Hyperoside and quercetin are similar in molecular structures.In this study,the antioxidant regulatory targets of hyperoside and quercetin are mainly in the nuclear factor(erythroid-2-derived)-related factor 2(Nrf2)pat...Hyperoside and quercetin are similar in molecular structures.In this study,the antioxidant regulatory targets of hyperoside and quercetin are mainly in the nuclear factor(erythroid-2-derived)-related factor 2(Nrf2)pathway predicted by network pharmacology.And the antioxidant effect and mechanism of hyperoside and quercetin were measured and compared in H_(2)O_(2)-induced Hep G2 cells and Caenorhabditis elegans.The findings indicated that quercetin was more effective than hyperoside in reducing oxidative damage,which was proved by improved cell viability,decreased reactive oxygen species(ROS)production,decreased cellular apoptosis,and alleviated mitochondrial damage.In addition,quercetin was more efficient than hyperoside in enhancing the expression of Nrf2-associated m RNAs,increasing the activities of superoxide dismutase(SOD),glutathione peroxidase(GSH-Px),and catalase(CAT),and reducing the cellular malondialdehyde(MDA)content.Quercetin was superior to hyperoside in prolonging the lifespan of worms,decreasing the accumulation of lipofuscin,inhibiting ROS production,and increasing the proportion of skn-1 in the nucleus.With the Nrf2 inhibitor ML385,we verified that quercetin and hyperoside primarily protected the cells against oxidative damage via the Nrf2 signalling pathway.Furthermore,molecular docking and dynamics simulations demonstrated that the quercetin-Kelch-like ECH-associated protein 1(Keap1)complex was more stable than the hyperoside-Keap1 complex.The stable structure of the complex might hinder the binding of Nrf2 and Keap1 to release Nrf2 and facilitate its entry into the nucleus to play an antioxidant role.Overall,quercetin had a better antioxidant than hyperoside.展开更多
Roles of Marigold extracts (ME) on arsenic trioxide (ATO)-induced oxidative damage to pancreatic β-cells need to be further elucidated. In this study, NIT-1 cells were treated with different concentrations of and/or ...Roles of Marigold extracts (ME) on arsenic trioxide (ATO)-induced oxidative damage to pancreatic β-cells need to be further elucidated. In this study, NIT-1 cells were treated with different concentrations of and/or ATO, following by the cell viability was detected by CCK8 assay. Then, intracellular reactive oxygen species (ROS) levels, lipid peroxide (MDA) contents and superoxide dismutase (SOD) activity were measured with a fluorescence probe method and colorimetric assay, respectively. The apoptosis rate and morphology was detected and observed with hoechst 33,258 staining assay. The mRNA levels and protein expressions of nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) were measured by real-time fluorescence quantitative polymerase chain reaction and protein immunoblotting assay, respectively. Our results indicated that Co-treatment with ME and ATO exacerbated the cell viability decreasing reduced by ATO, while the addition of ME after ATO treatment effectively promote the recovery of ATO reduced survival rates. The ATO group increased apoptosis (P P β-cells by modulating the activation of the Nrf2 signaling pathway.展开更多
Background:Retinal degeneration is a common feature of several retinal diseases,such as retinitis pigmentosa and age-related macular degeneration(AMD).In this respect,experimental models of photo-oxidative damage repr...Background:Retinal degeneration is a common feature of several retinal diseases,such as retinitis pigmentosa and age-related macular degeneration(AMD).In this respect,experimental models of photo-oxidative damage reproduce faithfully photoreceptor loss and many pathophysiological events involved in the activation of retinal cell degeneration.Therefore,such models represent a useful tool to study the mechanisms related to cell death.Their advantage consists in the possibility of modulating the severity of damage according to the needs of the experimenter.Indeed,bright light exposure could be regulated in both time and intensity to trigger a burst of apoptosis in photoreceptors,allowing the study of degenerative mechanisms in a controlled fashion,compared to the progressive and slower rate of death in other genetic models of photoreceptor degeneration.Methods:Here,an exemplificative protocol of bright light exposure in albino rat is described,as well as the main outcomes in retinal function,photoreceptor death,oxidative stress,and inflammation,which characterize this model and reproduce the main features of retinal degeneration diseases.Discussion:Models of photo-oxidative damage represent a useful tool to study the mechanisms responsible for photoreceptor degeneration.In this respect,it is important to adapt the exposure paradigm to the experimental needs,and the wide range of variables and limitations influencing the final outcomes should be considered to achieve proper results.Trial Registration:None.展开更多
Seizures of agrochemical formulations have increased in Brazil and Rio Grande do Sul is among the Brazilian states with the highest number of seizures of these products obtained illicitly. The use of illicit formulati...Seizures of agrochemical formulations have increased in Brazil and Rio Grande do Sul is among the Brazilian states with the highest number of seizures of these products obtained illicitly. The use of illicit formulations can cause significant harm to agricultural production, the environment, and non-target species. This study evaluated the cytotoxicity and oxidative stress of a seized formulation containing the herbicide imazethapyr (IMZT). Characterization of the herbicide included gas chromatography-mass spectrometry (GC-MS) and thermal analyses (thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC)). Hemolytic and cytotoxicity assays in ZF-L hepatic cells showed IC50 values of 12.75 µg/mL, 3.01 µg/mL, 2.67 µg/mL, and 1.61 µg/mL for erythrocytes, [3(4,5-dimethyl)-2 bromide-5 diphenyl tetrazolium] (MTT), neutral red (NR), and lactate dehydrogenase (LDH) assays, respectively. The median IC50 of 2.84 µg/mL was used in oxidative stress assays, revealing increased reactive oxygen species (ROS) production, reduced total sulfhydryl content, and decreased superoxide dismutase (SOD) and catalase (CAT) activity. This study is the first to report in vitro oxidative stress induced by IMZT in the ZF-L cell line, emphasizing the importance of in vitro assays for assessing the toxic effects of seized agrochemicals on human health and the environment.展开更多
[Objective] This study aimed to investigate the effect of chromium on ox- idative damage and antioxidant capacity of Ctenopharyngodon idellus (grass carp). [Method] The grass carps were treated with hexavalent chrom...[Objective] This study aimed to investigate the effect of chromium on ox- idative damage and antioxidant capacity of Ctenopharyngodon idellus (grass carp). [Method] The grass carps were treated with hexavalent chromium (Cr^6+) solution at concentrations of 0, 7.23, 14.47, 28.94 mg/L, and then the content of malondialde- hyde (MDA), the level of total antioxidative capacity (T-AOC) and the activity of gtu- tathione-S-transferase (GST) in the hepatopancreas of grass carp were determined after 96 hours in different treatment groups. [Result] The content of MDA presented increasing trend with the increase of exposure Cr^6+ concentrations. The activity of T-AOC increased firstly, then decreased with the increasing Cr^6+ exposure concentra- tions, showing that the level of T-AOC was induced in tow and medium concentrat ions (7.23 and 14.47 mg/L), but inhibited in high concentrations (28.94 mg/L). Among the exposure groups, the level of T-AOC in medium concentration group (14.47 mg/L) was significantly higher than the control (P〈0.05). Except the low concentration groups (7.23 mg/L) of which the GST activity was slightly induced, the GST activities of the other groups all showed downward trend with increasing Cr^6+ levels, and the activity of GST in 28.94 mg/L group was significantly lower than the control group (P〈0.05). [Conclusion] Cr^6+ could cause large oxidative damage in the hepatopancreas of grass carp, thus poisoning it, and Cr^6+ may further damage the organizational structure and physiological function of grass carp.展开更多
