Poststro ke cognitive impairment is a major secondary effect of ischemic stroke in many patients;however,few options are available for the early diagnosis and treatment of this condition.The aims of this study were to...Poststro ke cognitive impairment is a major secondary effect of ischemic stroke in many patients;however,few options are available for the early diagnosis and treatment of this condition.The aims of this study were to(1)determine the specific relationship between hypoxic andα-synuclein during the occur of poststroke cognitive impairment and(2)assess whether the serum phosphorylatedα-synuclein level can be used as a biomarker for poststro ke cognitive impairment.We found that the phosphorylatedα-synuclein level was significantly increased and showed pathological aggregation around the cerebral infa rct area in a mouse model of ischemic stroke.In addition,neuronalα-synuclein phosphorylation and aggregation were observed in the brain tissue of mice subjected to chronic hypoxia,suggesting that hypoxia is the underlying cause ofα-synuclein-mediated pathology in the brains of mice with ischemic stroke.Serum phosphorylatedα-synuclein levels in patients with ischemic stroke were significantly lower than those in healt hy subjects,and were positively correlated with cognition levels in patients with ischemic stroke.Furthermore,a decrease in serum high-density lipoprotein levels in stroke patie nts was significantly correlated with a decrease in phosphorylatedα-synuclein levels.Although ischemic stroke mice did not show significant cognitive impairment or disrupted lipid metabolism 14 days after injury,some of them exhibited decreased cognitive function and reduced phosphorylatedα-synuclein levels.Taken together,our results suggest that serum phosphorylatedα-synuclein is a potential biomarker for poststroke cognitive impairment.展开更多
Alzheimer’s disease is a neurodegenerative disorder characterized by the amyloid accumulation in the brains of patients with Alzheimer’s disease.The pathogenesis of Alzheimer’s disease is mainly mediated by the pho...Alzheimer’s disease is a neurodegenerative disorder characterized by the amyloid accumulation in the brains of patients with Alzheimer’s disease.The pathogenesis of Alzheimer’s disease is mainly mediated by the phosphorylation and aggregation of tau protein.Among the multiple causes of tau hyperphosphorylation,brain insulin resistance has generated much attention,and inositols as insulin sensitizers,are currently considered candidates for drug development.The present narrative review revises the interactions between these three elements:Alzheimer’s disease-tau-inositols,which can eventually identify targets for new disease modifiers capable of bringing hope to the millions of people affected by this devastating disease.展开更多
PTEN-induced putative kinase 1(PINK1),a mitochondrial kinase that phosphorylates Parkin and other proteins,plays a crucial role in mitophagy and protection against neurodegeneration.Mutations in PINK1 and Parkin can l...PTEN-induced putative kinase 1(PINK1),a mitochondrial kinase that phosphorylates Parkin and other proteins,plays a crucial role in mitophagy and protection against neurodegeneration.Mutations in PINK1 and Parkin can lead to loss of function and early onset Parkinson's disease.However,there is a lack of strong in vivo evidence in rodent models to support the theory that loss of PINK1 affects mitophagy and induces neurodegeneration.Additionally,PINK1 knockout pigs(Sus scrofa)do not appear to exhibit neurodegeneration.In our recent work involving non-human primates,we found that PINK1 is selectively expressed in primate brains,while absent in rodent brains.To extend this to other species,we used multiple antibodies to examine the expression of PINK1 in pig tissues.In contrast to tissues from cynomolgus monkeys(Macaca fascicularis),our data did not convincingly demonstrate detectable PINK1expression in pig tissues.Knockdown of PINK1 in cultured pig cells did not result in altered Parkin and BAD phosphorylation,as observed in cultured monkey cells.A comparison of monkey and pig striatum revealed more PINK1-phosphorylated substrates in the monkey brain.Consistently,PINK1 knockout in pigs did not lead to obvious changes in the phosphorylation of Parkin and BAD.These findings provide new evidence that PINK1expression is specific to primates,underscoring the importance of non-human primates in investigating PINK1function and pathology related to PINK1 deficiency.展开更多
Objective YAP1 plays a dual role as an oncogene and tumor suppressor gene in several tumors;differentiating between these roles may depend on the YAP1 phosphorylation pattern.The specific function of YAP1 in B cell ac...Objective YAP1 plays a dual role as an oncogene and tumor suppressor gene in several tumors;differentiating between these roles may depend on the YAP1 phosphorylation pattern.The specific function of YAP1 in B cell acute lymphoblastic leukemia(B-ALL),however,is currently unclear.Thus,in the present study,the role of YAP1 in B-ALL was investigated using relevant cell lines and patient datasets.Methods The effects of shRNA-mediated knockdown on YAP1 and LATS1 levels in the NALM6 and MOLT-4 cell lines were examined using Western blotting,quantitative real-time polymerase chain reaction,flow cytometry,immunostaining,and nude mouse subcutaneous tumorigenesis experiments.Gene expression levels of Hippo pathway-related molecules before and after verteporfin(VP)treatment were compared using RNA-Seq to identify significant Hippo pathway-related genes in NALM6 cells.Results Patients with ALL showing high YAP1 expression and low YAP1-Ser127 phosphorylation levels had worse prognoses than those with low YAP1 protein expression and high YAP1-Ser127 phosphorylation levels.YAP1-Ser127 phosphorylation levels were lower in NALM6 cells than in MOLT-4 and control cells;YAP1 was distributed in the nuclei in NALM6 cells.Knockdown of YAP1 inhibited MOLT-4 and NALM6 cell proliferation and arrested the NALM6 cell cycle in the G0/G1 phase.Before and after VP treatment,the expression of the upstream gene LATS1 was upregulated;its overexpression promoted YAP1-Ser127 phosphorylation.Further,YAP1 was distributed in the plasma.Conclusion LATS1 may downregulate YAP1-Ser127 phosphorylation and maintain B-ALL cell function;thus,VP,which targets this axis,may serve as a new therapeutic method for improving the outcomes for B-ALL patients.展开更多
The shuttle effect is among the most characteristic and formidable challenges in the pursuit of high-performance lithium-sulfur(Li-S)batteries.Herein,phosphorylated cellulose nanofibers(pCNF)are intentionally engineer...The shuttle effect is among the most characteristic and formidable challenges in the pursuit of high-performance lithium-sulfur(Li-S)batteries.Herein,phosphorylated cellulose nanofibers(pCNF)are intentionally engineered to establish an ion-sieving barrier against polysulfide shuttling and thereby improve battery performance.The phosphorylation,involving the grafting of phosphate groups onto the cellulose backbone,imparts an exceptional electronegativity that repels the polysulfide anions from penetrating through the separator.Moreover,the electrolyte wettability and Li^(+)transfer can be significantly promoted by the polar nature of pCNF and the facile Li^(+)disassociation.As such,rational ion management is realized,contributing to enhanced reversibility in both sulfur and lithium electrochemistry.As a result,Li-S cells equipped with the self-standing pCNF separator demonstrate outstanding long-term cyclability with a minimum fading rate of 0.013%per cycle over 1000 cycles at 1 C,and a decent areal capacity of 5.37 mA h cm^(-2) even under elevated sulfur loading of 5.0 mg cm^(-2) and limited electrolyte of 6.0 mL g^(-1).This work provides a facile and effective pathway toward the well-tamed shuttle effect and highly durable Li-S batteries.展开更多
