In the presence of titanium dioxide powder, cross-linking reaction between commercial polyvinyl alcohol(PVA)-based macromonomer and acrylic acid(AA) was initiated with potassium persulfate in an emulsifying system. As...In the presence of titanium dioxide powder, cross-linking reaction between commercial polyvinyl alcohol(PVA)-based macromonomer and acrylic acid(AA) was initiated with potassium persulfate in an emulsifying system. As a result, PVA-AA/TiO2 composite gel particles were obtained. The morphology and composition of the particles were analyzed with scanning electron microscopy(SEM), energy scattering x-ray spectroscopy(EDS), Fourier infrared spectroscopy(FTIR), and thermogravimetric analysis(TGA). The analysis results confirmed that the particles were the expected ones. TiO2 was dispersed homogeneously within the spheroidal particles. Compared to the control gel, the composite gel particles not only contained Ti element but also showed higher thermal stability. In addition, the photo-catalytic behavior of the particles for the degradation of methyl orange contained in aqueous solution was examined. The particles exhibited photocatalytic characteristic for the degradation of the model dye, which could be modulated by simply varying the amount of cross-linking agent or TiO2. The photo-catalytic degradation percentage of methyl orange maintained at 91%-96% after using the particles three times, which indicated that TiO2 could played its role repeatedly via being fixated within polyvinyl alcohol-based gel.展开更多
The residual formaldehyde (HCHO) in fabric was degraded using photo-catalysis assisted by the compound catalyst of nano-TiO2 and nano-ZnO. The effects of several factors on the degradation, such as the composing of ...The residual formaldehyde (HCHO) in fabric was degraded using photo-catalysis assisted by the compound catalyst of nano-TiO2 and nano-ZnO. The effects of several factors on the degradation, such as the composing of catalyst, irradiation time, pH value and the H2CHO concentration of the immersed solution were investigated. Results showed that H2CHO of the immersed solution had degraded 93% after 5 h irradiation, and the degradation ratio of formaldehyde could be improved and the aging of the fabric can be avoided with the addition of ZnO nanoparticles and pH value of the immersed-fibric solution. The fabric with residual formaldehyde about 1 800 μg/g can be efficiently treated to satisfy the China National Standard (GB/2912.1-1998) with the photo-catalytic degradation.展开更多
The effects of Cu (Ⅱ) or Zn (Ⅱ) on the photo-catalytic degradation of some organic chemicals in water, such as acetone, phenol, dyes, and tea saponin were studied. Dyes in wastewater from a textile factory can be ef...The effects of Cu (Ⅱ) or Zn (Ⅱ) on the photo-catalytic degradation of some organic chemicals in water, such as acetone, phenol, dyes, and tea saponin were studied. Dyes in wastewater from a textile factory can be effectively degraded by photo-catalysis with TiO 2 and ultraviolet light or sunshine, but the reaction rate could be slowed down if copper or zinc salt exists in the solution.展开更多
Pesticides and its degradation products,being well–known residues in soil,have recently been detected in many water bodies as pollutants of emerging concerns,and thus there is a contemporary demand to develop viable ...Pesticides and its degradation products,being well–known residues in soil,have recently been detected in many water bodies as pollutants of emerging concerns,and thus there is a contemporary demand to develop viable and cost–effective techniques for the removal of related organic pollutants in aqueous phases.Herein,a visible-light-responsive Fenton system was constructed with iron–doped bismuth oxybromides(Fe–BiOBr)as the catalysts.Taking the advantage of sustainable Fe(Ⅲ)/Fe(Ⅱ)conversion and optimized H_(2)O_(2)utilization,the optimal Fe–BiOBr–2 catalyst showed an excellent atrazine removal efficiency of 97.61%in 120 min,which is superior than the traditional homogeneous Fenton and the majority of heterogeneous processes documented in the literature.In this photo–Fenton system,hydroxyl(·OH)and superoxide(·O_(2)^(-))radicals were dominant active species contributed to the oxidative degradation of atrazine.Due to the production of various active radicals,five degradation pathways were proposed based on the identification of intermediates and degradation products.Overall,this work not only demonstrates a fundamental insight into creating highly efficient and atom economic photo-Fenton systems,but also provides a complementary strategy for the treatment of organic pollutants in water.展开更多