Objective To study the abnormal reactions of a series of free radicals and the oxidative damages induced by free radical abnormal reactions in the bodies of patients with chronic glomerulonephritis. Methods Eighty ...Objective To study the abnormal reactions of a series of free radicals and the oxidative damages induced by free radical abnormal reactions in the bodies of patients with chronic glomerulonephritis. Methods Eighty chronic glomerulonephritis patients (CGNP) and eighty healthy adult volunteers (HAV) were enrolled in a random control study, in which concentrations of nitric oxide (NO) in plasma, lipoperoxides (LPO) in plasma and in erythrocytes, and vitamin C (VC), vitamin E (VE) and beta-carotene (?CAR) in plasma as well as activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) in erythrocytes were determined with spectrophotometric assays. Results Compared with the average values of the above biochemical parameters in the HAV group, the average values of NO in plasma, and LPO in plasma and erythrocytes in the CGNP group were significantly increased (P = 0.0001), while those of VC, VE and -CAR in plasma as well as those of SOD, CAT and GPX in erythrocytes in the CGNP group were significantly decreased (P = 0.0001). Pearson product-moment correlation analysis showed that with increase of the concentration of blood creatinine as well as prolongation of the course of disease in the CGNP, the concentrations of NO in plasma, and LPO in plasma and erythrocytes in the CGNP increased gradually, while the concentrations of VC, VE and ?CAR in plasma as well as the activities of SOD, CAT and GPX in erythrocytes in the CGNP decreased gradually (P = 0.002454 0.000001). The relative risk ratio (RR) of the above biochemical parameters reflecting oxidative damages in the bodies of CGNP ranged from 6.061 to 72.429. The reliability coefficient (alpha) that the above biochemical parameters were used to reflect the oxidative damages of the CGNP was 0.8137, standardized item alpha = 0.9728, Hotelling抯 T-Squared = 1135680.191, F = 53274.6478, P = 0.000001. Conclusions The findings in this study show that in the bodies of CGNP a series of free radical chain reactions result in severe pathological aggravation and induce oxidative damages in their bodies. Therefore, suitable dose of antioxidants should be supplemented to them so as to alleviate oxidative damages in their bodies.展开更多
Experimental evidence shows that cadmium (Cd) could induce oxidative stress and then causes DNA damage in animal cells, however, whether such effect exists in plants is still unclear. In the present study, Vicia fab...Experimental evidence shows that cadmium (Cd) could induce oxidative stress and then causes DNA damage in animal cells, however, whether such effect exists in plants is still unclear. In the present study, Vicia faba plants was exposed to 5 and 10 mg/L Cd for 4 d to investigate the distribution of Cd in plant, the metal effects on the cell lipids, antioxidative enzymes and DNA damages in leaves. Cd induced an increase in Cd concentrations in plants. An enhanced level of lipid peroxidation in leaves and an enhanced concentration of H2O2 in root tissues suggested that Cd caused oxidative stress in Vicia faba. Compared with control, Cd-induced enhancement in superoxide dismutase activity was significant at 5 mg/L than at 10 mg/kg in leaves, by contrast, catalase and peroxidaseactivities were significantly suppressed by Cd addition. DNA damage was detected by neutral/neutral, alkaline/neutral and alkaline/alkaline Comet assay. Increased levels of DNA damages induced by Cd occurred with reference to oxidative stress in leaves, therefore, oxidative stress induced by Cd accumulation in plants contributed to DNA damages and was possibly an important mechanism of Cd-phytotoxicity in Vicia faba plants.展开更多
Aim: To investigate whether chronic bacterial prostatitis might increase oxidative stress and oxidative damage in chronic bacterial prostatitis patients (CBPP), and to explore its possible mechanism. Methods: Enro...Aim: To investigate whether chronic bacterial prostatitis might increase oxidative stress and oxidative damage in chronic bacterial prostatitis patients (CBPP), and to explore its possible mechanism. Methods: Enrolled in a casecontrol study were 70 randomly sampled CBPP and 70 randomly sampled healthy adult volunteers (HAV), on whom plasma nitric oxide (NO), vitamin C (VC), vitamin E (VE) and β-carotene (β-CAR) level, erythrocyte malondialdehyde (MDA) level, as well as erythrocyte superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) activities were determined by spectrophotometry. Results: Compared with the HAV group, values of plasma NO and erythrocyte MDA in the CBPP group were significantly increased (P 〈 0.001); those of plasma VC, VE and β-CAR as well as erythrocyte SOD, CAT and GPX activities in the CBPP group were significantly decreased (P 〈 0.001). Findings from partial correlation for the 70 CBPP showed that with prolonged course of disease, values of NO and MDA were gradually increased (P 〈 0.001), and those of VC, VE, β-CAR, SOD, CAT and GPX were gradually decreased (P 〈 0.05- 0.001). The findings from stepwise regression for the 70 CBPP suggested that the model was Y= -13.2077 + 0.1894MDA + 0.0415NO - 0.1999GPX, F = 18.2047, P 〈 0.001, r = 0.6729, P 〈 0.001. Conclusion: The findings suggest that there exist increased oxidative stress and oxidative damage induced by chronic bacterial prostatitis in the patients, and such phenomenon was closely related to the course of disease.展开更多
Objective To investigate whether 3,4-methylenedioxymethamphetamine (MDMA) abuse produces another neurotoxicity which may significantly inhibit the acetylcholinesterase activity and result in severe oxidative damage an...Objective To investigate whether 3,4-methylenedioxymethamphetamine (MDMA) abuse produces another neurotoxicity which may significantly inhibit the acetylcholinesterase activity and result in severe oxidative damage and liperoxidative damage to MDMA abusers. Methods 120 MDMA abusers (MA) and 120 healthy volunteers (HV) were enrolled in an independent sample control design, in which the levels of lipoperoxide (LPO) in plasma and erythrocytes as well as the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and acetylcholinesterase (AChE) in erythrocytes were determined by spectrophotometric methods. Results Compared with the average values of biochemical parameters in the HV group, those of LPO in plasma and erythrocytes in the MA group were significantly increased (P<0.0001), while those of SOD, CAT, GPX and AChE in erythrocytes in the MA group were significantly decreased (P<0.0001). The Pearson product-moment correlation analysis between the values of AChE and biochemical parameters in 120 MDMA abusers showed that significant linear negative correlation was present between the activity of AChE and the levels of LPO in plasma and erythrocytes (P<0.0005-0.0001), while significant linear positive correlation was observed between the activity of AchE and the activities of SOD, CAT and GPX (P<0.0001). The reliability analysis for the above biochemical parameters reflecting oxidative and lipoperoxidative damages in MDMA abusers suggested that the reliability coefficient (alpha) was 0.8124, and that the standardized item alpha was 0.9453. Conclusion The findings in the present study suggest that MDMA abuse can induce another neurotoxicity that significantly inhibits acetylcholinesterase activity and aggravates a series of free radical chain reactions and oxidative stress in the bodies of MDMA abusers, thereby resulting in severe neural, oxidative and lipoperoxidative damages in MDMA abusers.展开更多
To estimate the impact of copying on the indoor air quality, and to investigate whether ozone emitted during such a process induces pathological oxidative stress and potential oxidative damage in the bodies of operato...To estimate the impact of copying on the indoor air quality, and to investigate whether ozone emitted during such a process induces pathological oxidative stress and potential oxidative damage in the bodies of operators. Methods 67 copying operators (CO) and 67 healthy volunteers (HV) were enrolled in a random control study, in which levels of lipoperoxide (LPO) in plasma and erythrocytes, and levels of vitamin C (VC), vitamin E (VE) and b-carotene (b-CAR) in plasma as well as activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) in erythrocytes were determined by spectrophotometric methods. Results Compared with the HV group, the average values of LPO in plasma and erythrocytes in the CO group were significantly increased (P<0.0001), while those of VC, VE and b-CAR in plasma as well as those of SOD, CAT and GPX in erythrocytes in the CO group were significantly decreased (P<0.0001). Pearson product-moment correlation analysis showed that with increase of ozone level in copying sites and duration of exposure to ozone, the values of LPO in plasma and erythrocytes in the bodies of operators were gradually increased,while those of VC, VE, b-CAR, SOD, CAT and GPX were decreased in the same manner. Odds ratio (OR) of risk of biochemical parameters reflecting potential oxidative damage of the copying operators ranged from 4.440 to 13.516, and 95 % CI of OR was from 2.113 to 34.061. Reliability coefficient () of the biochemical parameters used to reflect the potential oxidative damage of the operators was 0.8156, standardized item =0.9929, P<0.0001. Conclusion Findings in the present study suggest that there exist a series of free radical chain reactions and pathological oxidative stress induced by high dose ozone in the operators, thereby causing potential oxidative and lipoperoxidative damages in their bodies.展开更多