Changes in protein abundance and reversible protein phosphorylation(RPP)play important roles in regulating hypometabolism but have never been documented in overwintering frogs at high altitudes.To test the hypothesis ...Changes in protein abundance and reversible protein phosphorylation(RPP)play important roles in regulating hypometabolism but have never been documented in overwintering frogs at high altitudes.To test the hypothesis that protein abundance and phosphorylation change in response to winter hibernation,we conducted a comprehensive and quantitative proteomic and phosphoproteomic analysis of the liver of the Xizang plateau frog,Nanorana parkeri,living on the Qinghai-Xizang Plateau.In total,5170 proteins and 5695 phosphorylation sites in 1938 proteins were quantified.Based on proteomic analysis,674 differentially expressed proteins(438 up-regulated,236 down-regulated)were screened in hibernating N.parkeri versus summer individuals.Functional enrichment analysis revealed that higher expressed proteins in winter were significantly enriched in immune-related signaling pathways,whereas lower expressed proteins were mainly involved in metabolic processes.A total of 4251 modified sites(4147 up-regulated,104 down-regulated)belonging to 1638 phosphoproteins(1555 up-regulated,83 down-regulated)were significantly changed in the liver.During hibernation,RPP regulated a diverse array of proteins involved in multiple functions,including metabolic enzymatic activity,ion transport,protein turnover,signal transduction,and alternative splicing.These changes contribute to enhancing protection,suppressing energy-consuming processes,and inducing metabolic depression.Moreover,the activities of phosphofructokinase,glutamate dehydrogenase,and ATPase were all significantly lower in winter compared to summer.In conclusion,our results support the hypothesis and demonstrate the importance of RPP as a regulatory mechanism when animals transition into a hypometabolic state.展开更多
Objective:Cymbopogon citratus(DC.)Stapf is a medicinal and edible herb that is widely used for the treatment of gastric,nervous and hypertensive disorders.In this study,we investigated the cardioprotective effects and...Objective:Cymbopogon citratus(DC.)Stapf is a medicinal and edible herb that is widely used for the treatment of gastric,nervous and hypertensive disorders.In this study,we investigated the cardioprotective effects and mechanisms of the essential oil,the main active ingredient of Cymbopogon citratus,on isoproterenol(ISO)-induced cardiomyocyte hypertrophy.Methods:The compositions of Cymbopogon citratus essential oil(CCEO)were determined by gas chromatography-mass spectrometry.Cardiomyocytes were pretreated with 16.9µg/L CCEO for 1 h followed by 10µmol/L ISO for 24 h.Cardiac hypertrophy-related indicators and NLRP3 inflammasome expression were evaluated.Subsequently,transcriptome sequencing(RNA-seq)and target verification were used to further explore the underlying mechanism.Results:Our results showed that the CCEO mainly included citronellal(45.66%),geraniol(23.32%),and citronellol(10.37%).CCEO inhibited ISO-induced increases in cell surface area and protein content,as well as the upregulation of fetal gene expression.Moreover,CCEO inhibited ISO-induced NLRP3 inflammasome expression,as evidenced by decreased lactate dehydrogenase content and downregulated mRNA levels of NLRP3,ASC,CASP1,GSDMD,and IL-1β,as well as reduced protein levels of NLRP3,ASC,pro-caspase-1,caspase-1(p20),GSDMD-FL,GSDMD-N,and pro-IL-1β.The RNA-seq results showed that CCEO inhibited the increase in the mRNA levels of 26 oxidative phosphorylation complex subunits in ISO-treated cardiomyocytes.Our further experiments confirmed that CCEO suppressed ISO-induced upregulation of mt-Nd1,Sdhd,mt-Cytb,Uqcrq,and mt-Atp6 but had no obvious effects on mt-Col expression.Conclusion:CCEO inhibits ISO-induced cardiomyocyte hypertrophy through the suppression of NLRP3 inflammasome expression and the regulation of several oxidative phosphorylation complex subunits.展开更多
The cancer cell metastasis is a major death reason for patients with non-small cell lung cancer(NSCLC).Although researchers have disclosed that interleukin 17(IL-17)can increase matrix metalloproteinases(MMPs)inductio...The cancer cell metastasis is a major death reason for patients with non-small cell lung cancer(NSCLC).Although researchers have disclosed that interleukin 17(IL-17)can increase matrix metalloproteinases(MMPs)induction causing NSCLC cell metastasis,the underlying mechanism remains unclear.In the study,we found that IL-17 receptor A(IL-17RA),p300,p-STAT3,Ack-STAT3,and MMP19 were up-regulated both in NSCLC tissues and NSCLC cells stimulated with IL-17.p300,STAT3 and MMP19 overexpression or knockdown could raise or reduce IL-17-induced p-STAT3,Ack-STAT3 and MMP19 level as well as the cell migration and invasion.Mechanism investigation revealed that STAT3 and p300 bound to the same region(−544 to−389 nt)of MMP19 promoter,and p300 could acetylate STAT3-K631 elevating STAT3 transcriptional activity,p-STAT3 or MMP19 expression and the cell mobility exposed to IL-17.Meanwhile,p300-mediated STAT3-K631 acetylation and its Y705-phosphorylation could interact,synergistically facilitating MMP19 gene transcription and enhancing cell migration and invasion.Besides,the animal experiments exhibited that the nude mice inoculated with NSCLC cells by silencing p300,STAT3 or MMP19 gene plus IL-17 treatment,the nodule number,and MMP19,Ack-STAT3,or p-STAT3 production in the lung metastatic nodules were all alleviated.Collectively,these outcomes uncover that IL-17-triggered NSCLC metastasis involves up-regulating MMP19 expression via the interaction of STAT3-K631 acetylation by p300 and its Y705-phosphorylation,which provides a new mechanistic insight and potential strategy for NSCLC metastasis and therapy.展开更多
Mitochondrial disorders are phenotypically varied, with serious clinical repercussions. Among them, there is the deficiency of combined oxidative phosphorylation of type 20, which occurs due to a defect in the VARS2 g...Mitochondrial disorders are phenotypically varied, with serious clinical repercussions. Among them, there is the deficiency of combined oxidative phosphorylation of type 20, which occurs due to a defect in the VARS2 gene. This article presents a case of a 2-year-old female with progressive myoclonic epilepsy and psychomotor regression, with refractoriness to multiple anticonvulsants. The diagnosis was only made after the examination was carried out. Therefore, this article highlights the aspects of this rare disease and the importance of the exome for the diagnosis of rare conditions.展开更多
Objective Machado-Joseph disease (MJD)/Spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant neurodegenerative disorder caused by an expansion of polyglutamine tract near the C-terminus of the MJD1 gene pr...Objective Machado-Joseph disease (MJD)/Spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant neurodegenerative disorder caused by an expansion of polyglutamine tract near the C-terminus of the MJD1 gene product, ataxin-3. The precise mechanism of the MJD/SCA3 pathogenesis remains unclear. A growing body of evidence demonstrates that phosphorylation plays an important role in the pathogenesis of many neurodegenerative diseases. However, few kinases are known to phosphorylate ataxin-3. The present study is to explore whether ataxin-3 is a substrate of casein kinase 2 (CK2). Methods The interaction between ataxin-3 and CK2 was identified by glutathione S-transferase (GST) pull-down assay and co-immunoprecipition assay. The phosphorylation of ataxin-3 by CK2 was measured by in vitro phosphorylation assays. Results (1) Both wild type and expanded ataxin-3 interacted with CK2α and CK2β in vitro. (2) In 293 cells, both wild type and expanded ataxin-3 interacted with CK2β, but not CK2α. (3) CK2 phosphorylated wild type and expanded ataxin-3. Conclusion Ataxin-3 is a substrate of protein kinase CK2.展开更多
