In this work the heterogenization in polymeric membranes of decatungstate,a photocatalyst for oxidation reactions,was reported.Solid state characterization techniques confirmed that the catalyst structure was preserve...In this work the heterogenization in polymeric membranes of decatungstate,a photocatalyst for oxidation reactions,was reported.Solid state characterization techniques confirmed that the catalyst structure was preserved within the polymeric membranes.The catalytic membranes were successfully applied in the aerobic photo-oxidation of phenol,one of the main organic pollutants in wastewater,providing stable and recyclable photocatalytic systems.The dependence of the phenol degradation rate by the catalyst loading and transmembrane pressure was shown.By comparison with homogeneous reaction,the catalyst heterogenized in membrane appears to be more efficient concerning the rate of phenol photodegradation and mineralization.展开更多
Self-organized TiO2 nanotubes were prepared on titanium foils at anodizing voltage of 20V in 0.5% HF solution for 2030min in order to provide a novel high-efficiency photocatalyst. And the resulting TiO2 nanotubes...Self-organized TiO2 nanotubes were prepared on titanium foils at anodizing voltage of 20V in 0.5% HF solution for 2030min in order to provide a novel high-efficiency photocatalyst. And the resulting TiO2 nanotubes, in periodic ring structures around their exteriors, are open on the top, while closed on the bottom. After annealing for 3h in ambient atmosphere, the anatase phase was found, with the increasing content, in the originally amorphous TiO2 nanotubes treated at 350, 400 and 450℃; whereas the rutile phase emerged at 500℃, and the nanotube architecture could be preserved till 550℃. Furthermore, TiO2 nanotubes, fabricated at anodizing voltage of 20V for 20min and then annealed at 400℃, possesses the best photo-catalytic activity, i.e. the decolourisation of methyl orange irradiated for 40min is 99.6%.展开更多
Platinum/cerium-zirconium-sulfate(Pt/Ce-Zr-SO_4^(2-)) catalysts were prepared by wetness impregnation.Catalytic activities were evaluated from the combustion of propene and CO.Sulfate(SO_4^(2-))addition improv...Platinum/cerium-zirconium-sulfate(Pt/Ce-Zr-SO_4^(2-)) catalysts were prepared by wetness impregnation.Catalytic activities were evaluated from the combustion of propene and CO.Sulfate(SO_4^(2-))addition improved the catalytic activity significantly.When using Pt/Ce-Zr-SO_4^(2-) with 10 wt%SO_4^(2-),the temperature for 90%conversion of propene and CO decreased by 75℃ compared with Pt/Ce-Zr.The conversion exceeded 95%at 240℃ even after 0.02%sulfur dioxide poisoning for 20 h.Temperature-programmed desorption of CO and X-ray photoelectron spectroscopy analyses revealed an improvement in Pt dispersion onto the Ce-Zr-SO_4^(2-) support,and the increased number of Pt particles built up more Pt^(-)-(SO_4^(2-))^(-) couples,which resulted in excellent activity.The increased total acidity and new Bronsted acid sites on the surface provided the Pt/Ce-Zr-SO_4^(2-) with good sulfur resistance.展开更多