Objective To investigate whether acute dipterex poisoning (ADP) may cause oxidative stress and free radical damage in the bodies of acute dipterex poisoning patients (ADPPs), and to explore the mechanisms by which ADP...Objective To investigate whether acute dipterex poisoning (ADP) may cause oxidative stress and free radical damage in the bodies of acute dipterex poisoning patients (ADPPs), and to explore the mechanisms by which ADP may cause oxidative stress and free radical damage. Methods Fifty ADPPs and fifty healthy adult volunteers (HAVs) whose ages, gender and others were matched with the ADPPs were enrolled in a randomized controlled study, in which concentrations of nitric oxide (NO), vitamin C (VC), vitamin E (VE) and P-carotene (P-CAR) in plasma as well as concentration of lipoperoxide (LPO), and activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and acetylcholinesterase (AChE) in erythrocytes were determined by spectrophotometric analytical methods. Results Compared with the average values of experimental parameters in the HAVs group, the average values of plasma NO and erythrocyte LPO in the ADPPs group were significantly increased (P<0.0001), while those of plasma VC, VE and P-CAR as well as erythrocyte SOD, CAT, GPX and AChE in the ADPPs group were significantly decreased (P<0.0001). Bivariate correlation analysis and partial correlation analysis suggested that when NO and LPO values were increased, and VC, VE, β-CAR, SOD, CAT and GPX values were decreased in the ADPPs, AChE value was decreased gradually in the ADPPs (P<0.001-0.0001). Reliability analysis of experimental parameters reflecting oxidative stress and free radical damage in the ADPPs showed that the reliability coefficient (8 items) alpha=0.6909, and the standardized item alpha=0.8574. Conclusion The findings in the present study suggest that ADP can cause oxidative stress and free radical damage, and inhibit markedly erythrocyte acetylcholinesterase activity in ADPPs.展开更多
Objective To investigate oxidative DNA damage in pharmacy technicians preparing antineoplastic drugs at the PIVAS (Pharmacy Intravenous Admixture Service) in two Chinese hospitals. Methods Urinary 8-OHdG served as a...Objective To investigate oxidative DNA damage in pharmacy technicians preparing antineoplastic drugs at the PIVAS (Pharmacy Intravenous Admixture Service) in two Chinese hospitals. Methods Urinary 8-OHdG served as a biomarker. 5-Fluorouracil (5-FU) concentrations in air, masks and gloves were determined. The spill exposure of each PIVAS technician to antineoplastic drugs was investigated. Eighty subjects were divided into exposed group t, II, and control group I, II. Results 5-FU concentration ratios for gloves and masks in exposed group I were significantly higher than those in exposed group II (P〈0.05 or P〈0.01). The average urinary 8-OHdG concentrations in exposed group I, control group I, exposed group II, and control group II were 24.69+0.93, 20.68+1.07, 20.57+0.55, and 12.96_+0.73 ng/mg Cr, respectively. Urinary 8-OHdG concentration in exposed group I was significantly higher than that in control group I or that in exposed group 11 (P〈0.02). There was a significant correlation between urinary 8-OHdG concentrations and spill frequencies per technician (P〈0.01). Conclusion There was detectable oxidative DNA damage in PIVAS technicians exposed to antineoplastic drugs. This oxidative DNA damage may be associated with their spill exposure experience and contamination of their personal protective equipment.展开更多
In order to study the molecular mechanism of injury in rat organs induced by methylmercury, and the relationship between neurotransmitter and oxidative damage in the toxicity process of rat injury by methylmercury was...In order to study the molecular mechanism of injury in rat organs induced by methylmercury, and the relationship between neurotransmitter and oxidative damage in the toxicity process of rat injury by methylmercury was studied. The control group was physiological saline of 0.9%, the concentration of exposure groups were 5 mg/(kg5d) and 10 mg/(kg5d) respectively. The content of AChE, ACh, NOS, NO, MDA, SOD, GSH-Px and GSH in different organs of rats were determined with conventional methods. The results showed that after exposure to methylmercury for 7 d, the mercury content in brain of exposure groups increased clearly and had significant difference compared with the control group(P<0.01). In rat's brain, serum, liver and kidney, the content of ACh and AChE were all decreased; the content of NOS and NO were all increased; the content of MDA was increased compared with the control group, the exposure groups had significant difference (P<0.01); the content of SOD, GSH and GSH-Px was decreased compared with the control group, the exposure groups had significant difference(P<0.01). It could be concluded that methylmercury did effect the change of neurotransmitter and free radical. They participated in the toxicity process of injury by methylmercury. The damage of neurotransmitter maybe cause the chaos of free radical and the chaos of free radical may also do more damage to neurotransmitter vice versa.展开更多
Objective To investigate the oxidative damage to lung tissue and peripherial blood in PM2.5-treated rats. Methods PM2.5 samples were collected using an auto-sampling instrument in summer and winter. Treated samples we...Objective To investigate the oxidative damage to lung tissue and peripherial blood in PM2.5-treated rats. Methods PM2.5 samples were collected using an auto-sampling instrument in summer and winter. Treated samples were endotracheally instilled into rats. Activity of reduced glutathione peroxidase (GSH-Px) and concentration of malondialdehyde (MDA) were used as oxidative damage biomarkers of lung tissue and peripheral blood detected with the biochemical method. DNA migration length (μm) and rate of tail were used as DNA damage biomarkers of lung tissue and peripheral blood detected with the biochemical method. Results The activity of GSH-Px and the concentration of MDA in lung tissue significantly decreased after exposure to PM2.5 for 7-14 days. In peripheral blood, the concentration of MDA decreased, but the activity of GSH-Px increased 7 and 14 days after experiments. The two indicators had a dose-effect relation and similar changing tendency in lung tissue and peripheral blood. The DNA migration length (μm) and rate of tail in lung tissue and peripheral blood significantly increased 7 and 14 days after exposure to PM2.5. The two indicators had a dose-effect relation and similar changing tendency in lung tissue and peripheral blood. Conclusion PM2.5 has a definite oxidative effect on lung tissue and peripheral blood. The activity of GSH-Px and the concentration of MDA are valuable biomarkers of oxidative lung tissue damage induced by PM2.5. The DNA migration length (μm) and rate of tail are simple and valuable biomarkers of PM2 5-induced DNA damage in lung tissues and peripheral blood. The degree of DNA damage in peripheral blood can predict the degree of DNA damage in lung tissue.展开更多
Objective To investigate whether chronic bacterial prostatitis (CBP) increases oxidative stress and damage in patients with CBP, and to explore its possible mechanism. Methods Eighty patients with CBP and 80 healthy...Objective To investigate whether chronic bacterial prostatitis (CBP) increases oxidative stress and damage in patients with CBP, and to explore its possible mechanism. Methods Eighty patients with CBP and 80 healthy adults as controls were enrolled in a case-control study, in which levels of nitric oxide (NO), vitamin C (VC), and vitamin E (VE) in plasma, as well as malondialdehyde (MDA), activities of superoxide dismutase (SOD), and eatalase (CAT) in erythrocytes were determined by spectrophotometry. Results Compared with the average values of NO, VC, VE, MDA, SOD, and CAT in the healthy control group, those of plasma N O and erythrocyte MDA in the CBP group were significantly increased (P〈0.00 1), and those of plasma VC and VE as well as erythrocyte SOD and CAT in the CBP group were significantly decreased (P〈0.001). Findings from partial correlation analysis for course of the disease and NO, VC, VE, MDA, SOD, and CAT in 80 patients with CBP, adjusted for age, suggested that with prolonged course of the disease, values of NO and MDA were gradually increased (P〈0.001), and those of VC, VE, SOD, and CAT were gradually decreased (P〈0.05-0.001). The findings from stepwise regression analysis for course of the disease and NO, VC, VE, MDA, SOD, and CAT in CBP group suggested that the model of stepwise regression was Y = -19.1160 +0.3112MDA + 0.0337NO, F = 22.1734, P〈0.001, r = 0.6045, P〈0.001. The findings from the reliability analysis for VC, VE, SOD, CAT, NO, and MDA in the CBP group showed that the reliability coefficients' alpha (6 items) was 0.7195, P〈0.0001, and the standardized item alpha was 0.9307, P〈0.0001. Conclusion There exist increased oxidative stress and damage induced by chronic bacterial prostatitis in patients, and such a phenomenon is closely related to the course of disease.展开更多