The photocatalytic degradation effects of carbofuran solution under concentration of 0.2,0.4,0.8 g/L Re3+-doped nano-TiO2 were studied.The highest degradation rate of 54.89% was obtained after 4 h degradation when the...The photocatalytic degradation effects of carbofuran solution under concentration of 0.2,0.4,0.8 g/L Re3+-doped nano-TiO2 were studied.The highest degradation rate of 54.89% was obtained after 4 h degradation when the concentration of nano-TiO2 was 0.4 g/L.Then field trials of photocatalytic degradation with suspension nano-TiO2 were conducted.The photocatalytic degradation effect of organic phosphorus and carbamate pesticides in tomato leaves and soil with different concentratio catalyst(0,0.2,0.4,0.6,0.8 g/L) were studied.The results showed that nano-TiO2 could significantly increase photocatalytic degradation rate of pesticide residues in tomato leaves and soil.Pesticide residues degradation rate could be increased by 20%-30% on the tomato leaves and 15%-20% in soil,and the best concentration of photocatalytic degradation was 0.2-0.4 g/L.展开更多
Pd-MnO2/TiO2 nanotube arrays(NTAs) photo-electrodes were successfully fabricated via anodization and electro deposition subsequently; the obtained Pd-MnO2/TiO2 NTAs photo electrodes were analyzed by scanning electro...Pd-MnO2/TiO2 nanotube arrays(NTAs) photo-electrodes were successfully fabricated via anodization and electro deposition subsequently; the obtained Pd-MnO2/TiO2 NTAs photo electrodes were analyzed by scanning electron microscopy(SEM), X-ray diffraction(XRD) and characterized accordingly. Moreover, the light harvesting and absorption properties were investigated via ultraviolet–visible diffuse reflectance spectrum(DRS); photo degradation efficiency was investigated via analyzing the photo catalytic degradation of Rhodamine B under visible illumination(xenon light). The performed analyses illustrated that Pd-MnO2 codoped particles were successfully deposited onto the surface of the TiO2 nanotube arrays;DRS results showed significant improvement in visible light absorption which was between400 and 700 nm. Finally, the photo catalytic degradation efficiency results of the designated organic pollutant(Rhodamine B) illustrated a superior photocatalytic(PC) efficiency of approximately 95% compared to the bare TiO2 NTAs, which only exhibited a photo catalytic degradation efficiency of approximately 61%, thus it indicated the significant enhancement of the light absorption properties of fabricated photo electrodes and their yield of UOH radicals.展开更多
基金Funded by the Science&Technology Program of Fujian Province(No.2017H0018)
文摘In the presence of titanium dioxide powder, cross-linking reaction between commercial polyvinyl alcohol(PVA)-based macromonomer and acrylic acid(AA) was initiated with potassium persulfate in an emulsifying system. As a result, PVA-AA/TiO2 composite gel particles were obtained. The morphology and composition of the particles were analyzed with scanning electron microscopy(SEM), energy scattering x-ray spectroscopy(EDS), Fourier infrared spectroscopy(FTIR), and thermogravimetric analysis(TGA). The analysis results confirmed that the particles were the expected ones. TiO2 was dispersed homogeneously within the spheroidal particles. Compared to the control gel, the composite gel particles not only contained Ti element but also showed higher thermal stability. In addition, the photo-catalytic behavior of the particles for the degradation of methyl orange contained in aqueous solution was examined. The particles exhibited photocatalytic characteristic for the degradation of the model dye, which could be modulated by simply varying the amount of cross-linking agent or TiO2. The photo-catalytic degradation percentage of methyl orange maintained at 91%-96% after using the particles three times, which indicated that TiO2 could played its role repeatedly via being fixated within polyvinyl alcohol-based gel.
基金applied basis research from Sichuan Province,the Research of Photo Purification to Environment with Nano TiO_2(No.05YJ029-010).
文摘The residual formaldehyde (HCHO) in fabric was degraded using photo-catalysis assisted by the compound catalyst of nano-TiO2 and nano-ZnO. The effects of several factors on the degradation, such as the composing of catalyst, irradiation time, pH value and the H2CHO concentration of the immersed solution were investigated. Results showed that H2CHO of the immersed solution had degraded 93% after 5 h irradiation, and the degradation ratio of formaldehyde could be improved and the aging of the fabric can be avoided with the addition of ZnO nanoparticles and pH value of the immersed-fibric solution. The fabric with residual formaldehyde about 1 800 μg/g can be efficiently treated to satisfy the China National Standard (GB/2912.1-1998) with the photo-catalytic degradation.