Parathyroid hormone(PTH) regulates bone remodeling by activating PTH type 1 receptor(PTH1R) in osteoblasts/osteocytes. Insulinlike growth factor type 1(IGF-1) stimulates mesenchymal stem cell differentiation to osteob...Parathyroid hormone(PTH) regulates bone remodeling by activating PTH type 1 receptor(PTH1R) in osteoblasts/osteocytes. Insulinlike growth factor type 1(IGF-1) stimulates mesenchymal stem cell differentiation to osteoblasts. However, little is known about the signaling mechanisms that regulates the osteoblast-to-osteocyte transition. Here we report that PTH and IGF-I synergistically enhance osteoblast-to-osteocyte differentiation. We identified that a specific tyrosine residue, Y494, on the cytoplasmic domain of PTH1R can be phosphorylated by insulin-like growth factor type I receptor(IGF1R) in vitro. Phosphorylated PTH1R localized to the barbed ends of actin filaments and increased actin polymerization during morphological change of osteoblasts into osteocytes.Disruption of the phosphorylation site reduced actin polymerization and dendrite length. Mouse models with conditional ablation of PTH1R in osteoblasts demonstrated a reduction in the number of osteoctyes and dendrites per osteocyte, with complete overlap of PTH1R with phosphorylated-PTH1R positioning in osteocyte dendrites in wild-type mice. Thus, our findings reveal a novel signaling mechanism that enhances osteoblast-to-osteocyte transition by direct phosphorylation of PTH1R by IGF1R.展开更多
Different hydroxy substituted coumarins were successfully phosphorylated with diisopropylphophite (DIPPH) by the Atherton-Todd reaction in 76-89% yields. Moreover, the reaction activities of different hydroxys of th...Different hydroxy substituted coumarins were successfully phosphorylated with diisopropylphophite (DIPPH) by the Atherton-Todd reaction in 76-89% yields. Moreover, the reaction activities of different hydroxys of the coumarins in the Atherton-Todd reaction were studied.展开更多
three kinds of N-(diisopropyloxyphosphoryl) amino acids containing hydroxyl group were prepared in high yield by using diisopropyl phosphite as the phosphorylating agent, sodium hypochlorite as the chlorinating agent ...three kinds of N-(diisopropyloxyphosphoryl) amino acids containing hydroxyl group were prepared in high yield by using diisopropyl phosphite as the phosphorylating agent, sodium hypochlorite as the chlorinating agent and tetrabutyl ammonium bromide as the phase transfer catalyst in basic aqueous media.展开更多
O-Phosphoryl serine derivative can perform self-catalytic esterification reaction in the mixture of CH3OH and CHCl3 at the room temperature. The phosphoryl group participation was the key step of the esterification. T...O-Phosphoryl serine derivative can perform self-catalytic esterification reaction in the mixture of CH3OH and CHCl3 at the room temperature. The phosphoryl group participation was the key step of the esterification. This type of reactions were proposed through an intermediate of mixed phosphoric-carboxylic anhydride that might provide a clue to the function of the phosphoryl group in the phosphorylated enzymes and in the prebiotic synthesis of protein.展开更多
One of the prominent cell cycle related modifications of histone proteins, whose function is correlated with chromosome condensation, is the phosphorylation of histone H3. Wheat (Triticum aestivum L.) mitotic and meio...One of the prominent cell cycle related modifications of histone proteins, whose function is correlated with chromosome condensation, is the phosphorylation of histone H3. Wheat (Triticum aestivum L.) mitotic and meiotic cells were analyzed with indirect immunoflurorescence labeling with an antibody recognizing histone H3 phosphorylated at Serine 10 to study the localization of phosphorylated histone H3 at mitosis and meiosis. Our results showed that, during mitotic division, the phosphoryiation of H3 started from early prophase and vanished at telophase, remaining mainly in the pericentromeric regions at metaphase and anaphase. During meiotic division, phosphorylation of H3 initiated at the transition from leptotene to zygotene and remained uniform, along the chromosomes from prophase I until telophase whereas it showed slightly stronger in the pericentromeric regions than along the chromosome arms from metaphase II until Lelophase II The different patterns of H3 phophorylation at mitosis and meiosis in wheat suggested that this evolutionarily conserved post-translational chromatin modification might be involved in more roles besides chromosome condensation.展开更多
Sexually reproducing animals require an orchestrated communication between spermatozoa and the egg to generate a new individual. Capacitation, a maturational complex phenomenon that occurs in the female reproductive t...Sexually reproducing animals require an orchestrated communication between spermatozoa and the egg to generate a new individual. Capacitation, a maturational complex phenomenon that occurs in the female reproductive tract, renders spermatozoa capable of binding and fusing with the oocyte, and it is a requirement for mammalian fertilization. Capacitation encompasses plasma membrane reorganization, ion permeability regulation, cholesterol loss and changes in the phosphorylation state of many proteins. Novel tools to study sperm ion channels, image intracellular ionic changes and proteins with better spatial and temporal resolution, are unraveling how modifications in sperm ion transport and phosphorylation states lead to capacitation. Recent evidence indicates that two parallel pathways regulate phosphorylation events leading to capacitation, one of them requiring activation of protein kinase A and the second one involving inactivation of ser/thr phosphatases. This review examines the involvement of ion transporters and phosphorylation signaling processes needed for spermatozoa to achieve capacitation. Understanding the molecular mechanisms leading to fertilization is central for societies to deal with rising male infertility rates, to develop safe male gamete-based contraceptives and to preserve biodiversity through better assisted fertilization strategies.展开更多
Dendritic cells (DCs) are the most potent antigen-presen ting cells that play crucial roles in the regulation of immune response. Triptol ide, an active component purified from the medicinal plant Tripterygium wilfor ...Dendritic cells (DCs) are the most potent antigen-presen ting cells that play crucial roles in the regulation of immune response. Triptol ide, an active component purified from the medicinal plant Tripterygium wilfor dii Hook F., has been demonstrated to act as a potent immunosuppressive drug c apab le of inhibiting T cell activation and proliferation. However, little is known a bout the effects of triptolide on DCs. The present study shows that triptolide d oes not affect phenotypic differentiation and LPS-induced maturation of murine DCs. But triptolide can dramatically reduce cell recovery by inducing apoptosis of DCs at concentration as low as 10 ng/ml, as demonstrated by phosphatidylserin e exposure, mitochondria potential decrease, and nuclear DNA condensation. Tript olide induces activation of p38 in DCs, which precedes the activation of caspase 3. SB203580, a specific kinase inhibitor for p38, can block the activation of caspase 3 and inhibit the resultant apoptosis of DCs. Our results suggest that t he anti-inflammatory and immunosuppressive activities of triptolide may be due, in part, to its apoptosis-inducing effects on DCs.展开更多
