期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Genome-wide association and linkage mapping strategies reveal genetic loci and candidate genes of phosphorus utilization in soybean 被引量:1
1
作者 ZHANG Hua WU Hai-yan +7 位作者 TIAN Rui KONG You-bin CHU Jia-hao XING Xin-zhu DU Hui JIN Yuan LI Xi-huan ZHANG Cai-ying 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第9期2521-2537,共17页
Insufficient available phosphorus in soil has become an important limiting factor for the improvement of yield and quality in soybean. The mining of QTLs and candidate genes controlling soybean phosphorus utilization ... Insufficient available phosphorus in soil has become an important limiting factor for the improvement of yield and quality in soybean. The mining of QTLs and candidate genes controlling soybean phosphorus utilization related traits is a necessary strategy to solve this problem. In this study, 11 phosphorus utilization related traits of a natural population of 281 typical soybean germplasms and a recombinant inbred line(RIL) population of 270 lines were evaluated under different phosphorus conditions at two critical stages: the four-leaf stage as the seedling critical stage was designated as the Tstage, and the six-leaf stage as the flowering critical stage was designated as the Tstage. In total, 200 single nucleotide polymorphism(SNP) loci associated with phosphorus utilization related traits were identified in the natural population, including 91 detected at the Tstage, and 109 detected at the Tstage. Among these SNP loci, one SNP cluster(s715611375, ss715611377, ss715611379 and ss715611380) on Gm12 was shown to be significantly associated with plant height under the low phosphorus condition at the Tstage, and the elite haplotype showed significantly greater plant height than the others. Meanwhile, one pleiotropic SNP cluster(ss715606501, ss715606506 and ss715606543) on Gm10 was found to be significantly associated with the ratio of root/shoot, root and total dry weights under the low phosphorus condition at the Tstage, and the elite haplotype also presented significantly higher values for related characteristics under the phosphorus starvation condition. Furthermore, four co-associated SNP loci(ss715597964, ss715607012, ss715622173 and ss715602331) were identified under the low phosphorus condition at both the Tand Tstages, and 12 QTLs were found to be consistent with these genetic loci in the RIL population. More importantly, 14 candidate genes, including MYB transcription factor, purple acid phosphatase, sugar transporter and HSP20-like chaperones superfamily genes, etc., showed differential expression levels after low phosphorus treatment, and three of them were further verified by q RT-PCR. Thus, these genetic loci and candidate genes could be applied in markerassisted selection or map-based gene cloning for the genetic improvement of soybean phosphorus utilization. 展开更多
关键词 SOYBEAN phosphorus utilization GWAS linkage mapping genetic loci candidate genes
下载PDF
A major quantitative trait locus controlling phosphorus utilization efficiency under different phytate-P conditions at vegetative stage in barley 被引量:1
2
作者 GAO Shang-qing CHEN Guang-deng +4 位作者 HU De-yi ZHANG Xi-zhou LI Ting-xuan LIU Shi-hang LIU Chun-ji 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第2期285-295,共11页
Organic phosphorus(P) is an important component of the soil P pool, and it has been proven to be a potential source of P for plants. The phosphorus utilization efficiency(PUE) and PUE related traits(tiller number... Organic phosphorus(P) is an important component of the soil P pool, and it has been proven to be a potential source of P for plants. The phosphorus utilization efficiency(PUE) and PUE related traits(tiller number(TN), shoot dry weight(DW), and root dry weight) under different phytate-P conditions(low phytate-P, 0.05 mmol L^-1 and normal phytate-P, 0.5 mmol L^-1) were investigated using a population consisting of 128 recombinant inbred lines(RILs) at the vegetative stage in barley. The population was derived from a cross between a P-inefficient genotype(Baudin) and a P-efficient genotype(CN4027, a Hordeum spontaneum accession). A major locus(designated Qpue.sau-3 H) conferring PUE was detected in shoots and roots from the RIL population. The quantitative trait locus(QTL) was mapped on chromosome 3 H and the allele from CN4027 confers high PUE. This locus explained up to 30.3 and 28.4% of the phenotypic variance in shoots under low and normal phytate-P conditions, respectively. It also explains 28.3 and 30.7% of the phenotypic variation in root under the low and normal phytate-P conditions, respectively. Results from this study also showed that TN was not correlated with PUE, and a QTL controlling TN was detected on chromosome 5 H. However, dry weight(DW) was significantly and positively correlated with PUE, and a QTL controlling DW was detected near the Qpue.sau-3 H locus. Based on a covariance analysis, existing data indicated that, although DW may affect PUE, different genes at this locus are likely involved in controlling these two traits. 展开更多
关键词 barley phosphorus utilization efficiency quantitative trait locus recombinant inbred line phytate-P
下载PDF
Molecular Characterization and Functional Analysis of OsPHY1,a Purple Acid Phosphatase (PAP)-Type Phytase Gene in Rice (Oryza sativa L.) 被引量:5
3
作者 LI Rui-juan LU Wen-jing +3 位作者 GUO Cheng-jin LI Xiao-juan GU Jtm-tao XIAO Kai 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2012年第8期1217-1226,共10页