Catalytic wet air oxidation(CWAO)coupled desalination technology provides a possibility for the effective and economic degradation of high salinity and high organic wastewater.Chloride widely occurs in natural and was...Catalytic wet air oxidation(CWAO)coupled desalination technology provides a possibility for the effective and economic degradation of high salinity and high organic wastewater.Chloride widely occurs in natural and wastewaters,and its high content jeopardizes the efficacy of Advanced oxidation process(AOPs).Thus,a novel chlorine ion resistant catalyst Bsite Ru doped LaFe_(1-x)Ru_(x)O_(3-)δin CWAO treatment of chlorine ion wastewater was examined.Especially,LaFe_(0.85)Ru_(0.15)O_(3-δ)was 45.5% better than that of the 6%RuO_(2)@TiO_(2)(commercial carrier)on total organic carbon(TOC)removal.Also,doped catalysts LaFe_(1-x)Ru_(x)O_(3-)δshowed better activity than supported catalysts RuO_(2)@LaFeO_(3) and RuO_(2)@TiO_(2) with the same Ru content.Moreover,LaFe_(0.85)Ru_(0.15)O_(3-)δhas novel chlorine ion resistance no matter the concentration of Cl^(−) and no Ru dissolves after the reaction.X-ray diffraction(XRD)refinement,X-ray photoelectron spectroscopy(XPS),transmission electron microscope(TEM),and X-ray absorption fine structure(XAFS)measurements verified the structure of LaFe_(0.85)Ru_(0.15)O_(3-)δ.Kinetic data and density functional theory(DFT)proved that Fe is the site of acetic acid oxidation and adsorption of chloride ions.The existence of Fe in LaFe_(0.85)Ru_(0.15)O_(3-)δcould adsorb chlorine ion(catalytic activity inhibitor),which can protect the Ru site and other active oxygen species to exert catalytic activity.This work is essential for the development of chloride-resistant catalyst in CWAO.展开更多
通过溶胶-凝胶法制备了形貌为近球状的RE-N共掺杂二氧化钛,XRD结果表明掺杂能使TiO_2的粒径变小.紫外-可见吸收光谱得出,共掺杂样品Ce-N1-TiO_2的吸收带边波长红移至559 nm,禁带宽度减小至2.22 e V,荧光光谱测试表明共掺杂可减小TiO_2...通过溶胶-凝胶法制备了形貌为近球状的RE-N共掺杂二氧化钛,XRD结果表明掺杂能使TiO_2的粒径变小.紫外-可见吸收光谱得出,共掺杂样品Ce-N1-TiO_2的吸收带边波长红移至559 nm,禁带宽度减小至2.22 e V,荧光光谱测试表明共掺杂可减小TiO_2中光生载流子的复合效率,荧光强度最小的为Ce-N2-TiO_2.可见光下降解亚甲基蓝的光催化实验表明,不同共掺杂样品均可以提高二氧化钛对亚甲基蓝的降解率,Ce-N2-TiO_2在150 min时的降解率可达到91%,为同等条件下纯TiO_2的2.4倍.展开更多
基金Financial support from the"Ministero dell’Istruzione dell’Università e della Ricerca"(MIUR)(CEMIF.CAL-CLAB01TYEF and CAMERE-RBNE03JCR5)is gratefully acknowledged.
文摘In this work the heterogenization in polymeric membranes of decatungstate,a photocatalyst for oxidation reactions,was reported.Solid state characterization techniques confirmed that the catalyst structure was preserved within the polymeric membranes.The catalytic membranes were successfully applied in the aerobic photo-oxidation of phenol,one of the main organic pollutants in wastewater,providing stable and recyclable photocatalytic systems.The dependence of the phenol degradation rate by the catalyst loading and transmembrane pressure was shown.By comparison with homogeneous reaction,the catalyst heterogenized in membrane appears to be more efficient concerning the rate of phenol photodegradation and mineralization.
文摘Self-organized TiO2 nanotubes were prepared on titanium foils at anodizing voltage of 20V in 0.5% HF solution for 2030min in order to provide a novel high-efficiency photocatalyst. And the resulting TiO2 nanotubes, in periodic ring structures around their exteriors, are open on the top, while closed on the bottom. After annealing for 3h in ambient atmosphere, the anatase phase was found, with the increasing content, in the originally amorphous TiO2 nanotubes treated at 350, 400 and 450℃; whereas the rutile phase emerged at 500℃, and the nanotube architecture could be preserved till 550℃. Furthermore, TiO2 nanotubes, fabricated at anodizing voltage of 20V for 20min and then annealed at 400℃, possesses the best photo-catalytic activity, i.e. the decolourisation of methyl orange irradiated for 40min is 99.6%.