Aim:To investigate the impact of abnormal sperm morphology using the sperm deformity index (SDI) on reactive oxygen species (ROS) production and its correlation with sperm DNA damage.Methods:Semen samples were collect...Aim:To investigate the impact of abnormal sperm morphology using the sperm deformity index (SDI) on reactive oxygen species (ROS) production and its correlation with sperm DNA damage.Methods:Semen samples were collected from men undergoing infertility screening (n=7) and healthy donors (n=6).Mature spermatozoa were isolated and incubated with 5 mmol/L β-nicotinamide adenine dinucleotide phosphate (NADPH) for up to 24 h to induce ROS.Sperm morphology was evaluated using strict Tygerberg's criteria and the SDI.ROS levels and DNA damage were assessed using chemiluminescence and terminal deoxynucleotidyl transferase-mediated fluorescein- dUTP nick end labeling (TUNEL) assays,respectively.Results:SDI values (median [interquartiles]) were higher in patients than donors (2 [1.8,2.1] vs.1.53 [1.52,1.58],P=0.008).Aliquots treated with NADPH showed higher ROS levels (1.22 [0.30,1.87] vs.0.39 [0.10,0.57],P=0.03) and higher incidence of DNA damage than those not treated (10 [4.69,24.85] vs.3.85 [2.58,5.10],P=0.008).Higher DNA damage was also seen following 24 h of incubation in patients compared to donors.SDI correlated with the percentage increase in sperm DNA damage following incubation for 24 h in samples treated with NADPH (r=0.7,P=0.008) and controls (r=0.58,P=0.04). Conclusion:SDI may be a useful tool in identifying potential infertile males with abnormal prevalence of oxidative stress (OS)-induced DNA damage.NADPH plays a role in ROS-mediated sperm DNA damage,which appears to be more evident in infertile patients with semen samples containing a high incidence of morphologically abnormal spermatozoa.展开更多
Oxidative stress and mitochondrial damage have been implicated in the pathogenesis of several neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Oxidati...Oxidative stress and mitochondrial damage have been implicated in the pathogenesis of several neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Oxidative stress is characterized by the overproduction of reactive oxygen species, which can induce mitochondrial DNA mutations, damage the mitochondrial respiratory chain, alter membrane permeability, and influence Ca2+ homeostasis and mitochondrial defense systems. All these changes are implicated in the development of these neurodegenerative diseases, mediating or amplifying neuronal dysfunction and triggering neurodegeneration. This paper summarizes the contribution of oxidative stress and mitochondrial damage to the onset of neurodegenerative diseases and discusses strategies to modify mitochondrial dysfunction that may be attractive therapeutic interventions for the treatment of various neurodegenerative diseases.展开更多
BACKGROUND:Melatonin (N-acetyl-5-methoxytripta-mine) is a free radical scavenger and a strong antioxidant,secreted by the pineal gland.In this study,we evaluated the effects of decreasing and increasing serum melatoni...BACKGROUND:Melatonin (N-acetyl-5-methoxytripta-mine) is a free radical scavenger and a strong antioxidant,secreted by the pineal gland.In this study,we evaluated the effects of decreasing and increasing serum melatonin levels on malonyldialdehyde (MDA),superoxide dismutase (SOD),and reduced glutathione (GSH) levels in pancreatic tissue from rats with experimental acute pancreatitis.METHODS:Experimental acute pancreatitis was induced in three groups of Wistar albino rats (10 animals per group) by pancreatic ductal ligation.The first group had only acute pancreatitis and served as the control.Surgical pinealectomy was added to acute pancreatitis in the second group,removing the source of endogenous melatonin (low melatonin levels group).The third group was given 0.1 ml daily intraperitoneal injections of 20 mg/ml melatonin solution for one week (high melatonin levels group).The effects of melatonin levels were evaluated by comparison of the levels of MDA,SOD,and GS in pancreatic tissue.RESULT:We found that intraperitoneal melatonin injections decreased the levels of MDA and increased the levels of SOD and GSH in pancreatic tissue.CONCLUSION:Exogenous melatonin has a preventive effect on lipid peroxidation and oxidative damage in acute pancreatitis.展开更多
Polyamines play important roles in plant tolerance to environmental stress. With the aim of investigating the possible involvement of putrescine (Put) in salt-tolerance mechanisms in vegetable soybean roots, exogeno...Polyamines play important roles in plant tolerance to environmental stress. With the aim of investigating the possible involvement of putrescine (Put) in salt-tolerance mechanisms in vegetable soybean roots, exogenous Put (10 mmol L") and its biosynthetic inhibitor D-arginine (D-Arg) (0.5 mmol L-1) were added to nutrient solution when vegetable soybean (Glycine max L. cv. Huning 95-1) seedlings were exposed to 100 mmol L^-11 sodium chloride (NaCl). The results showed that Put ameliorated but D-Arg aggravated the detrimental effects of NaCl on plant growth and biomass production. Under NaCl stress, levels of free, soluble conjugated and insoluble bound types of Put in roots of vegetable soybean were reduced, whereas those of free, soluble conjugated, and insoluble bound types of spermidine (Spd) and spermine (Spm) were increased. Exogenous Put eliminated the decrease in Put but promoted the increase of Spd and Spm. However, these changes could be reversed by D-Arg. Under NaCl stress, activities of arginine decarboxylase (ADC), S-adenosylmethionine decarboxylase (SAMDC), diamine oxidase (DAO), and polyamine oxidase (PAO) were induced, with exogenous Put promoting and D-Arg reversing these changes. Furthermore, NaCl stress decreased activities of antioxidant enzymes. Exogenous Put alleviated but D-Arg exaggerated these effects of NaCl stress, resulting in the same changes in membrane damage and reactive oxygen species (ROS) production. These results indicated that Put plays a positive role in vegetable soybean roots by activating antioxidant enzymes and thereby attenuating oxidative damage.展开更多
Background:Deoxynivalenol(DON)is a widespread mycotoxin that induces intestinal inflammation and oxidative stress in humans and animals.Resveratrol(RES)effectively exerts anti-inflammatory and antioxidant effects.Howe...Background:Deoxynivalenol(DON)is a widespread mycotoxin that induces intestinal inflammation and oxidative stress in humans and animals.Resveratrol(RES)effectively exerts anti-inflammatory and antioxidant effects.However,the protective effects of RES on alleviating DON toxicity in piglets and the underlying mechanism remain unclear.Therefore,this study aimed to investigate the effect of RES on growth performance,gut health and the gut microbiota in DON-challenged piglets.A total of 64 weaned piglets[Duroc×(Landrace×Yorkshire),21-d-old,6.97±0.10 kg body weight(BW)]were randomly allocated to 4 treatment groups(8 replicate pens per treatment,each pen containing 2 males;n=16 per treatment)for 28 d.The piglets were fed a control diet(CON)or the CON diet supplemented with 300 mg RES/kg diet(RES group),3.8 mg DON/kg diet(DON)or both(DON+RES)in a 2×2 factorial design.Results:DON-challenged piglets fed the RES-supplemented diet had significantly decreased D-lactate concentrations and tumor necrosis factor alpha(TNF-α)and interleukin 1 beta(IL-1β)mRNA and protein expression,and increased zonula occludens-1(ZO-1)mRNA and protein expression compared with those of DON-challenged piglets fed the unsupplemented diet(P<0.05).Compared with unsupplemented DON-challenged piglets,infected piglets fed a diet with RES showed significantly decreased malondialdehyde(MDA)levelsand increased mRNA expression of antioxidant enzymes and antioxidant genes(i.e.,GCLC,GCLM,HO-1,SOD1 and NQO-1)and glutamatecysteine-ligase modulatory subunit(GCLM)protein expression(P<0.05).Moreover,RES supplementation significantly abrogated the increase in the proportion of TUNEL-positive cells and the protein expression of caspase3 in DON-challenged piglets(P<0.05).Finally,RES supplementation significantly increased the abundance of Roseburia and butyrate concentrations,while decreasing the abundances of Bacteroides and unidentified-Enterobacteriaceae in DON-challenged piglets compared with DON-challenged piglets alone(P<0.05).Conclusions:RES supplementation improved gut health in DON-challenged piglets by strengthening intestinal barrier function,alleviating intestinal inflammation and oxidative damage,and positively modulating the gut microbiota.The protective effects of RES on gut health may be linked to increased Roseburia and butyrate concentrations,and decreased levels of Bacteroides and unidentified-Enterobacteriaceae.展开更多
