation,Spain(grant numbers BIO2017-89530-R and BIO2020-118750RB-100).
文摘Phosphorus(P)is an essential nutrient for plant growth and reproduction.Plants preferentially absorb P as orthophosphate(Pi),an ion that displays low solubility and that is readily fixed in the soil,making P limita-tion a condition common to many soils and Pi fertilization an inefficient practice.To cope with Pi limitation,plants have evolved a series of developmental and physiological responses,collectively known as the Pi starvation rescue system(PSR),aimed to improve Pi acquisition and use efficiency(PUE)and protect from Pi-starvation-induced stress.Intensive research has been carried out during the last 20 years to un-ravel the mechanisms underlying the control of the PSR in plants.Here we review the results of this research effort that have led to the identification and characterization of several core Pi starvation signaling components,including sensors,transcription factors,microRNAs(miRNAs)and miRNA inhibitors,kinases,phosphatases,and components of the proteostasis machinery.We also refer to recent results revealing the existence of intricate signaling interplays between Pi and other nutrients and antagonists,N,Fe,Zn,and As,that have changed the initial single-nutrient-centric view to a more integrated view of nutrient homeostasis.Finally,we discuss advances toward improving PUE and future research priorities.
基金supported by the National Key Research and Development Program of China (2017YFD0200200/ 2017YFD0200208)the National Natural Science Foundation of China (31872957)the Knowledge Innovation Program of the Chinese Academy of Sciences (ISSASIP1608)
文摘Vegetable production systems involve high rates of chemical and organic fertilizer applications,leading to significant P accumulation in vegetable soils,as well as a decrease in P use efficiency(PUE),which is one of the key limiting factors in vegetable production.This review introduces the vegetable production systems in China and their fertilization status,and analyzes probable causes of overfertilization of vegetable fields.Poorly developed root systems and high P demand have led to the need to maintain much higher available P concentrations in the root zone for regular growth of vegetables,which might necessitate higher phosphate fertilizer input than the plants require.Research on strategies to improve vegetable PUE and the mechanisms of these strategies are summarized in this review.Increasing the P uptake by vegetables by supplying P during the critical growth stage and effectively utilizing the accumulated P by optimizing the C:P ratio in soils can substantially increase PUE.These advances will provide a basis for improving PUE and optimizing phosphate fertilizer applications in vegetable production through regulatory measures.In addition,some policies are recommended that could ensure the safety of vegetables and improve product quality.This review also aims to improve understanding of P cycling in vegetable fields and assist in the development of best practices to manage P reserves globally.
基金supported by grants from the National Key Research and Development Program of China (2022YFD1200400)the Key Research and Development Plan of Hubei Province (2021ABA011)+3 种基金Fundamental Research Funds for the Central Universities (2662022ZKPY001)a Higher Education Discipline Innovation Project (B20051)an Agriculture and Food Research Initiative (AFRI)award[2020-67013-30908/project accession number 1022148]of the US Department of Agriculture National Institute of Food and Agriculturethe China Postdoctoral Science Foundation (2023M731230)。
文摘Phosphorus is a major nutrient vital for plant growth and development,with a substantial amount of cellular phosphorus being used for the biosynthesis of membrane phospholipids.Here,we report that NON-SPECIFIC PHOSPHOLIPASE C4(NPC4)in rapeseed(Brassica napus)releases phosphate from phospholipids to promote growth and seed yield,as plants with altered NPC4 levels showed significant changes in seed production under different phosphate conditions.Clustered regularly interspaced short palindromic repeat(CRISPR)/CRISPR-associated nuclease 9(Cas9)-mediated knockout of Bna NPC4 led to elevated accumulation of phospholipids and decreased growth,whereas overexpression(OE)of Bna NPC4resulted in lower phospholipid contents and increased plant growth and seed production.We demonstrate that Bna NPC4 hydrolyzes phosphosphingolipids and phosphoglycerolipids in vitro,and plants with altered Bna NPC4 function displayed changes in their sphingolipid and glycerolipid contents in roots,with a greater change in glycerolipids than sphingolipids in leaves,particularly under phosphate deficiency conditions.In addition,Bna NPC4-OE plants led to the upregulation of genes involved in lipid metabolism,phosphate release,and phosphate transport and an increase in free inorganic phosphate in leaves.These results indicate that Bna NPC4 hydrolyzes phosphosphingolipids and phosphoglycerolipids in rapeseed to enhance phosphate release from membrane phospholipids and promote growth and seed production.