Nowadays,the cumulative intake of glucocorticoids has become the most common pathogenic factor for non-traumatic osteonecrosis of the femoral head(ONFH).Apoptosis of osteoblasts is considered as the main reason of ONF...Nowadays,the cumulative intake of glucocorticoids has become the most common pathogenic factor for non-traumatic osteonecrosis of the femoral head(ONFH).Apoptosis of osteoblasts is considered as the main reason of ONFH at the molecular level.Glycogen synthase kinase 3β(GSK3β)is an important regulator of cellular differentiation and apoptosis pathway,which can modulate the balance between osteoblasts and osteoclasts.Several studies have reported about its function in osteoporosis,but little is known about it in osteonecrosis.In our study,lipopolysaccharide and methylprednisolone were utilized to establish a rat ONFH model.The phosphorylation of GSK3βSer-9 was decreased in the model.Western blotting examination ofβ-catenin,Bcl-2,Bax and caspase-3 revealed that the osteoblasts were apoptotic.In dexamethasone(Dex)-incubated primary osteoblasts,the expression profile of GSK3βphosphorylation and apoptotic factors were consistent with those in the rat ONFH model.To further investigate the regulation of osteonecrosis caused by GSK3β,the expression and function of GSK3βwere inhibited in Dex-incubated primary osteoblasts.The knockdown of GSK3βby siRNA decreased the expression of Bax and cleaved caspase-3,but increased Bcl-2 andβ-catenin.On the other hand,selective inhibition of GSK3βfunction by LiCl counteracted the activation of caspase-3 induced by Dex.Our work is the first study about the GSK3P phosphorylation in ONFH,and provides evidence for further therapeutic methods.展开更多
Objective: Tumor cells rely heavily on glycolysis regardless of oxygen tension, a phenomenon called the Warburg effect. Hexokinase II(HKII) catalyzes the first irreversible step of glycolysis and is often overexpresse...Objective: Tumor cells rely heavily on glycolysis regardless of oxygen tension, a phenomenon called the Warburg effect. Hexokinase II(HKII) catalyzes the first irreversible step of glycolysis and is often overexpressed in tumor cells. Mitochondrial HKII couples glycolysis and oxidative phosphorylation while maintaining mitochondrial membrane integrity. In this study, we investigated the role of HKII in promoting the Warburg effect in cancer cells.Methods: HKII-mediated phosphorylation of the alpha subunit of pyruvate dehydrogenase(PDHA1) was tested in HEK293 T cells and clear cell renal cell carcinoma(cc RCC) specimens using gene knockdown, western blotting,immunohistochemistry, and immunofluorescence.Results: It was determined that HKII could not only transform glucose into glucose-6-phosphate, but also transfer the phosphate group of ATP onto PDHA1. In addition, it was found that HKII increased the phosphorylation of Ser293 on PDHA1, decreasing pyruvate dehydrogenase(PDH) complex activity and thus rerouting the metabolic pathway and promoting the Warburg effect. The overexpression of HKII correlated with the phosphorylation of PDHA1 and disease progression in cc RCC.Conclusions: The data presented here suggest that HKII is an important biomarker in the evaluation and treatment of cancer.展开更多
The reversing effect of wild-type PTEN gene on resistance of C 13K cells to cisplatin and its inhibitory effect on the phosphorylation of protein kinase B (AKT) were studied. The expression of PTEN mRNA and protein ...The reversing effect of wild-type PTEN gene on resistance of C 13K cells to cisplatin and its inhibitory effect on the phosphorylation of protein kinase B (AKT) were studied. The expression of PTEN mRNA and protein in OV2008 cells and C13K cells were semi-quantitatively detected by using RT-PCR and Western blotting. Recombinant eukaryotic expression plasmid containing human wild-type PTEN gene was transfected into C13K cells by lipofectamine2000. The expression of PTEN mRNA was monitored by RT-PCR and the expression of PTEN, Akt, p-Akt protein were ana- lyzed by Western blotting in PTEN-transfected and non-transfected C13K cells. Proliferation and chemosensitivity of cells to DDP were measured by MTT, and cell apoptosis was detected by flow cytometry after treatment with cisplatin. The expression of PTEN mRNA and protein in OV2008 cells were significantly higher than those in C13K cells. After transfection with PTEN gene for 48 h, the expression of PTEN mRNA and protein in C 13K cells were 2.04 ± 0.10, 0.94± 0.04 respectively and the expression of p-Akt protein ( 0.94± 0.07) was lower than those in control groups (1.68 ±0.14, 1.66± 0.10) (P〈 0.05). The IC50 of DDP to C 13 K cells transfected with PTEN (7.2± 0.3 la mol/L) was obviously lower than those of empty-vector transfected cells and non-transfected cells (12.7±0.4 lamol/1, 13.0±0.3 lamol/L) (P〈0.05). The apopototis ratio of wild-type PTEN-transfected, empty vector transfected and non-transfected C13K cells were (41.65___0.87)%, (18.61 ±0.70)% and (15.28±0.80)% respectively, and the difference was statistically significant (P〈0.05). PTEN gene plays an important role in ovarian cancer multidrug resistance. Transfection of PTEN could increase the expression of PTEN and restore drug sensitivity to cisplatin in human ovarian cancer cell line C 13K with multidrug-resistance by decreasing the expression of p-Akt.展开更多
基金supported by the Scientific Research Project of China Rehabilitation Research Center,No.2021zx-23the National Natural Science Foundation of China,No.32100925the Beijing Nova Program,No.Z211100002121038。
文摘Poststro ke cognitive impairment is a major secondary effect of ischemic stroke in many patients;however,few options are available for the early diagnosis and treatment of this condition.The aims of this study were to(1)determine the specific relationship between hypoxic andα-synuclein during the occur of poststroke cognitive impairment and(2)assess whether the serum phosphorylatedα-synuclein level can be used as a biomarker for poststro ke cognitive impairment.We found that the phosphorylatedα-synuclein level was significantly increased and showed pathological aggregation around the cerebral infa rct area in a mouse model of ischemic stroke.In addition,neuronalα-synuclein phosphorylation and aggregation were observed in the brain tissue of mice subjected to chronic hypoxia,suggesting that hypoxia is the underlying cause ofα-synuclein-mediated pathology in the brains of mice with ischemic stroke.Serum phosphorylatedα-synuclein levels in patients with ischemic stroke were significantly lower than those in healt hy subjects,and were positively correlated with cognition levels in patients with ischemic stroke.Furthermore,a decrease in serum high-density lipoprotein levels in stroke patie nts was significantly correlated with a decrease in phosphorylatedα-synuclein levels.Although ischemic stroke mice did not show significant cognitive impairment or disrupted lipid metabolism 14 days after injury,some of them exhibited decreased cognitive function and reduced phosphorylatedα-synuclein levels.Taken together,our results suggest that serum phosphorylatedα-synuclein is a potential biomarker for poststroke cognitive impairment.