基金supported by the Open Project Program of the State Key Laboratory of Food Nutrition and Safety,Tianjin University of Science and Technology(No.SKLFNS-KF-202201)the Open Project of the Key Laboratory of Environmental Pollution Monitoring and Disease Control,Ministry of Education,Guizhou Medical University,China(No.GMU-2022-HJZ-06)。
文摘Hyperoside and quercetin are similar in molecular structures.In this study,the antioxidant regulatory targets of hyperoside and quercetin are mainly in the nuclear factor(erythroid-2-derived)-related factor 2(Nrf2)pathway predicted by network pharmacology.And the antioxidant effect and mechanism of hyperoside and quercetin were measured and compared in H_(2)O_(2)-induced Hep G2 cells and Caenorhabditis elegans.The findings indicated that quercetin was more effective than hyperoside in reducing oxidative damage,which was proved by improved cell viability,decreased reactive oxygen species(ROS)production,decreased cellular apoptosis,and alleviated mitochondrial damage.In addition,quercetin was more efficient than hyperoside in enhancing the expression of Nrf2-associated m RNAs,increasing the activities of superoxide dismutase(SOD),glutathione peroxidase(GSH-Px),and catalase(CAT),and reducing the cellular malondialdehyde(MDA)content.Quercetin was superior to hyperoside in prolonging the lifespan of worms,decreasing the accumulation of lipofuscin,inhibiting ROS production,and increasing the proportion of skn-1 in the nucleus.With the Nrf2 inhibitor ML385,we verified that quercetin and hyperoside primarily protected the cells against oxidative damage via the Nrf2 signalling pathway.Furthermore,molecular docking and dynamics simulations demonstrated that the quercetin-Kelch-like ECH-associated protein 1(Keap1)complex was more stable than the hyperoside-Keap1 complex.The stable structure of the complex might hinder the binding of Nrf2 and Keap1 to release Nrf2 and facilitate its entry into the nucleus to play an antioxidant role.Overall,quercetin had a better antioxidant than hyperoside.
文摘Roles of Marigold extracts (ME) on arsenic trioxide (ATO)-induced oxidative damage to pancreatic β-cells need to be further elucidated. In this study, NIT-1 cells were treated with different concentrations of and/or ATO, following by the cell viability was detected by CCK8 assay. Then, intracellular reactive oxygen species (ROS) levels, lipid peroxide (MDA) contents and superoxide dismutase (SOD) activity were measured with a fluorescence probe method and colorimetric assay, respectively. The apoptosis rate and morphology was detected and observed with hoechst 33,258 staining assay. The mRNA levels and protein expressions of nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) were measured by real-time fluorescence quantitative polymerase chain reaction and protein immunoblotting assay, respectively. Our results indicated that Co-treatment with ME and ATO exacerbated the cell viability decreasing reduced by ATO, while the addition of ME after ATO treatment effectively promote the recovery of ATO reduced survival rates. The ATO group increased apoptosis (P P β-cells by modulating the activation of the Nrf2 signaling pathway.
文摘Background:Retinal degeneration is a common feature of several retinal diseases,such as retinitis pigmentosa and age-related macular degeneration(AMD).In this respect,experimental models of photo-oxidative damage reproduce faithfully photoreceptor loss and many pathophysiological events involved in the activation of retinal cell degeneration.Therefore,such models represent a useful tool to study the mechanisms related to cell death.Their advantage consists in the possibility of modulating the severity of damage according to the needs of the experimenter.Indeed,bright light exposure could be regulated in both time and intensity to trigger a burst of apoptosis in photoreceptors,allowing the study of degenerative mechanisms in a controlled fashion,compared to the progressive and slower rate of death in other genetic models of photoreceptor degeneration.Methods:Here,an exemplificative protocol of bright light exposure in albino rat is described,as well as the main outcomes in retinal function,photoreceptor death,oxidative stress,and inflammation,which characterize this model and reproduce the main features of retinal degeneration diseases.Discussion:Models of photo-oxidative damage represent a useful tool to study the mechanisms responsible for photoreceptor degeneration.In this respect,it is important to adapt the exposure paradigm to the experimental needs,and the wide range of variables and limitations influencing the final outcomes should be considered to achieve proper results.Trial Registration:None.
文摘Seizures of agrochemical formulations have increased in Brazil and Rio Grande do Sul is among the Brazilian states with the highest number of seizures of these products obtained illicitly. The use of illicit formulations can cause significant harm to agricultural production, the environment, and non-target species. This study evaluated the cytotoxicity and oxidative stress of a seized formulation containing the herbicide imazethapyr (IMZT). Characterization of the herbicide included gas chromatography-mass spectrometry (GC-MS) and thermal analyses (thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC)). Hemolytic and cytotoxicity assays in ZF-L hepatic cells showed IC50 values of 12.75 µg/mL, 3.01 µg/mL, 2.67 µg/mL, and 1.61 µg/mL for erythrocytes, [3(4,5-dimethyl)-2 bromide-5 diphenyl tetrazolium] (MTT), neutral red (NR), and lactate dehydrogenase (LDH) assays, respectively. The median IC50 of 2.84 µg/mL was used in oxidative stress assays, revealing increased reactive oxygen species (ROS) production, reduced total sulfhydryl content, and decreased superoxide dismutase (SOD) and catalase (CAT) activity. This study is the first to report in vitro oxidative stress induced by IMZT in the ZF-L cell line, emphasizing the importance of in vitro assays for assessing the toxic effects of seized agrochemicals on human health and the environment.
基金Supported by the National Program on Key Basic Research Project(2010CB134405)the Foundation for Doctors of Southwest University(SWU10903)the Project of China Three Gorges Corporation(CT-11-08-01)~~
文摘[Objective] This study aimed to investigate the effect of chromium on ox- idative damage and antioxidant capacity of Ctenopharyngodon idellus (grass carp). [Method] The grass carps were treated with hexavalent chromium (Cr^6+) solution at concentrations of 0, 7.23, 14.47, 28.94 mg/L, and then the content of malondialde- hyde (MDA), the level of total antioxidative capacity (T-AOC) and the activity of gtu- tathione-S-transferase (GST) in the hepatopancreas of grass carp were determined after 96 hours in different treatment groups. [Result] The content of MDA presented increasing trend with the increase of exposure Cr^6+ concentrations. The activity of T-AOC increased firstly, then decreased with the increasing Cr^6+ exposure concentra- tions, showing that the level of T-AOC was induced in tow and medium concentrat ions (7.23 and 14.47 mg/L), but inhibited in high concentrations (28.94 mg/L). Among the exposure groups, the level of T-AOC in medium concentration group (14.47 mg/L) was significantly higher than the control (P〈0.05). Except the low concentration groups (7.23 mg/L) of which the GST activity was slightly induced, the GST activities of the other groups all showed downward trend with increasing Cr^6+ levels, and the activity of GST in 28.94 mg/L group was significantly lower than the control group (P〈0.05). [Conclusion] Cr^6+ could cause large oxidative damage in the hepatopancreas of grass carp, thus poisoning it, and Cr^6+ may further damage the organizational structure and physiological function of grass carp.