文摘The effects of Cu (Ⅱ) or Zn (Ⅱ) on the photo-catalytic degradation of some organic chemicals in water, such as acetone, phenol, dyes, and tea saponin were studied. Dyes in wastewater from a textile factory can be effectively degraded by photo-catalysis with TiO 2 and ultraviolet light or sunshine, but the reaction rate could be slowed down if copper or zinc salt exists in the solution.
基金supported by the Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment (No.SKLPEE–202008)the Fuzhou Universitythe Special Fund for Scientific and Technological Innovation of Fujian Agriculture and Forestry University (No.CXZX2019073G)。
文摘Pesticides and its degradation products,being well–known residues in soil,have recently been detected in many water bodies as pollutants of emerging concerns,and thus there is a contemporary demand to develop viable and cost–effective techniques for the removal of related organic pollutants in aqueous phases.Herein,a visible-light-responsive Fenton system was constructed with iron–doped bismuth oxybromides(Fe–BiOBr)as the catalysts.Taking the advantage of sustainable Fe(Ⅲ)/Fe(Ⅱ)conversion and optimized H_(2)O_(2)utilization,the optimal Fe–BiOBr–2 catalyst showed an excellent atrazine removal efficiency of 97.61%in 120 min,which is superior than the traditional homogeneous Fenton and the majority of heterogeneous processes documented in the literature.In this photo–Fenton system,hydroxyl(·OH)and superoxide(·O_(2)^(-))radicals were dominant active species contributed to the oxidative degradation of atrazine.Due to the production of various active radicals,five degradation pathways were proposed based on the identification of intermediates and degradation products.Overall,this work not only demonstrates a fundamental insight into creating highly efficient and atom economic photo-Fenton systems,but also provides a complementary strategy for the treatment of organic pollutants in water.
基金Project supported by the Elenventh Five-Year National Science and Technology Support Program (2006BAD6B03)National 863 Project (2006AA11Z4023)
文摘The photocatalytic degradation effects of carbofuran solution under concentration of 0.2,0.4,0.8 g/L Re3+-doped nano-TiO2 were studied.The highest degradation rate of 54.89% was obtained after 4 h degradation when the concentration of nano-TiO2 was 0.4 g/L.Then field trials of photocatalytic degradation with suspension nano-TiO2 were conducted.The photocatalytic degradation effect of organic phosphorus and carbamate pesticides in tomato leaves and soil with different concentratio catalyst(0,0.2,0.4,0.6,0.8 g/L) were studied.The results showed that nano-TiO2 could significantly increase photocatalytic degradation rate of pesticide residues in tomato leaves and soil.Pesticide residues degradation rate could be increased by 20%-30% on the tomato leaves and 15%-20% in soil,and the best concentration of photocatalytic degradation was 0.2-0.4 g/L.
基金supported by the National Natural Science Foundation of China (No. 51178138)the National Creative Research Groups of China (No. 51121062)the State Key Laboratory of Urban Water Resources and Environment (No. 2010DX03)
文摘Pd-MnO2/TiO2 nanotube arrays(NTAs) photo-electrodes were successfully fabricated via anodization and electro deposition subsequently; the obtained Pd-MnO2/TiO2 NTAs photo electrodes were analyzed by scanning electron microscopy(SEM), X-ray diffraction(XRD) and characterized accordingly. Moreover, the light harvesting and absorption properties were investigated via ultraviolet–visible diffuse reflectance spectrum(DRS); photo degradation efficiency was investigated via analyzing the photo catalytic degradation of Rhodamine B under visible illumination(xenon light). The performed analyses illustrated that Pd-MnO2 codoped particles were successfully deposited onto the surface of the TiO2 nanotube arrays;DRS results showed significant improvement in visible light absorption which was between400 and 700 nm. Finally, the photo catalytic degradation efficiency results of the designated organic pollutant(Rhodamine B) illustrated a superior photocatalytic(PC) efficiency of approximately 95% compared to the bare TiO2 NTAs, which only exhibited a photo catalytic degradation efficiency of approximately 61%, thus it indicated the significant enhancement of the light absorption properties of fabricated photo electrodes and their yield of UOH radicals.