基金supported by the European Regional Development Funds-European Union(ERDF-EU),FATZHEIMER project(EU-LAC HEALTH 2020,16/T010131 to FRdF),“Una manera de hacer Europa”Ministerio de Economía,Industria y Competitividad,Gobierno de Espa?a,Programa Estatal de Investigación,Desarrollo e Innovación Orientada a los Retos de la Sociedad(RTC2019-007329-1 to FRdF)+2 种基金Consejería de Economía,Conocimiento y Universidad,Junta de Andalucía,Plan Andaluz de Investigación,Desarrollo e Innovación(P18TP-5194 to FRdF)Instituto de Salud CarlosⅢ(DTS22/00021 to FRdF)DMV(FI20/00227)holds a“PFIS’’predoctoral contract from the National System of Health,EU-ERDF-Instituto de Salud CarlosⅢ。
文摘Alzheimer’s disease is a neurodegenerative disorder characterized by the amyloid accumulation in the brains of patients with Alzheimer’s disease.The pathogenesis of Alzheimer’s disease is mainly mediated by the phosphorylation and aggregation of tau protein.Among the multiple causes of tau hyperphosphorylation,brain insulin resistance has generated much attention,and inositols as insulin sensitizers,are currently considered candidates for drug development.The present narrative review revises the interactions between these three elements:Alzheimer’s disease-tau-inositols,which can eventually identify targets for new disease modifiers capable of bringing hope to the millions of people affected by this devastating disease.
基金supported by the National Natural Science Foundation of China (32070534,32370567,82371874,81830032,31872779,82071421,81873736)Key Field Research and Development Program of Guangdong Province (2018B030337001)+3 种基金Guangzhou Key Research Program on Brain Science (202007030008)Department of Science and Technology of Guangdong Province (2021ZT09Y007,2020B121201006)Guangdong Basic and Applied Basic Research Foundation (2023B1515020031,2022A1515012301)Fundamental Research Funds for the Central Universities (Jinan University,21620358)。
文摘PTEN-induced putative kinase 1(PINK1),a mitochondrial kinase that phosphorylates Parkin and other proteins,plays a crucial role in mitophagy and protection against neurodegeneration.Mutations in PINK1 and Parkin can lead to loss of function and early onset Parkinson's disease.However,there is a lack of strong in vivo evidence in rodent models to support the theory that loss of PINK1 affects mitophagy and induces neurodegeneration.Additionally,PINK1 knockout pigs(Sus scrofa)do not appear to exhibit neurodegeneration.In our recent work involving non-human primates,we found that PINK1 is selectively expressed in primate brains,while absent in rodent brains.To extend this to other species,we used multiple antibodies to examine the expression of PINK1 in pig tissues.In contrast to tissues from cynomolgus monkeys(Macaca fascicularis),our data did not convincingly demonstrate detectable PINK1expression in pig tissues.Knockdown of PINK1 in cultured pig cells did not result in altered Parkin and BAD phosphorylation,as observed in cultured monkey cells.A comparison of monkey and pig striatum revealed more PINK1-phosphorylated substrates in the monkey brain.Consistently,PINK1 knockout in pigs did not lead to obvious changes in the phosphorylation of Parkin and BAD.These findings provide new evidence that PINK1expression is specific to primates,underscoring the importance of non-human primates in investigating PINK1function and pathology related to PINK1 deficiency.
文摘Objective YAP1 plays a dual role as an oncogene and tumor suppressor gene in several tumors;differentiating between these roles may depend on the YAP1 phosphorylation pattern.The specific function of YAP1 in B cell acute lymphoblastic leukemia(B-ALL),however,is currently unclear.Thus,in the present study,the role of YAP1 in B-ALL was investigated using relevant cell lines and patient datasets.Methods The effects of shRNA-mediated knockdown on YAP1 and LATS1 levels in the NALM6 and MOLT-4 cell lines were examined using Western blotting,quantitative real-time polymerase chain reaction,flow cytometry,immunostaining,and nude mouse subcutaneous tumorigenesis experiments.Gene expression levels of Hippo pathway-related molecules before and after verteporfin(VP)treatment were compared using RNA-Seq to identify significant Hippo pathway-related genes in NALM6 cells.Results Patients with ALL showing high YAP1 expression and low YAP1-Ser127 phosphorylation levels had worse prognoses than those with low YAP1 protein expression and high YAP1-Ser127 phosphorylation levels.YAP1-Ser127 phosphorylation levels were lower in NALM6 cells than in MOLT-4 and control cells;YAP1 was distributed in the nuclei in NALM6 cells.Knockdown of YAP1 inhibited MOLT-4 and NALM6 cell proliferation and arrested the NALM6 cell cycle in the G0/G1 phase.Before and after VP treatment,the expression of the upstream gene LATS1 was upregulated;its overexpression promoted YAP1-Ser127 phosphorylation.Further,YAP1 was distributed in the plasma.Conclusion LATS1 may downregulate YAP1-Ser127 phosphorylation and maintain B-ALL cell function;thus,VP,which targets this axis,may serve as a new therapeutic method for improving the outcomes for B-ALL patients.
