期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Novel synthesis of cerium oxide nano photocatalyst by a hydrothermal method
1
作者 Fowziya Shaik Ali Faisal Al Marzouqi +4 位作者 AAfroos Banu M.Ismail Fathima A.R.Mohamed Jahangir K.Mohamed Rafi A.Ayeshamariam 《Journal of Semiconductors》 EI CAS CSCD 2021年第12期35-43,共9页
Crystalline cubic cerium oxide nano particles have been synthesized from cerium(Ⅲ)nitrate(Ce(NO_(3))_(3).6H2_(O))and sodium hydroxide by a hydrothermal method.The effect of three different molar ratios of the NaOH pr... Crystalline cubic cerium oxide nano particles have been synthesized from cerium(Ⅲ)nitrate(Ce(NO_(3))_(3).6H2_(O))and sodium hydroxide by a hydrothermal method.The effect of three different molar ratios of the NaOH precipitating agent on structural,optical,and photo catalytic activity was investigated.The synthesized cerium oxide nano particles were characterized by X-ray diffraction(XRD),a UV-vis spectrometer,scanning electron microscope(SEM),energy-dispersive X-ray spectroscopy(EDAX),Raman spectroscopy and X-ray photo electron spectroscopy(XPS).According to the findings,hydrothermally synthesized cerium oxide NPs have a high efficiency for photocatalytic degradation of methylene blue when exposed to UV light.Environmental water pollution is the major issue of the atmosphere.To get fresh water,humans could search the resources to purify the water in simple way and degradation is the one of the methods to purify salt water. 展开更多
关键词 cerium oxide nano particles photo catalysis hydrothermal process
下载PDF
Optical, Structural and Morphological Properties of Photocatalytic ZnO Thin Films Deposited by Pray Pyrolysis Technique
2
作者 Durgam Komaraiah Eppa Radha +3 位作者 Y. Vijayakumar J. Sivakumar M. V. Ramana Reddy R. Sayanna 《Modern Research in Catalysis》 CAS 2016年第4期130-146,共17页
Photocatalytic ZnO thin films have been deposited onto glass substrate by spray pyrolysis technique. The sprayed solution consists of 0.1 M of zinc acetate dihydrate dissolved in double distilled water and sprays onto... Photocatalytic ZnO thin films have been deposited onto glass substrate by spray pyrolysis technique. The sprayed solution consists of 0.1 M of zinc acetate dihydrate dissolved in double distilled water and sprays onto ultrasonically cleaned glass substrates maintained at 350&deg;C, through an air-atomizing nozzle. The X-ray diffraction (XRD), scanning electron microscopy (SEM), EDX and UV-VIS spectrophotometer were applied to describe the structural, morphological, compositional and optical properties of ZnO catalyst. XRD analysis confirms that the films were found to be single phase hexagonal wurtzite structure. The SEM micrograph of the films is shown highly uniform, crack free and found to be fiber like structures. The optical transmittance spectra of the ZnO thin films were found to be transparent to visible light and the average optical transmittance was greater than 85%. The direct optical band gap energy values of the films shift towards the lower energy as a consequence of the thermal annealing. The Urbach energy of the films was found to increase with annealing temperature. The refractive index of the films was calculated and the refractive index dispersion curve of the films obeys the single oscillator model. The values of oscillatory energy E<sub>o</sub>, dispersion energy E<sub>d</sub>, and static dielectric constant ε<sub>s</sub> for the ZnO thin films were determined. The films were evaluated for their ability to degrade methylene blue. The Langmuir-Hinshelwood kinetic model was used to interpret quantitatively the observed kinetic experimental result. The photocatalytic activity of ZnO thin films was enhanced by annealing temperature. 展开更多
关键词 ZnO Thin Film Spray Pyrolysis Optical Band Gap Refractive Index photo catalysis
下载PDF
Performance of a Demonstrative (Scale-Pilot) Double Advanced Oxidation Wastewater Treatment Plant to Treat Discharges from a Small Community in Morelia, Michoacán, México
3
作者 Alfonso Espitia-Cabrera Franciso Javier Barrón-Santos +3 位作者 Berenice Quintana-Díaz Héctor Herrera-Bucio Rafael Soto-Espitia Griselda González-Cardoso 《Journal of Environmental Science and Engineering(B)》 2021年第1期1-8,共8页