文摘Objective To study the abnormal reactions of a series of free radicals and the oxidative damages induced by free radical abnormal reactions in the bodies of patients with chronic glomerulonephritis. Methods Eighty chronic glomerulonephritis patients (CGNP) and eighty healthy adult volunteers (HAV) were enrolled in a random control study, in which concentrations of nitric oxide (NO) in plasma, lipoperoxides (LPO) in plasma and in erythrocytes, and vitamin C (VC), vitamin E (VE) and beta-carotene (?CAR) in plasma as well as activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) in erythrocytes were determined with spectrophotometric assays. Results Compared with the average values of the above biochemical parameters in the HAV group, the average values of NO in plasma, and LPO in plasma and erythrocytes in the CGNP group were significantly increased (P = 0.0001), while those of VC, VE and -CAR in plasma as well as those of SOD, CAT and GPX in erythrocytes in the CGNP group were significantly decreased (P = 0.0001). Pearson product-moment correlation analysis showed that with increase of the concentration of blood creatinine as well as prolongation of the course of disease in the CGNP, the concentrations of NO in plasma, and LPO in plasma and erythrocytes in the CGNP increased gradually, while the concentrations of VC, VE and ?CAR in plasma as well as the activities of SOD, CAT and GPX in erythrocytes in the CGNP decreased gradually (P = 0.002454 0.000001). The relative risk ratio (RR) of the above biochemical parameters reflecting oxidative damages in the bodies of CGNP ranged from 6.061 to 72.429. The reliability coefficient (alpha) that the above biochemical parameters were used to reflect the oxidative damages of the CGNP was 0.8137, standardized item alpha = 0.9728, Hotelling抯 T-Squared = 1135680.191, F = 53274.6478, P = 0.000001. Conclusions The findings in this study show that in the bodies of CGNP a series of free radical chain reactions result in severe pathological aggravation and induce oxidative damages in their bodies. Therefore, suitable dose of antioxidants should be supplemented to them so as to alleviate oxidative damages in their bodies.
基金Project supported by the Ministry of Science and Technology (No. 2007CB407304).
文摘Experimental evidence shows that cadmium (Cd) could induce oxidative stress and then causes DNA damage in animal cells, however, whether such effect exists in plants is still unclear. In the present study, Vicia faba plants was exposed to 5 and 10 mg/L Cd for 4 d to investigate the distribution of Cd in plant, the metal effects on the cell lipids, antioxidative enzymes and DNA damages in leaves. Cd induced an increase in Cd concentrations in plants. An enhanced level of lipid peroxidation in leaves and an enhanced concentration of H2O2 in root tissues suggested that Cd caused oxidative stress in Vicia faba. Compared with control, Cd-induced enhancement in superoxide dismutase activity was significant at 5 mg/L than at 10 mg/kg in leaves, by contrast, catalase and peroxidaseactivities were significantly suppressed by Cd addition. DNA damage was detected by neutral/neutral, alkaline/neutral and alkaline/alkaline Comet assay. Increased levels of DNA damages induced by Cd occurred with reference to oxidative stress in leaves, therefore, oxidative stress induced by Cd accumulation in plants contributed to DNA damages and was possibly an important mechanism of Cd-phytotoxicity in Vicia faba plants.
文摘Aim: To investigate whether chronic bacterial prostatitis might increase oxidative stress and oxidative damage in chronic bacterial prostatitis patients (CBPP), and to explore its possible mechanism. Methods: Enrolled in a casecontrol study were 70 randomly sampled CBPP and 70 randomly sampled healthy adult volunteers (HAV), on whom plasma nitric oxide (NO), vitamin C (VC), vitamin E (VE) and β-carotene (β-CAR) level, erythrocyte malondialdehyde (MDA) level, as well as erythrocyte superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) activities were determined by spectrophotometry. Results: Compared with the HAV group, values of plasma NO and erythrocyte MDA in the CBPP group were significantly increased (P 〈 0.001); those of plasma VC, VE and β-CAR as well as erythrocyte SOD, CAT and GPX activities in the CBPP group were significantly decreased (P 〈 0.001). Findings from partial correlation for the 70 CBPP showed that with prolonged course of disease, values of NO and MDA were gradually increased (P 〈 0.001), and those of VC, VE, β-CAR, SOD, CAT and GPX were gradually decreased (P 〈 0.05- 0.001). The findings from stepwise regression for the 70 CBPP suggested that the model was Y= -13.2077 + 0.1894MDA + 0.0415NO - 0.1999GPX, F = 18.2047, P 〈 0.001, r = 0.6729, P 〈 0.001. Conclusion: The findings suggest that there exist increased oxidative stress and oxidative damage induced by chronic bacterial prostatitis in the patients, and such phenomenon was closely related to the course of disease.
文摘Objective To investigate whether 3,4-methylenedioxymethamphetamine (MDMA) abuse produces another neurotoxicity which may significantly inhibit the acetylcholinesterase activity and result in severe oxidative damage and liperoxidative damage to MDMA abusers. Methods 120 MDMA abusers (MA) and 120 healthy volunteers (HV) were enrolled in an independent sample control design, in which the levels of lipoperoxide (LPO) in plasma and erythrocytes as well as the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and acetylcholinesterase (AChE) in erythrocytes were determined by spectrophotometric methods. Results Compared with the average values of biochemical parameters in the HV group, those of LPO in plasma and erythrocytes in the MA group were significantly increased (P<0.0001), while those of SOD, CAT, GPX and AChE in erythrocytes in the MA group were significantly decreased (P<0.0001). The Pearson product-moment correlation analysis between the values of AChE and biochemical parameters in 120 MDMA abusers showed that significant linear negative correlation was present between the activity of AChE and the levels of LPO in plasma and erythrocytes (P<0.0005-0.0001), while significant linear positive correlation was observed between the activity of AchE and the activities of SOD, CAT and GPX (P<0.0001). The reliability analysis for the above biochemical parameters reflecting oxidative and lipoperoxidative damages in MDMA abusers suggested that the reliability coefficient (alpha) was 0.8124, and that the standardized item alpha was 0.9453. Conclusion The findings in the present study suggest that MDMA abuse can induce another neurotoxicity that significantly inhibits acetylcholinesterase activity and aggravates a series of free radical chain reactions and oxidative stress in the bodies of MDMA abusers, thereby resulting in severe neural, oxidative and lipoperoxidative damages in MDMA abusers.
文摘To estimate the impact of copying on the indoor air quality, and to investigate whether ozone emitted during such a process induces pathological oxidative stress and potential oxidative damage in the bodies of operators. Methods 67 copying operators (CO) and 67 healthy volunteers (HV) were enrolled in a random control study, in which levels of lipoperoxide (LPO) in plasma and erythrocytes, and levels of vitamin C (VC), vitamin E (VE) and b-carotene (b-CAR) in plasma as well as activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) in erythrocytes were determined by spectrophotometric methods. Results Compared with the HV group, the average values of LPO in plasma and erythrocytes in the CO group were significantly increased (P<0.0001), while those of VC, VE and b-CAR in plasma as well as those of SOD, CAT and GPX in erythrocytes in the CO group were significantly decreased (P<0.0001). Pearson product-moment correlation analysis showed that with increase of ozone level in copying sites and duration of exposure to ozone, the values of LPO in plasma and erythrocytes in the bodies of operators were gradually increased,while those of VC, VE, b-CAR, SOD, CAT and GPX were decreased in the same manner. Odds ratio (OR) of risk of biochemical parameters reflecting potential oxidative damage of the copying operators ranged from 4.440 to 13.516, and 95 % CI of OR was from 2.113 to 34.061. Reliability coefficient () of the biochemical parameters used to reflect the potential oxidative damage of the operators was 0.8156, standardized item =0.9929, P<0.0001. Conclusion Findings in the present study suggest that there exist a series of free radical chain reactions and pathological oxidative stress induced by high dose ozone in the operators, thereby causing potential oxidative and lipoperoxidative damages in their bodies.