基金the financial support from the National Natural Science Foundation of China(22109072)the Natural Science Foundation of Jiangsu Province(BK20210349)+1 种基金the Fundamental Research Funds for the Central Universities(30922010304)the Open Fund of National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials(2022KFJJ06)。
文摘The shuttle effect is among the most characteristic and formidable challenges in the pursuit of high-performance lithium-sulfur(Li-S)batteries.Herein,phosphorylated cellulose nanofibers(pCNF)are intentionally engineered to establish an ion-sieving barrier against polysulfide shuttling and thereby improve battery performance.The phosphorylation,involving the grafting of phosphate groups onto the cellulose backbone,imparts an exceptional electronegativity that repels the polysulfide anions from penetrating through the separator.Moreover,the electrolyte wettability and Li^(+)transfer can be significantly promoted by the polar nature of pCNF and the facile Li^(+)disassociation.As such,rational ion management is realized,contributing to enhanced reversibility in both sulfur and lithium electrochemistry.As a result,Li-S cells equipped with the self-standing pCNF separator demonstrate outstanding long-term cyclability with a minimum fading rate of 0.013%per cycle over 1000 cycles at 1 C,and a decent areal capacity of 5.37 mA h cm^(-2) even under elevated sulfur loading of 5.0 mg cm^(-2) and limited electrolyte of 6.0 mL g^(-1).This work provides a facile and effective pathway toward the well-tamed shuttle effect and highly durable Li-S batteries.
基金supported by the National Natural Science Foundation of China(32001110)Training Program for Cultivating Highlevel Talents by the China Scholarship Council(2021lxjjw01)Open Project of State Key Laboratory of Plateau Ecology and Agriculture,Qinghai University(2021-KF-004)。
文摘Changes in protein abundance and reversible protein phosphorylation(RPP)play important roles in regulating hypometabolism but have never been documented in overwintering frogs at high altitudes.To test the hypothesis that protein abundance and phosphorylation change in response to winter hibernation,we conducted a comprehensive and quantitative proteomic and phosphoproteomic analysis of the liver of the Xizang plateau frog,Nanorana parkeri,living on the Qinghai-Xizang Plateau.In total,5170 proteins and 5695 phosphorylation sites in 1938 proteins were quantified.Based on proteomic analysis,674 differentially expressed proteins(438 up-regulated,236 down-regulated)were screened in hibernating N.parkeri versus summer individuals.Functional enrichment analysis revealed that higher expressed proteins in winter were significantly enriched in immune-related signaling pathways,whereas lower expressed proteins were mainly involved in metabolic processes.A total of 4251 modified sites(4147 up-regulated,104 down-regulated)belonging to 1638 phosphoproteins(1555 up-regulated,83 down-regulated)were significantly changed in the liver.During hibernation,RPP regulated a diverse array of proteins involved in multiple functions,including metabolic enzymatic activity,ion transport,protein turnover,signal transduction,and alternative splicing.These changes contribute to enhancing protection,suppressing energy-consuming processes,and inducing metabolic depression.Moreover,the activities of phosphofructokinase,glutamate dehydrogenase,and ATPase were all significantly lower in winter compared to summer.In conclusion,our results support the hypothesis and demonstrate the importance of RPP as a regulatory mechanism when animals transition into a hypometabolic state.
基金supported by grants from the National Natural Science Foundation of China(Nos.81960732 and 82060733)the Natural Science Foundation of Jiangxi Province(No.20224BAB206111)+2 种基金the Science and Technology Plan of Jiangxi Provincial Health Commission(No.202311141)the Open Project of Jiangxi Provincial Key Laboratory of Drug Design and Evaluation(No.JKLDE-KF-2101)the Open Project of Key Laboratory of Modern Preparation of TCM,Ministry of Education,Jiangxi University of Chinese Medicine(No.TCM-201911).
文摘Objective:Cymbopogon citratus(DC.)Stapf is a medicinal and edible herb that is widely used for the treatment of gastric,nervous and hypertensive disorders.In this study,we investigated the cardioprotective effects and mechanisms of the essential oil,the main active ingredient of Cymbopogon citratus,on isoproterenol(ISO)-induced cardiomyocyte hypertrophy.Methods:The compositions of Cymbopogon citratus essential oil(CCEO)were determined by gas chromatography-mass spectrometry.Cardiomyocytes were pretreated with 16.9µg/L CCEO for 1 h followed by 10µmol/L ISO for 24 h.Cardiac hypertrophy-related indicators and NLRP3 inflammasome expression were evaluated.Subsequently,transcriptome sequencing(RNA-seq)and target verification were used to further explore the underlying mechanism.Results:Our results showed that the CCEO mainly included citronellal(45.66%),geraniol(23.32%),and citronellol(10.37%).CCEO inhibited ISO-induced increases in cell surface area and protein content,as well as the upregulation of fetal gene expression.Moreover,CCEO inhibited ISO-induced NLRP3 inflammasome expression,as evidenced by decreased lactate dehydrogenase content and downregulated mRNA levels of NLRP3,ASC,CASP1,GSDMD,and IL-1β,as well as reduced protein levels of NLRP3,ASC,pro-caspase-1,caspase-1(p20),GSDMD-FL,GSDMD-N,and pro-IL-1β.The RNA-seq results showed that CCEO inhibited the increase in the mRNA levels of 26 oxidative phosphorylation complex subunits in ISO-treated cardiomyocytes.Our further experiments confirmed that CCEO suppressed ISO-induced upregulation of mt-Nd1,Sdhd,mt-Cytb,Uqcrq,and mt-Atp6 but had no obvious effects on mt-Col expression.Conclusion:CCEO inhibits ISO-induced cardiomyocyte hypertrophy through the suppression of NLRP3 inflammasome expression and the regulation of several oxidative phosphorylation complex subunits.
基金National Natural Science Foundation of China(Grants Numbers 81902878 and 81971468).
