Light hydrocarbons (LHs) are one of the main petroleum fractions in crude oils, and carry much infor- mation regarding the genetic origin and alteration of crude oils. But secondary alterations--especially biodegrad...Light hydrocarbons (LHs) are one of the main petroleum fractions in crude oils, and carry much infor- mation regarding the genetic origin and alteration of crude oils. But secondary alterations--especially biodegrada- tion--have a significant effect on the composition of LHs in crude oils. Because most of the LHs affected in oils underwent only slight biodegradation (rank 1 on the biodegradation scale), the variation of LHs can be used to describe more the refined features of biodegradation. Here, 23 crude oils from the Dawanqi Oilfield in the Tarim Basin, NW China, eleven of which have been biodegraded to different extents, were analyzed in order to investigate the effect of slight to minor biodegradation on C6--C7 LHs. The study results showed that biodegradation resulted in the prior depletion of straight-chained alkanes, followed by branched alkanes. In slight and minor biodegraded oils, such biodegradation scale could not sufficiently affect C6- C7 cycloalkanes. For branched C6--C7 alkanes, generally, monomethylalkanes are biodegraded earlier than dimethylalkanes and trimethylalkanes, which indicates that branched alkanes are more resistant to biodegradation, with the increase of substituted methyl groups on parent rings. The degree of alkylation is one of the primary controlling factors on the biodegradation of C6-Cv LHs. There is a particular case: although 2,2,3-trimethylbutane has a rela- tive higher alkylation degree, 2,2-dimethylpentane is more resistant to biodegradation than 2,2,3-trimethylbutane. 2,2- Dimethylpentane is the most resistant to biodegradation in branched C6-C7 alkanes. Furthermore, the 2-methylpen- tane/3-methylpentane and 2-methylhexane/3-methylhexane ratios decreased steadily with increasing biodegradation, which implies that isomers of bilateral methyl groups are more prone to bacterial attack relative to mid-chain iso- mers. The position of the alkyls on the carbon skeleton is also one of the critical factors controlling the rate of biodegradation. With increasing biodegradation, Mango's LH parameters K1 values decrease and K2 values increase, the values of n-heptane and isoheptane decrease, and the indices of methylcyclohexane and cyclohexane increase. LH parameters should be applied cautiously for the biodegraded oils. Because biodegraded samples belong to slight or minor biodegraded oils, the values of n-heptane and isoheptane from Dawanqi Oilfield can better reflect and determine the "Biodegraded" zone. When the heptane value is 0-21 and the isoheptane value is 0-2.6, the crude oil in Dawanqi Oilfield is defined as the "Biodegraded" zone展开更多
The objective of this research was to quantify the temporal variation of dissolved organic matter(DOM) in five distinct waterbodies in watersheds with diverse types of land use and land cover in the presence and absen...The objective of this research was to quantify the temporal variation of dissolved organic matter(DOM) in five distinct waterbodies in watersheds with diverse types of land use and land cover in the presence and absence of sunlight. The water bodies were an agricultural pond, a lake in a forested watershed, a man-made reservoir, an estuary, and a bay. Two sets of samples were prepared by dispensing unfiltered samples into filtered samples in 1:10 ratio(V/V). The first set was exposed to sunlight(10 hr per day for 30 days) for examining the combined effect of photo-biodegradation, while the second set was stored in dark for examining biodegradation alone. Spectroscopic measurements in tandem with multivariate statistics were used to interpret DOM lability and composition. The results suggest that the agricultural pond behaved differently compared to other study locations during degradation experiments due to the presence of higher amount of microbial humic-like and protein-like components derived from microbial/anthropogenic sources. For all samples, a larger decrease in dissolved organic carbon(DOC) concentration(10.12% ±9.81% for photo-biodegradation and 6.65% ± 2.83% for biodegradation) and rapid transformation of DOM components(i.e., terrestrial humic-like components into microbial humic and protein-like components) were observed during photo-biodegradation experiments.Results suggest that sunlight facilitated DOM biodegradation, resulting in simpler recalcitrant molecules regardless of original composition. Overall, it was found that combined effects of light and bacteria are more efficient than bacterial effects alone in remineralizing and altering DOM, which highlights the crucial importance of sunlight in transforming aquatic DOM.展开更多
Long-term societal prosperity depends on addressing the world’s energy and environmental problems,and photocatalysis has emerged as a viable remedy.Improving the efficiency of photocatalytic processes is fundamentall...Long-term societal prosperity depends on addressing the world’s energy and environmental problems,and photocatalysis has emerged as a viable remedy.Improving the efficiency of photocatalytic processes is fundamentally achieved by optimizing the effective utilization of solar energy and enhancing the efficient separation of photogenerated charges.It has been demonstrated that the fabrication ofⅢ–Ⅴsemiconductor-based photocatalysts is effective in increasing solar light absorption,long-term stability,large-scale production and promoting charge transfer.This focused review explores on the current developments inⅢ–Ⅴsemiconductor materials for solar-powered photocatalytic systems.The review explores on various subjects,including the advancement ofⅢ–Ⅴsemiconductors,photocatalytic mechanisms,and their uses in H2 conversion,CO_(2)reduction,environmental remediation,and photocatalytic oxidation and reduction reactions.In order to design heterostructures,the review delves into basic concepts including solar light absorption and effective charge separation.It also highlights significant advancements in green energy systems for water splitting,emphasizing the significance of establishing eco-friendly systems for CO_(2)reduction and hydrogen production.The main purpose is to produce hydrogen through sustainable and ecologically friendly energy conversion.The review intends to foster the development of greener and more sustainable energy source by encouraging researchers and developers to focus on practical applications and advancements in solar-powered photocatalysis.展开更多