基金supported by the National Natural Science Foundation of China(21506194,21676255)the Provincial Natural Science Foundation of Zhejiang Province(LY16B070011)the Commission of Science and Technology of Zhejiang Province(2017C33106,2017C03007)~~
文摘Platinum/cerium-zirconium-sulfate(Pt/Ce-Zr-SO_4^(2-)) catalysts were prepared by wetness impregnation.Catalytic activities were evaluated from the combustion of propene and CO.Sulfate(SO_4^(2-))addition improved the catalytic activity significantly.When using Pt/Ce-Zr-SO_4^(2-) with 10 wt%SO_4^(2-),the temperature for 90%conversion of propene and CO decreased by 75℃ compared with Pt/Ce-Zr.The conversion exceeded 95%at 240℃ even after 0.02%sulfur dioxide poisoning for 20 h.Temperature-programmed desorption of CO and X-ray photoelectron spectroscopy analyses revealed an improvement in Pt dispersion onto the Ce-Zr-SO_4^(2-) support,and the increased number of Pt particles built up more Pt^(-)-(SO_4^(2-))^(-) couples,which resulted in excellent activity.The increased total acidity and new Bronsted acid sites on the surface provided the Pt/Ce-Zr-SO_4^(2-) with good sulfur resistance.
基金supported by the Natural Science Foundation of Liaoning Province (No. 2020-BS-012)the National Natural Science Foundation of China (No. 51878643)+2 种基金the Dalian Institute of Chemical Physics & Qingdao Institute of Bioenergy and Bioprocess Technology (DICP&QIBEBT) (No. UN201809)the Scientific Research Common Program of Beijing Municipal Commission of Education (No. KM202010017006)Talents Project of Beijing Organization Department (No. 2018000020124G091)。
文摘Catalytic wet air oxidation(CWAO)coupled desalination technology provides a possibility for the effective and economic degradation of high salinity and high organic wastewater.Chloride widely occurs in natural and wastewaters,and its high content jeopardizes the efficacy of Advanced oxidation process(AOPs).Thus,a novel chlorine ion resistant catalyst Bsite Ru doped LaFe_(1-x)Ru_(x)O_(3-)δin CWAO treatment of chlorine ion wastewater was examined.Especially,LaFe_(0.85)Ru_(0.15)O_(3-δ)was 45.5% better than that of the 6%RuO_(2)@TiO_(2)(commercial carrier)on total organic carbon(TOC)removal.Also,doped catalysts LaFe_(1-x)Ru_(x)O_(3-)δshowed better activity than supported catalysts RuO_(2)@LaFeO_(3) and RuO_(2)@TiO_(2) with the same Ru content.Moreover,LaFe_(0.85)Ru_(0.15)O_(3-)δhas novel chlorine ion resistance no matter the concentration of Cl^(−) and no Ru dissolves after the reaction.X-ray diffraction(XRD)refinement,X-ray photoelectron spectroscopy(XPS),transmission electron microscope(TEM),and X-ray absorption fine structure(XAFS)measurements verified the structure of LaFe_(0.85)Ru_(0.15)O_(3-)δ.Kinetic data and density functional theory(DFT)proved that Fe is the site of acetic acid oxidation and adsorption of chloride ions.The existence of Fe in LaFe_(0.85)Ru_(0.15)O_(3-)δcould adsorb chlorine ion(catalytic activity inhibitor),which can protect the Ru site and other active oxygen species to exert catalytic activity.This work is essential for the development of chloride-resistant catalyst in CWAO.
文摘通过溶胶-凝胶法制备了形貌为近球状的RE-N共掺杂二氧化钛,XRD结果表明掺杂能使TiO_2的粒径变小.紫外-可见吸收光谱得出,共掺杂样品Ce-N1-TiO_2的吸收带边波长红移至559 nm,禁带宽度减小至2.22 e V,荧光光谱测试表明共掺杂可减小TiO_2中光生载流子的复合效率,荧光强度最小的为Ce-N2-TiO_2.可见光下降解亚甲基蓝的光催化实验表明,不同共掺杂样品均可以提高二氧化钛对亚甲基蓝的降解率,Ce-N2-TiO_2在150 min时的降解率可达到91%,为同等条件下纯TiO_2的2.4倍.