文摘The cancer cell metastasis is a major death reason for patients with non-small cell lung cancer(NSCLC).Although researchers have disclosed that interleukin 17(IL-17)can increase matrix metalloproteinases(MMPs)induction causing NSCLC cell metastasis,the underlying mechanism remains unclear.In the study,we found that IL-17 receptor A(IL-17RA),p300,p-STAT3,Ack-STAT3,and MMP19 were up-regulated both in NSCLC tissues and NSCLC cells stimulated with IL-17.p300,STAT3 and MMP19 overexpression or knockdown could raise or reduce IL-17-induced p-STAT3,Ack-STAT3 and MMP19 level as well as the cell migration and invasion.Mechanism investigation revealed that STAT3 and p300 bound to the same region(−544 to−389 nt)of MMP19 promoter,and p300 could acetylate STAT3-K631 elevating STAT3 transcriptional activity,p-STAT3 or MMP19 expression and the cell mobility exposed to IL-17.Meanwhile,p300-mediated STAT3-K631 acetylation and its Y705-phosphorylation could interact,synergistically facilitating MMP19 gene transcription and enhancing cell migration and invasion.Besides,the animal experiments exhibited that the nude mice inoculated with NSCLC cells by silencing p300,STAT3 or MMP19 gene plus IL-17 treatment,the nodule number,and MMP19,Ack-STAT3,or p-STAT3 production in the lung metastatic nodules were all alleviated.Collectively,these outcomes uncover that IL-17-triggered NSCLC metastasis involves up-regulating MMP19 expression via the interaction of STAT3-K631 acetylation by p300 and its Y705-phosphorylation,which provides a new mechanistic insight and potential strategy for NSCLC metastasis and therapy.
文摘Mitochondrial disorders are phenotypically varied, with serious clinical repercussions. Among them, there is the deficiency of combined oxidative phosphorylation of type 20, which occurs due to a defect in the VARS2 gene. This article presents a case of a 2-year-old female with progressive myoclonic epilepsy and psychomotor regression, with refractoriness to multiple anticonvulsants. The diagnosis was only made after the examination was carried out. Therefore, this article highlights the aspects of this rare disease and the importance of the exome for the diagnosis of rare conditions.
基金the National Natural Sciences Foundation of China (No. 30770664)a grant from Educational Committee of Anhui Province, China (No. ZD2008008-2).
文摘Objective Machado-Joseph disease (MJD)/Spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant neurodegenerative disorder caused by an expansion of polyglutamine tract near the C-terminus of the MJD1 gene product, ataxin-3. The precise mechanism of the MJD/SCA3 pathogenesis remains unclear. A growing body of evidence demonstrates that phosphorylation plays an important role in the pathogenesis of many neurodegenerative diseases. However, few kinases are known to phosphorylate ataxin-3. The present study is to explore whether ataxin-3 is a substrate of casein kinase 2 (CK2). Methods The interaction between ataxin-3 and CK2 was identified by glutathione S-transferase (GST) pull-down assay and co-immunoprecipition assay. The phosphorylation of ataxin-3 by CK2 was measured by in vitro phosphorylation assays. Results (1) Both wild type and expanded ataxin-3 interacted with CK2α and CK2β in vitro. (2) In 293 cells, both wild type and expanded ataxin-3 interacted with CK2β, but not CK2α. (3) CK2 phosphorylated wild type and expanded ataxin-3. Conclusion Ataxin-3 is a substrate of protein kinase CK2.
基金provided by K01-AR060433 (T.Q.)K08-AR064833 (J.C)R01-AR063943 (X.C)
文摘Parathyroid hormone(PTH) regulates bone remodeling by activating PTH type 1 receptor(PTH1R) in osteoblasts/osteocytes. Insulinlike growth factor type 1(IGF-1) stimulates mesenchymal stem cell differentiation to osteoblasts. However, little is known about the signaling mechanisms that regulates the osteoblast-to-osteocyte transition. Here we report that PTH and IGF-I synergistically enhance osteoblast-to-osteocyte differentiation. We identified that a specific tyrosine residue, Y494, on the cytoplasmic domain of PTH1R can be phosphorylated by insulin-like growth factor type I receptor(IGF1R) in vitro. Phosphorylated PTH1R localized to the barbed ends of actin filaments and increased actin polymerization during morphological change of osteoblasts into osteocytes.Disruption of the phosphorylation site reduced actin polymerization and dendrite length. Mouse models with conditional ablation of PTH1R in osteoblasts demonstrated a reduction in the number of osteoctyes and dendrites per osteocyte, with complete overlap of PTH1R with phosphorylated-PTH1R positioning in osteocyte dendrites in wild-type mice. Thus, our findings reveal a novel signaling mechanism that enhances osteoblast-to-osteocyte transition by direct phosphorylation of PTH1R by IGF1R.
基金The authors thank the financial supports from the National Natural Science Foundation of China(No.20132020)the Ministry of Science and Technology,the Chinese Ministry of Education and Zhengzhou University.
文摘Different hydroxy substituted coumarins were successfully phosphorylated with diisopropylphophite (DIPPH) by the Atherton-Todd reaction in 76-89% yields. Moreover, the reaction activities of different hydroxys of the coumarins in the Atherton-Todd reaction were studied.
文摘three kinds of N-(diisopropyloxyphosphoryl) amino acids containing hydroxyl group were prepared in high yield by using diisopropyl phosphite as the phosphorylating agent, sodium hypochlorite as the chlorinating agent and tetrabutyl ammonium bromide as the phase transfer catalyst in basic aqueous media.
基金The authors would like to thank the financial supports from the National Natural Science Foundation of China(No.20272032 and No.20320130046)Ministry of Education of China and Tsinghua University.
文摘O-Phosphoryl serine derivative can perform self-catalytic esterification reaction in the mixture of CH3OH and CHCl3 at the room temperature. The phosphoryl group participation was the key step of the esterification. This type of reactions were proposed through an intermediate of mixed phosphoric-carboxylic anhydride that might provide a clue to the function of the phosphoryl group in the phosphorylated enzymes and in the prebiotic synthesis of protein.
文摘One of the prominent cell cycle related modifications of histone proteins, whose function is correlated with chromosome condensation, is the phosphorylation of histone H3. Wheat (Triticum aestivum L.) mitotic and meiotic cells were analyzed with indirect immunoflurorescence labeling with an antibody recognizing histone H3 phosphorylated at Serine 10 to study the localization of phosphorylated histone H3 at mitosis and meiosis. Our results showed that, during mitotic division, the phosphoryiation of H3 started from early prophase and vanished at telophase, remaining mainly in the pericentromeric regions at metaphase and anaphase. During meiotic division, phosphorylation of H3 initiated at the transition from leptotene to zygotene and remained uniform, along the chromosomes from prophase I until telophase whereas it showed slightly stronger in the pericentromeric regions than along the chromosome arms from metaphase II until Lelophase II The different patterns of H3 phophorylation at mitosis and meiosis in wheat suggested that this evolutionarily conserved post-translational chromatin modification might be involved in more roles besides chromosome condensation.