基金financially supported by the National Natural Science Foundation of China (Grant No.41272158 and 41172136)
文摘Light hydrocarbons (LHs) are one of the main petroleum fractions in crude oils, and carry much infor- mation regarding the genetic origin and alteration of crude oils. But secondary alterations--especially biodegrada- tion--have a significant effect on the composition of LHs in crude oils. Because most of the LHs affected in oils underwent only slight biodegradation (rank 1 on the biodegradation scale), the variation of LHs can be used to describe more the refined features of biodegradation. Here, 23 crude oils from the Dawanqi Oilfield in the Tarim Basin, NW China, eleven of which have been biodegraded to different extents, were analyzed in order to investigate the effect of slight to minor biodegradation on C6--C7 LHs. The study results showed that biodegradation resulted in the prior depletion of straight-chained alkanes, followed by branched alkanes. In slight and minor biodegraded oils, such biodegradation scale could not sufficiently affect C6- C7 cycloalkanes. For branched C6--C7 alkanes, generally, monomethylalkanes are biodegraded earlier than dimethylalkanes and trimethylalkanes, which indicates that branched alkanes are more resistant to biodegradation, with the increase of substituted methyl groups on parent rings. The degree of alkylation is one of the primary controlling factors on the biodegradation of C6-Cv LHs. There is a particular case: although 2,2,3-trimethylbutane has a rela- tive higher alkylation degree, 2,2-dimethylpentane is more resistant to biodegradation than 2,2,3-trimethylbutane. 2,2- Dimethylpentane is the most resistant to biodegradation in branched C6-C7 alkanes. Furthermore, the 2-methylpen- tane/3-methylpentane and 2-methylhexane/3-methylhexane ratios decreased steadily with increasing biodegradation, which implies that isomers of bilateral methyl groups are more prone to bacterial attack relative to mid-chain iso- mers. The position of the alkyls on the carbon skeleton is also one of the critical factors controlling the rate of biodegradation. With increasing biodegradation, Mango's LH parameters K1 values decrease and K2 values increase, the values of n-heptane and isoheptane decrease, and the indices of methylcyclohexane and cyclohexane increase. LH parameters should be applied cautiously for the biodegraded oils. Because biodegraded samples belong to slight or minor biodegraded oils, the values of n-heptane and isoheptane from Dawanqi Oilfield can better reflect and determine the "Biodegraded" zone. When the heptane value is 0-21 and the isoheptane value is 0-2.6, the crude oil in Dawanqi Oilfield is defined as the "Biodegraded" zone
文摘The objective of this research was to quantify the temporal variation of dissolved organic matter(DOM) in five distinct waterbodies in watersheds with diverse types of land use and land cover in the presence and absence of sunlight. The water bodies were an agricultural pond, a lake in a forested watershed, a man-made reservoir, an estuary, and a bay. Two sets of samples were prepared by dispensing unfiltered samples into filtered samples in 1:10 ratio(V/V). The first set was exposed to sunlight(10 hr per day for 30 days) for examining the combined effect of photo-biodegradation, while the second set was stored in dark for examining biodegradation alone. Spectroscopic measurements in tandem with multivariate statistics were used to interpret DOM lability and composition. The results suggest that the agricultural pond behaved differently compared to other study locations during degradation experiments due to the presence of higher amount of microbial humic-like and protein-like components derived from microbial/anthropogenic sources. For all samples, a larger decrease in dissolved organic carbon(DOC) concentration(10.12% ±9.81% for photo-biodegradation and 6.65% ± 2.83% for biodegradation) and rapid transformation of DOM components(i.e., terrestrial humic-like components into microbial humic and protein-like components) were observed during photo-biodegradation experiments.Results suggest that sunlight facilitated DOM biodegradation, resulting in simpler recalcitrant molecules regardless of original composition. Overall, it was found that combined effects of light and bacteria are more efficient than bacterial effects alone in remineralizing and altering DOM, which highlights the crucial importance of sunlight in transforming aquatic DOM.
基金supported by the Nano&Material Technology Development Program through the National Research Foundation of Korea(NRF)funded by Ministry of Science and ICT(No.2022M3H4A1A04096380)and(No.2022M3H4A3A01082883)。
文摘Long-term societal prosperity depends on addressing the world’s energy and environmental problems,and photocatalysis has emerged as a viable remedy.Improving the efficiency of photocatalytic processes is fundamentally achieved by optimizing the effective utilization of solar energy and enhancing the efficient separation of photogenerated charges.It has been demonstrated that the fabrication ofⅢ–Ⅴsemiconductor-based photocatalysts is effective in increasing solar light absorption,long-term stability,large-scale production and promoting charge transfer.This focused review explores on the current developments inⅢ–Ⅴsemiconductor materials for solar-powered photocatalytic systems.The review explores on various subjects,including the advancement ofⅢ–Ⅴsemiconductors,photocatalytic mechanisms,and their uses in H2 conversion,CO_(2)reduction,environmental remediation,and photocatalytic oxidation and reduction reactions.In order to design heterostructures,the review delves into basic concepts including solar light absorption and effective charge separation.It also highlights significant advancements in green energy systems for water splitting,emphasizing the significance of establishing eco-friendly systems for CO_(2)reduction and hydrogen production.The main purpose is to produce hydrogen through sustainable and ecologically friendly energy conversion.The review intends to foster the development of greener and more sustainable energy source by encouraging researchers and developers to focus on practical applications and advancements in solar-powered photocatalysis.