文摘Objective To investigate whether acute dipterex poisoning (ADP) may cause oxidative stress and free radical damage in the bodies of acute dipterex poisoning patients (ADPPs), and to explore the mechanisms by which ADP may cause oxidative stress and free radical damage. Methods Fifty ADPPs and fifty healthy adult volunteers (HAVs) whose ages, gender and others were matched with the ADPPs were enrolled in a randomized controlled study, in which concentrations of nitric oxide (NO), vitamin C (VC), vitamin E (VE) and P-carotene (P-CAR) in plasma as well as concentration of lipoperoxide (LPO), and activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and acetylcholinesterase (AChE) in erythrocytes were determined by spectrophotometric analytical methods. Results Compared with the average values of experimental parameters in the HAVs group, the average values of plasma NO and erythrocyte LPO in the ADPPs group were significantly increased (P<0.0001), while those of plasma VC, VE and P-CAR as well as erythrocyte SOD, CAT, GPX and AChE in the ADPPs group were significantly decreased (P<0.0001). Bivariate correlation analysis and partial correlation analysis suggested that when NO and LPO values were increased, and VC, VE, β-CAR, SOD, CAT and GPX values were decreased in the ADPPs, AChE value was decreased gradually in the ADPPs (P<0.001-0.0001). Reliability analysis of experimental parameters reflecting oxidative stress and free radical damage in the ADPPs showed that the reliability coefficient (8 items) alpha=0.6909, and the standardized item alpha=0.8574. Conclusion The findings in the present study suggest that ADP can cause oxidative stress and free radical damage, and inhibit markedly erythrocyte acetylcholinesterase activity in ADPPs.
基金supported by the Scientific Research Fund of Health Bureau in Zhejiang Province (2009A089)Scientific Research Fund of Education Bureau in Zhejiang Province (Y200804934)
文摘Objective To investigate oxidative DNA damage in pharmacy technicians preparing antineoplastic drugs at the PIVAS (Pharmacy Intravenous Admixture Service) in two Chinese hospitals. Methods Urinary 8-OHdG served as a biomarker. 5-Fluorouracil (5-FU) concentrations in air, masks and gloves were determined. The spill exposure of each PIVAS technician to antineoplastic drugs was investigated. Eighty subjects were divided into exposed group t, II, and control group I, II. Results 5-FU concentration ratios for gloves and masks in exposed group I were significantly higher than those in exposed group II (P〈0.05 or P〈0.01). The average urinary 8-OHdG concentrations in exposed group I, control group I, exposed group II, and control group II were 24.69+0.93, 20.68+1.07, 20.57+0.55, and 12.96_+0.73 ng/mg Cr, respectively. Urinary 8-OHdG concentration in exposed group I was significantly higher than that in control group I or that in exposed group 11 (P〈0.02). There was a significant correlation between urinary 8-OHdG concentrations and spill frequencies per technician (P〈0.01). Conclusion There was detectable oxidative DNA damage in PIVAS technicians exposed to antineoplastic drugs. This oxidative DNA damage may be associated with their spill exposure experience and contamination of their personal protective equipment.
基金The National Natural Science Foundation of China(No. 20177013) and the Younger Research of Shanghai Jiaotong University
文摘In order to study the molecular mechanism of injury in rat organs induced by methylmercury, and the relationship between neurotransmitter and oxidative damage in the toxicity process of rat injury by methylmercury was studied. The control group was physiological saline of 0.9%, the concentration of exposure groups were 5 mg/(kg5d) and 10 mg/(kg5d) respectively. The content of AChE, ACh, NOS, NO, MDA, SOD, GSH-Px and GSH in different organs of rats were determined with conventional methods. The results showed that after exposure to methylmercury for 7 d, the mercury content in brain of exposure groups increased clearly and had significant difference compared with the control group(P<0.01). In rat's brain, serum, liver and kidney, the content of ACh and AChE were all decreased; the content of NOS and NO were all increased; the content of MDA was increased compared with the control group, the exposure groups had significant difference (P<0.01); the content of SOD, GSH and GSH-Px was decreased compared with the control group, the exposure groups had significant difference(P<0.01). It could be concluded that methylmercury did effect the change of neurotransmitter and free radical. They participated in the toxicity process of injury by methylmercury. The damage of neurotransmitter maybe cause the chaos of free radical and the chaos of free radical may also do more damage to neurotransmitter vice versa.
基金supported by National Natural Scientific Foundation (No. 90406024)the Natural Science Fund of Tianjin (No. 023606611)
文摘Objective To investigate the oxidative damage to lung tissue and peripherial blood in PM2.5-treated rats. Methods PM2.5 samples were collected using an auto-sampling instrument in summer and winter. Treated samples were endotracheally instilled into rats. Activity of reduced glutathione peroxidase (GSH-Px) and concentration of malondialdehyde (MDA) were used as oxidative damage biomarkers of lung tissue and peripheral blood detected with the biochemical method. DNA migration length (μm) and rate of tail were used as DNA damage biomarkers of lung tissue and peripheral blood detected with the biochemical method. Results The activity of GSH-Px and the concentration of MDA in lung tissue significantly decreased after exposure to PM2.5 for 7-14 days. In peripheral blood, the concentration of MDA decreased, but the activity of GSH-Px increased 7 and 14 days after experiments. The two indicators had a dose-effect relation and similar changing tendency in lung tissue and peripheral blood. The DNA migration length (μm) and rate of tail in lung tissue and peripheral blood significantly increased 7 and 14 days after exposure to PM2.5. The two indicators had a dose-effect relation and similar changing tendency in lung tissue and peripheral blood. Conclusion PM2.5 has a definite oxidative effect on lung tissue and peripheral blood. The activity of GSH-Px and the concentration of MDA are valuable biomarkers of oxidative lung tissue damage induced by PM2.5. The DNA migration length (μm) and rate of tail are simple and valuable biomarkers of PM2 5-induced DNA damage in lung tissues and peripheral blood. The degree of DNA damage in peripheral blood can predict the degree of DNA damage in lung tissue.
文摘Objective To investigate whether chronic bacterial prostatitis (CBP) increases oxidative stress and damage in patients with CBP, and to explore its possible mechanism. Methods Eighty patients with CBP and 80 healthy adults as controls were enrolled in a case-control study, in which levels of nitric oxide (NO), vitamin C (VC), and vitamin E (VE) in plasma, as well as malondialdehyde (MDA), activities of superoxide dismutase (SOD), and eatalase (CAT) in erythrocytes were determined by spectrophotometry. Results Compared with the average values of NO, VC, VE, MDA, SOD, and CAT in the healthy control group, those of plasma N O and erythrocyte MDA in the CBP group were significantly increased (P〈0.00 1), and those of plasma VC and VE as well as erythrocyte SOD and CAT in the CBP group were significantly decreased (P〈0.001). Findings from partial correlation analysis for course of the disease and NO, VC, VE, MDA, SOD, and CAT in 80 patients with CBP, adjusted for age, suggested that with prolonged course of the disease, values of NO and MDA were gradually increased (P〈0.001), and those of VC, VE, SOD, and CAT were gradually decreased (P〈0.05-0.001). The findings from stepwise regression analysis for course of the disease and NO, VC, VE, MDA, SOD, and CAT in CBP group suggested that the model of stepwise regression was Y = -19.1160 +0.3112MDA + 0.0337NO, F = 22.1734, P〈0.001, r = 0.6045, P〈0.001. The findings from the reliability analysis for VC, VE, SOD, CAT, NO, and MDA in the CBP group showed that the reliability coefficients' alpha (6 items) was 0.7195, P〈0.0001, and the standardized item alpha was 0.9307, P〈0.0001. Conclusion There exist increased oxidative stress and damage induced by chronic bacterial prostatitis in patients, and such a phenomenon is closely related to the course of disease.