As a specific type of acid phosphatses, phytases play diverse roles in plants by catalazing the degradation of phytic acid and its derivatives. In this study, a rice phytase gene referred to OsPHY1 has been functional... As a specific type of acid phosphatses, phytases play diverse roles in plants by catalazing the degradation of phytic acid and its derivatives. In this study, a rice phytase gene referred to OsPHY1 has been functionally characterized. OsPHY1 contains a 1 620 bp of open reading frame, encoding a 539-aa polypeptide. A conserve domain metallophosphatase (MPP) (MPP_PAPs), generally harbored in phytase and purple acid phosphatases (PAP), was identified in OsPHY1 (residue 194-398). Phylogenetic analysis revealed that OsPHY1 shares high similarities with phytase genes and PAP-type genes that derived from diverse plant species. The OsPHY1 transcripts were detected to be abundant in germinating seeds, suggesting that this gene plays potential roles on degradation of seed phytic acid and its derivatives during the germination process. Biochemical analysis confirmed that OsPHY1 possesses strong catalytic activities on phytic acid-Na2, with optimal temperature of 57°C and suitable pH of 3.5. Based on transgene analysis, the putative role of OsPHY1 in plants on utilization of phytate was assessed. Under the condition that phytic acid-Na2 was used as sole P source, the OsPHY1-overexpressing tobacco plants behaved higher phytase activities, higher concentrations of Pi, more accumulative amount of total phosphorus, and much more improved growth traits than those of the control plants. Therefore, OsPHY1 is acted as an important component on degradation of the phytins during the seed germination process in rice. Also, OsPHY1 has a potential use on generation of elite crop germplasms with improved use efficiencies on phytate and its derivatives. 展开更多
关键词 rice (Oryza sitava L.) PHYTASE expression transgenic tobacco phosphorus utilization efficiency
下载PDF
Experimental study on water-saving and emission-reduction effects of controlled drainage technology 被引量:4
4
作者 Meng-hua Xiao Xiu-jun Hu Lin-lin Chu 《Water Science and Engineering》 EI CAS CSCD 2015年第2期114-120,共7页
Field experiments and laboratory analysis were carried out to determine the effects of controlled drainage(CTD) and conventional drainage(CVD) technologies on drainage volume, concentrations of NH4^+ -N, NO3^-N, ... Field experiments and laboratory analysis were carried out to determine the effects of controlled drainage(CTD) and conventional drainage(CVD) technologies on drainage volume, concentrations of NH4^+ -N, NO3^-N, and total phosphorus(TP), nitrogen and phosphorus losses, rice yield,and water utilization efficiency. Results show that CTD technology can effectively reduce drainage times and volume; NH4^+ -N, NO3^-N, and TP concentrations, from the first to the fourth day after four rainstorms decreased by 28.7%e46.7%, 37.5%e47.5%, and 22.7e31.2%, respectively,with CTD. These are significantly higher rates of decrease than those observed with CVD. CTD can significantly reduce nitrogen and phosphorus losses in field drainage, compared with CVD; the reduction rates observed in this study were, respectively, 66.72%, 55.56%, and 42.81% for NH4^+ -N, NO3^-N, and TP. Furthermore, in the CTD mode, the rice yield was cut slightly. In the CVD mode, the water production efficiencies in unit irrigation water quantity, unit field water consumption, and unit evapotranspiration were, respectively, 0.85, 0.48, and 1.22 kg/m^3, while in the CTD mode they were 2.91, 0.84, and 1.61 kg/m^3 din other words, 3.42, 1.75, and 1.32 times those of CVD. Furthermore, the results of analysis of variance(ANOVA) show that the indicators in both the CVD and CTD modes, including the concentrations of NH4^+ -N, NO3^-N, and TP, the losses of NH4^+ -N, NO3^-N, and TP, irrigation water quantity, and water consumption, showed extremely significant differences between the modes, but the rice yield showed no significant difference. 展开更多
关键词 Controlled drainage Nitrogen phosphorus Rice yield Drainage volume Water utilization efficiency
下载PDF
Complex Regulation of Plant Phosphate Transporters and the Gap between Molecular Mechanisms and Practical Application: What Is Missing? 被引量:25
5
作者 Mian Gu Aiqun Chen +1 位作者 Shubin Sun Guohua Xu 《Molecular Plant》 SCIE CAS CSCD 2016年第3期396-416,共21页
It has been almost 25 years since the first report of the gene encoding a high-affinity phosphate transporter (PT), PH084, in yeast. Since then, an increasing number of yeast PH084 homologs as well as other genes en... It has been almost 25 years since the first report of the gene encoding a high-affinity phosphate transporter (PT), PH084, in yeast. Since then, an increasing number of yeast PH084 homologs as well as other genes encoding proteins with phosphate (Pi) transport activities have been identified and functionally characterized in diverse plant species. Great progress has been made also in deciphering the molecular mechanism underlying the regulation of the abundance and/or activity of these genes and their products. The regulatory genes affect plant Pi homeostasis commonly through direct or indirect regulation of the abundance of PTs at different levels. However, little has been achieved in the use of PTs for developing genetically modified crops with high phosphorus use efficiency (PUE). This might be a consequence of overemphasizing Pi uptake from the rhizosphere and lack of knowledge about the roles of PTs in Pi transport and recycling within the plant that are required to optimize PUE. Here, we mainly focused on the genes encoding proteins with Pi transport activities and the emerging understanding of their regulation at the transcriptional, posttranscriptional, translational, and post-translational levels. In addition, we propose potential strategies for effective use of PTs in improving plant growth and development. 展开更多
关键词 phosphorus phosphate starvation signaling REGULATION phosphorus acquisition efficiency phosphorus utilization efficiency phosphate transporter
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部