This paper,reports the performance of a wastewater treatment scale-pilot plant to treat 2 GPM(Gallons per Minute)discharges with 5,205 mg/L of pollutants expressed in COD(Chemical Oxygen Demand),from“Lomas de la Maes... This paper,reports the performance of a wastewater treatment scale-pilot plant to treat 2 GPM(Gallons per Minute)discharges with 5,205 mg/L of pollutants expressed in COD(Chemical Oxygen Demand),from“Lomas de la Maestransa”a small community in Morelia City,Michoacan,Mexico.The scale-pilot plant is a train with(1)pretreatment with a triturated pump for floating solid,(2)primary treatment with“in line”coagulation,and rapid filtration to retain suspended colloids and dissolved solids higher of 5μm diameter,(3)double advanced oxidation as secondary treatment with ozone and heterogeneous photo catalysis to oxidize volatile solids,and(4)tertiary treatment with activated carbon to retain refractory compounds.Plant performance was analyzed by a certified laboratory that belongs to Potable Water,Sewage and Sanitation Department from Morelia City Government.Results show that treated water effluent complied with the Mexican Official Standard NOM-001-SEMARNAT-1996 for discharges into national waters,with exception of fecal coliforms,since the raw water contains an average of 64,228,351 MNP/100 mL of fecal coliforms,and in spite that we obtained a 99.998%efficiency,the maximum level allowable 2,000 MPN/100 mL standard,was exceeded by 400 MPN/100 mL.After this experience,the wastewater treatment plant is equipped with a residual chlorine tank to keep a 1.5 ppm chlorine residual concentration to keep the treated water clean.This project was possible because we had the support of the Morelia Sanitation Department. 展开更多
关键词 Secondary treatment advanced oxidation heterogeneous photo catalysis “in line”coagulation nitrogen compound reduction.
下载PDF
Boosting multi-hole water oxidation catalysis on hematite photoanodes under low bias 被引量:2
4
作者 Lei Wu Daojian Tang +5 位作者 Jing Xue Shuobo Wang Hongwei Ji Chuncheng Chen Yuchao Zhang Jincai Zhao 《Science China Chemistry》 SCIE EI CAS CSCD 2023年第3期896-903,共8页
The accumulation of multiple surface holes is considered to be the key to efficient photoelectrochemical(PEC)water oxidation.Previous PEC water oxidation studies commonly apply high potentials(>1.2 VRHE)to achieve ... The accumulation of multiple surface holes is considered to be the key to efficient photoelectrochemical(PEC)water oxidation.Previous PEC water oxidation studies commonly apply high potentials(>1.2 VRHE)to achieve this key.But how to complete multi-hole transfer under low bias(<1.2 VRHE)remains unknown.Herein,we find that,on a typical visible-light photoanode,hematite(α-Fe_(2)O_(3)),UV excitation plays a indispensable role in driving multi-hole water oxidation under low bias.Compared with the visible-light excitation,the UV excitation promotes the formation of adjacent surface-trapped holes onα-Fe_(2)O_(3) at 0.9VRHE,thereby increasing the reaction order of surface holes from~1 to~2 and improving the PEC water oxidation activity by one order of magnitude.The UV irradiation reduces the formation probability of self-trapped excitons and results in~3 to 5-fold increase of surface holes.These advantages enable the UV excitation to contribute about 40%to the total photocurrent under 1 solar illumination,even though its energy only occupies 6%of the incident light.This mechanism is also applicable to boost selective two-hole oxidation of thioether at 0.1 VFc/Fc+and nitrite at 0.9 VRHE. 展开更多
关键词 HEMATITE photo(electro)catalysis water oxidation excitation wavelength multi-hole catalysis
原文传递
Advanced municipal wastewater treatment and simultaneous energy/resource recovery via photo(electro)catalysis
5
作者 Dengke Wang Siqi Chen +7 位作者 Shiqin Lai Weili Dai Lixia Yang Lanqing Deng Mengjuan Suo Xuyang Wang Jian-Ping Zou Sheng-Lian Luo 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第5期72-87,共16页