文摘Aim:To investigate the impact of abnormal sperm morphology using the sperm deformity index (SDI) on reactive oxygen species (ROS) production and its correlation with sperm DNA damage.Methods:Semen samples were collected from men undergoing infertility screening (n=7) and healthy donors (n=6).Mature spermatozoa were isolated and incubated with 5 mmol/L β-nicotinamide adenine dinucleotide phosphate (NADPH) for up to 24 h to induce ROS.Sperm morphology was evaluated using strict Tygerberg's criteria and the SDI.ROS levels and DNA damage were assessed using chemiluminescence and terminal deoxynucleotidyl transferase-mediated fluorescein- dUTP nick end labeling (TUNEL) assays,respectively.Results:SDI values (median [interquartiles]) were higher in patients than donors (2 [1.8,2.1] vs.1.53 [1.52,1.58],P=0.008).Aliquots treated with NADPH showed higher ROS levels (1.22 [0.30,1.87] vs.0.39 [0.10,0.57],P=0.03) and higher incidence of DNA damage than those not treated (10 [4.69,24.85] vs.3.85 [2.58,5.10],P=0.008).Higher DNA damage was also seen following 24 h of incubation in patients compared to donors.SDI correlated with the percentage increase in sperm DNA damage following incubation for 24 h in samples treated with NADPH (r=0.7,P=0.008) and controls (r=0.58,P=0.04). Conclusion:SDI may be a useful tool in identifying potential infertile males with abnormal prevalence of oxidative stress (OS)-induced DNA damage.NADPH plays a role in ROS-mediated sperm DNA damage,which appears to be more evident in infertile patients with semen samples containing a high incidence of morphologically abnormal spermatozoa.
基金supported by the National Natural Science Foundation of China,No.81274005Medical Science Research,Health Department of Hebei Province,No.20110173,20090588Hebei Education Department Science Foundation,No.2007302
文摘Oxidative stress and mitochondrial damage have been implicated in the pathogenesis of several neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Oxidative stress is characterized by the overproduction of reactive oxygen species, which can induce mitochondrial DNA mutations, damage the mitochondrial respiratory chain, alter membrane permeability, and influence Ca2+ homeostasis and mitochondrial defense systems. All these changes are implicated in the development of these neurodegenerative diseases, mediating or amplifying neuronal dysfunction and triggering neurodegeneration. This paper summarizes the contribution of oxidative stress and mitochondrial damage to the onset of neurodegenerative diseases and discusses strategies to modify mitochondrial dysfunction that may be attractive therapeutic interventions for the treatment of various neurodegenerative diseases.
文摘BACKGROUND:Melatonin (N-acetyl-5-methoxytripta-mine) is a free radical scavenger and a strong antioxidant,secreted by the pineal gland.In this study,we evaluated the effects of decreasing and increasing serum melatonin levels on malonyldialdehyde (MDA),superoxide dismutase (SOD),and reduced glutathione (GSH) levels in pancreatic tissue from rats with experimental acute pancreatitis.METHODS:Experimental acute pancreatitis was induced in three groups of Wistar albino rats (10 animals per group) by pancreatic ductal ligation.The first group had only acute pancreatitis and served as the control.Surgical pinealectomy was added to acute pancreatitis in the second group,removing the source of endogenous melatonin (low melatonin levels group).The third group was given 0.1 ml daily intraperitoneal injections of 20 mg/ml melatonin solution for one week (high melatonin levels group).The effects of melatonin levels were evaluated by comparison of the levels of MDA,SOD,and GS in pancreatic tissue.RESULT:We found that intraperitoneal melatonin injections decreased the levels of MDA and increased the levels of SOD and GSH in pancreatic tissue.CONCLUSION:Exogenous melatonin has a preventive effect on lipid peroxidation and oxidative damage in acute pancreatitis.
基金supported by the National Natural Science Foundation of China(31101538,31000942 and 31000676)the Grand Science and Technology Special Project of Zhejiang Province,China(2010C02006)the Public Welfare Project of Zhejiang Province,China(2011R23A52D04)
文摘Polyamines play important roles in plant tolerance to environmental stress. With the aim of investigating the possible involvement of putrescine (Put) in salt-tolerance mechanisms in vegetable soybean roots, exogenous Put (10 mmol L") and its biosynthetic inhibitor D-arginine (D-Arg) (0.5 mmol L-1) were added to nutrient solution when vegetable soybean (Glycine max L. cv. Huning 95-1) seedlings were exposed to 100 mmol L^-11 sodium chloride (NaCl). The results showed that Put ameliorated but D-Arg aggravated the detrimental effects of NaCl on plant growth and biomass production. Under NaCl stress, levels of free, soluble conjugated and insoluble bound types of Put in roots of vegetable soybean were reduced, whereas those of free, soluble conjugated, and insoluble bound types of spermidine (Spd) and spermine (Spm) were increased. Exogenous Put eliminated the decrease in Put but promoted the increase of Spd and Spm. However, these changes could be reversed by D-Arg. Under NaCl stress, activities of arginine decarboxylase (ADC), S-adenosylmethionine decarboxylase (SAMDC), diamine oxidase (DAO), and polyamine oxidase (PAO) were induced, with exogenous Put promoting and D-Arg reversing these changes. Furthermore, NaCl stress decreased activities of antioxidant enzymes. Exogenous Put alleviated but D-Arg exaggerated these effects of NaCl stress, resulting in the same changes in membrane damage and reactive oxygen species (ROS) production. These results indicated that Put plays a positive role in vegetable soybean roots by activating antioxidant enzymes and thereby attenuating oxidative damage.
基金study was provided by the National Key Research and Development Program of China(2016YFD0500501)The Project of Swine Innovation Team in Guangdong Modern Agricultural Research System(2020KJ126)+4 种基金Guangzhou Science and Technology Project(201906010021)Guangdong Provincial Department of Education(2018KTSCX244)China Agriculture Research System(CARS-35)Special Fund for Scientific Innovation Strategy-construction of High Level Academy of Agriculture Science(R2016PY-QF007)Discipline team building projects of Guangdong Academy of Agricultural Science in the 14th Five-Year Period(202106TD).
文摘Background:Deoxynivalenol(DON)is a widespread mycotoxin that induces intestinal inflammation and oxidative stress in humans and animals.Resveratrol(RES)effectively exerts anti-inflammatory and antioxidant effects.However,the protective effects of RES on alleviating DON toxicity in piglets and the underlying mechanism remain unclear.Therefore,this study aimed to investigate the effect of RES on growth performance,gut health and the gut microbiota in DON-challenged piglets.A total of 64 weaned piglets[Duroc×(Landrace×Yorkshire),21-d-old,6.97±0.10 kg body weight(BW)]were randomly allocated to 4 treatment groups(8 replicate pens per treatment,each pen containing 2 males;n=16 per treatment)for 28 d.The piglets were fed a control diet(CON)or the CON diet supplemented with 300 mg RES/kg diet(RES group),3.8 mg DON/kg diet(DON)or both(DON+RES)in a 2×2 factorial design.Results:DON-challenged piglets fed the RES-supplemented diet had significantly decreased D-lactate concentrations and tumor necrosis factor alpha(TNF-α)and interleukin 1 beta(IL-1β)mRNA and protein expression,and increased zonula occludens-1(ZO-1)mRNA and protein expression compared with those of DON-challenged piglets fed the unsupplemented diet(P<0.05).Compared with unsupplemented DON-challenged piglets,infected piglets fed a diet with RES showed significantly decreased malondialdehyde(MDA)levelsand increased mRNA expression of antioxidant enzymes and antioxidant genes(i.e.,GCLC,GCLM,HO-1,SOD1 and NQO-1)and glutamatecysteine-ligase modulatory subunit(GCLM)protein expression(P<0.05).Moreover,RES supplementation significantly abrogated the increase in the proportion of TUNEL-positive cells and the protein expression of caspase3 in DON-challenged piglets(P<0.05).Finally,RES supplementation significantly increased the abundance of Roseburia and butyrate concentrations,while decreasing the abundances of Bacteroides and unidentified-Enterobacteriaceae in DON-challenged piglets compared with DON-challenged piglets alone(P<0.05).Conclusions:RES supplementation improved gut health in DON-challenged piglets by strengthening intestinal barrier function,alleviating intestinal inflammation and oxidative damage,and positively modulating the gut microbiota.The protective effects of RES on gut health may be linked to increased Roseburia and butyrate concentrations,and decreased levels of Bacteroides and unidentified-Enterobacteriaceae.