文摘Sexually reproducing animals require an orchestrated communication between spermatozoa and the egg to generate a new individual. Capacitation, a maturational complex phenomenon that occurs in the female reproductive tract, renders spermatozoa capable of binding and fusing with the oocyte, and it is a requirement for mammalian fertilization. Capacitation encompasses plasma membrane reorganization, ion permeability regulation, cholesterol loss and changes in the phosphorylation state of many proteins. Novel tools to study sperm ion channels, image intracellular ionic changes and proteins with better spatial and temporal resolution, are unraveling how modifications in sperm ion transport and phosphorylation states lead to capacitation. Recent evidence indicates that two parallel pathways regulate phosphorylation events leading to capacitation, one of them requiring activation of protein kinase A and the second one involving inactivation of ser/thr phosphatases. This review examines the involvement of ion transporters and phosphorylation signaling processes needed for spermatozoa to achieve capacitation. Understanding the molecular mechanisms leading to fertilization is central for societies to deal with rising male infertility rates, to develop safe male gamete-based contraceptives and to preserve biodiversity through better assisted fertilization strategies.
文摘Dendritic cells (DCs) are the most potent antigen-presen ting cells that play crucial roles in the regulation of immune response. Triptol ide, an active component purified from the medicinal plant Tripterygium wilfor dii Hook F., has been demonstrated to act as a potent immunosuppressive drug c apab le of inhibiting T cell activation and proliferation. However, little is known a bout the effects of triptolide on DCs. The present study shows that triptolide d oes not affect phenotypic differentiation and LPS-induced maturation of murine DCs. But triptolide can dramatically reduce cell recovery by inducing apoptosis of DCs at concentration as low as 10 ng/ml, as demonstrated by phosphatidylserin e exposure, mitochondria potential decrease, and nuclear DNA condensation. Tript olide induces activation of p38 in DCs, which precedes the activation of caspase 3. SB203580, a specific kinase inhibitor for p38, can block the activation of caspase 3 and inhibit the resultant apoptosis of DCs. Our results suggest that t he anti-inflammatory and immunosuppressive activities of triptolide may be due, in part, to its apoptosis-inducing effects on DCs.
文摘Nowadays,the cumulative intake of glucocorticoids has become the most common pathogenic factor for non-traumatic osteonecrosis of the femoral head(ONFH).Apoptosis of osteoblasts is considered as the main reason of ONFH at the molecular level.Glycogen synthase kinase 3β(GSK3β)is an important regulator of cellular differentiation and apoptosis pathway,which can modulate the balance between osteoblasts and osteoclasts.Several studies have reported about its function in osteoporosis,but little is known about it in osteonecrosis.In our study,lipopolysaccharide and methylprednisolone were utilized to establish a rat ONFH model.The phosphorylation of GSK3βSer-9 was decreased in the model.Western blotting examination ofβ-catenin,Bcl-2,Bax and caspase-3 revealed that the osteoblasts were apoptotic.In dexamethasone(Dex)-incubated primary osteoblasts,the expression profile of GSK3βphosphorylation and apoptotic factors were consistent with those in the rat ONFH model.To further investigate the regulation of osteonecrosis caused by GSK3β,the expression and function of GSK3βwere inhibited in Dex-incubated primary osteoblasts.The knockdown of GSK3βby siRNA decreased the expression of Bax and cleaved caspase-3,but increased Bcl-2 andβ-catenin.On the other hand,selective inhibition of GSK3βfunction by LiCl counteracted the activation of caspase-3 induced by Dex.Our work is the first study about the GSK3P phosphorylation in ONFH,and provides evidence for further therapeutic methods.
文摘Objective: Tumor cells rely heavily on glycolysis regardless of oxygen tension, a phenomenon called the Warburg effect. Hexokinase II(HKII) catalyzes the first irreversible step of glycolysis and is often overexpressed in tumor cells. Mitochondrial HKII couples glycolysis and oxidative phosphorylation while maintaining mitochondrial membrane integrity. In this study, we investigated the role of HKII in promoting the Warburg effect in cancer cells.Methods: HKII-mediated phosphorylation of the alpha subunit of pyruvate dehydrogenase(PDHA1) was tested in HEK293 T cells and clear cell renal cell carcinoma(cc RCC) specimens using gene knockdown, western blotting,immunohistochemistry, and immunofluorescence.Results: It was determined that HKII could not only transform glucose into glucose-6-phosphate, but also transfer the phosphate group of ATP onto PDHA1. In addition, it was found that HKII increased the phosphorylation of Ser293 on PDHA1, decreasing pyruvate dehydrogenase(PDH) complex activity and thus rerouting the metabolic pathway and promoting the Warburg effect. The overexpression of HKII correlated with the phosphorylation of PDHA1 and disease progression in cc RCC.Conclusions: The data presented here suggest that HKII is an important biomarker in the evaluation and treatment of cancer.
基金a grant from the National Natural Sciences Foundation of China (No. 30571950)National Key Basic Research Program Foundation (N0.2002CB513107).
文摘The reversing effect of wild-type PTEN gene on resistance of C 13K cells to cisplatin and its inhibitory effect on the phosphorylation of protein kinase B (AKT) were studied. The expression of PTEN mRNA and protein in OV2008 cells and C13K cells were semi-quantitatively detected by using RT-PCR and Western blotting. Recombinant eukaryotic expression plasmid containing human wild-type PTEN gene was transfected into C13K cells by lipofectamine2000. The expression of PTEN mRNA was monitored by RT-PCR and the expression of PTEN, Akt, p-Akt protein were ana- lyzed by Western blotting in PTEN-transfected and non-transfected C13K cells. Proliferation and chemosensitivity of cells to DDP were measured by MTT, and cell apoptosis was detected by flow cytometry after treatment with cisplatin. The expression of PTEN mRNA and protein in OV2008 cells were significantly higher than those in C13K cells. After transfection with PTEN gene for 48 h, the expression of PTEN mRNA and protein in C 13K cells were 2.04 ± 0.10, 0.94± 0.04 respectively and the expression of p-Akt protein ( 0.94± 0.07) was lower than those in control groups (1.68 ±0.14, 1.66± 0.10) (P〈 0.05). The IC50 of DDP to C 13 K cells transfected with PTEN (7.2± 0.3 la mol/L) was obviously lower than those of empty-vector transfected cells and non-transfected cells (12.7±0.4 lamol/1, 13.0±0.3 lamol/L) (P〈0.05). The apopototis ratio of wild-type PTEN-transfected, empty vector transfected and non-transfected C13K cells were (41.65___0.87)%, (18.61 ±0.70)% and (15.28±0.80)% respectively, and the difference was statistically significant (P〈0.05). PTEN gene plays an important role in ovarian cancer multidrug resistance. Transfection of PTEN could increase the expression of PTEN and restore drug sensitivity to cisplatin in human ovarian cancer cell line C 13K with multidrug-resistance by decreasing the expression of p-Akt.