Wastewater management and energy/resource recycling have been extensively investigated via photo(electro)catalysis.Although both operation processes are driven effectively by the same interfacial charge,each system is... Wastewater management and energy/resource recycling have been extensively investigated via photo(electro)catalysis.Although both operation processes are driven effectively by the same interfacial charge,each system is practiced separately since they require very different reaction conditions.In this review,we showcase the recent advancements in photo(electro)catalytic process that enables the wastewater treatment and simultaneous energy/resource recovery(WT-ERR).Various literatures based on photo(electro)catalysis for wastewater treatment coupled with CO_(2)conversion,H_(2)production and heavy metal recovery are summarized.Besides,the fundamentals of photo(electro)catalysis and the influencing factors in such synergistic process are also presented.The essential feature of the catalysis lies in effectively utilizing hole oxidation for pollutant degradation and electron reduction for energy/resource recovery.Although in its infancy,the reviewed technology provides new avenue for developing next-generation wastewater treatment process.Moreover,we expect that this review can stimulate intensive researches to rationally design photo(electro)catalytic systems for environmental remediation accompanied with energy and resource recovery. 展开更多
关键词 Wastewater treatment CO_(2)reduction Hydrogen evolution Metal recovery photo(electro)catalysis
原文传递
Sulphur vacancy defects engineered metal sulfides for amended photo(electro)catalytic water splitting: A review 被引量:2
6
作者 Kusum Sharma Abhinandan Kumar +7 位作者 Tansir Ahamad Quyet Van Le Pankaj Raizada Archana Singh Lan Huong Nguyen Sourbh Thakur Van-Huy Nguyen Pardeep Singh 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第21期50-64,共15页
Vacancy engineering in metal sulfides has garnered enormous attention from researchers because of their outstanding ability to modulate the optical and physiochemical properties of photocatalysts.Typically,in the case... Vacancy engineering in metal sulfides has garnered enormous attention from researchers because of their outstanding ability to modulate the optical and physiochemical properties of photocatalysts.Typically,in the case of sulfides,the catalytic activity is drastically hindered by the quick reassembly of excitons and the photocorrosion effect.Hence designing and generating S-vacancies in metal sulfides has emerged as a potential strategy for attaining adequate water splitting to generate H_(2) and O_(2) because of the simulta-neous improvement in the optoelectronic features.However,developing efficient catalysts that manifest optimal photo(electro)catalytic performance for large-scale applicability remains challenging.Therefore,it is of utmost interest to explore the insightful features of creating S-vacancy and study their impact on catalytic performance.This review article aims to comprehensively highlight the roles of S-vacancy in sulfides for amended overall water-splitting activity.The photocatalytic features of S-vacancies modulated metal sulfides are deliberated,followed by various advanced synthetic and characterization techniques for effectual generation and identification of vacancy defects.The specific aspects of S-vacancies in refin-ing the optical absorption range charge carrier dynamics,and photoinduced surface chemical reactions are critically examined for overall water splitting applications.Finally,the vouchsafing outlooks and op-portunities confronting the defect-engineered(S-vacancy)metal sulfides-based photocatalysts have been summarized. 展开更多
关键词 S-vacancy photo(electro)catalysis Metal sulfides Water splitting Engineering Identification of S-vacancies
原文传递
3D Hierarchical Carbon‑Rich Micro‑/Nanomaterials for Energy Storage and Catalysis 被引量:6
7
作者 Zhixiao Xu Wenjing Deng Xiaolei Wang 《Electrochemical Energy Reviews》 SCIE EI 2021年第2期269-335,共67页
Increasing concerns over climate change and energy shortage have driven the development of clean energy devices such as batteries,supercapacitors,fuel cells and solar water splitting in the past decades.And among pote... Increasing concerns over climate change and energy shortage have driven the development of clean energy devices such as batteries,supercapacitors,fuel cells and solar water splitting in the past decades.And among potential device materials,3D hierarchical carbon-rich micro-/nanomaterials(3D HCMNs)have come under intense scrutiny because they can prevent the stacking and bundling of low-dimensional building blocks to not only shorten diffusion distances for matter and charge to achieve high-energy-high-power storage but also greatly expose active sites to achieve highly active,durable and efficient catalysis.Based on this,this review will summarize the synthetic strategies and formation mechanisms of 3D HCMNs,including 3D