TiO2 nano particles were synthesized in Rutile and Anatase phases by sol-gel method using two kind of complex agents, acidic (Citric Acid) and organic complex agent (acetyl acetone) at 400°C, 500°C, 650°...TiO2 nano particles were synthesized in Rutile and Anatase phases by sol-gel method using two kind of complex agents, acidic (Citric Acid) and organic complex agent (acetyl acetone) at 400°C, 500°C, 650°C sintering temperatures. The structural analysis by XRD diffraction confirmed phase formation of titanium oxide. Particles sizes were determined by using Scherrer formula. TEM was employed to confirm nano particles formation. The size of nano particles as well as Phase formation can be controlled by the type of complex agent and sintering temperature. Acetyl Acetone causes a more crystalline structure and more uniformity of size distribution in 400°C sintering temperatures. Moreover, it results in obtaining single phase TiO2 nanoparticles at 400°C and 650°C sintering temperature. On the other hand, at high sintering temperature, the particles obtained from polymeric agent tend to agglomerate larger in size than the acidic product.展开更多
文摘TiO2 nano particles were synthesized in Rutile and Anatase phases by sol-gel method using two kind of complex agents, acidic (Citric Acid) and organic complex agent (acetyl acetone) at 400°C, 500°C, 650°C sintering temperatures. The structural analysis by XRD diffraction confirmed phase formation of titanium oxide. Particles sizes were determined by using Scherrer formula. TEM was employed to confirm nano particles formation. The size of nano particles as well as Phase formation can be controlled by the type of complex agent and sintering temperature. Acetyl Acetone causes a more crystalline structure and more uniformity of size distribution in 400°C sintering temperatures. Moreover, it results in obtaining single phase TiO2 nanoparticles at 400°C and 650°C sintering temperature. On the other hand, at high sintering temperature, the particles obtained from polymeric agent tend to agglomerate larger in size than the acidic product.