nanocarbons,polymers,COFs/MOFs,templated carbons and derived carbon-based hybrids with a focus on 3D superstructures such as urchins,flowers,hierarchical tubular structures as well as nanoarrays including nanotube,nanofiber and nanosheet arrays.This review will also discuss the application of 3D HCMNs in energy storage and catalysis systems,including batteries,supercapacitors,electrocatalysis and photo(electro)catalysis.Overall,this review will provide a comprehensive overview of the recent progress of 3D HCMNs in terms of preparation strategies,formation mechanisms,structural diversities and electrochemical applications to provide a guideline for the rational design and structure–function exploration of 3D hierarchical nanomaterials from different sources beyond carbon-based species. 展开更多
关键词 Hierarchical structure 3D carbon-rich materials 3D polymer 3D COF/MOF Batteries and supercapacitors Electrocatalysis and photo(electro)catalysis
原文传递
High-entropy oxides as energy materials:from complexity to rational design
8
作者 Zhong Yang Xianglin Xiang +1 位作者 Jian Yang Zong-Yan Zhao 《Materials Futures》 2024年第4期107-141,共35页
High-entropy oxides(HEOs),with their multi-principal-element compositional diversity,have emerged as promising candidates in the realm of energy materials.This review encapsulates the progress in harnessing HEOs for e... High-entropy oxides(HEOs),with their multi-principal-element compositional diversity,have emerged as promising candidates in the realm of energy materials.This review encapsulates the progress in harnessing HEOs for energy conversion and storage applications,encompassing solar cells,electrocatalysis,photocatalysis,lithium-ion batteries,and solid oxide fuel cells.The critical role of theoretical calculations and simulations is underscored,highlighting their contribution to elucidating material stability,deciphering structure-activity relationships,and enabling performance optimization.These computational tools have been instrumental in multi-scale modeling,high-throughput screening,and integrating artificial intelligence for material design.Despite their promise,challenges such as fabrication complexity,cost,and theoretical computational hurdles impede the broad application of HEOs.To address these,this review delineates future research perspectives.These include the innovation of cost-effective synthesis strategies,employment of in situ characterization for micro-chemical insights,exploration of unique physical phenomena to refine performance,and enhancement of computational models for precise structure-performance predictions.This review calls for interdisciplinary synergy,fostering a collaborative approach between materials science,chemistry,physics,and related disciplines.Collectively,these efforts are poised to propel HEOs towards commercial viability in the new energy technologies,heralding innovative solutions to pressing energy and environmental challenges. 展开更多
关键词 high entropy oxides new energy materials theoretical calculations material design electrochemical energy storage photo(electro)catalysis
原文传递
Two-dimensional polymer nanosheets for efficient energy storage and conversion 被引量:5
9
作者 Yumei Ren Chengbing Yu +1 位作者 Zhonghui Chen Yuxi Xu 《Nano Research》 SCIE EI CAS CSCD 2021年第6期2023-2036,共14页
As a promising graphene analogue,two-dimensional(2D)polymer nanosheets with unique 2D features,diversified topological structures and as well as tunable electronic properties,have received extensive attention in recen... As a promising graphene analogue,two-dimensional(2D)polymer nanosheets with unique 2D features,diversified topological structures and as well as tunable electronic properties,have received extensive attention in recent years.Here in this review,we summarized the recent research progress in the preparation methods of 2D polymer nanosheets,mainly including interfacial polymerization and solution polymerization.We also discussed the recent research advancements of 2D polymer nanosheets in the fields of energy storage and conversion applications,such as batteries,supercapacitors,electrocatalysis and photocatalysis.Finally,on the basis of their current development,we put forward the existing challenges and some personal perspectives. 展开更多
关键词 two-dimensional(2D)polymer nanosheets 2D polymerization batteries SUPERCAPACITORS photo(electro)catalysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部