Bioremediation of organophosphorus pesticides in contaminated foodstuffs using probiotics has been increasingly under the spotlight in recent years,though the biodegradation mechanism and derived intermediate products...Bioremediation of organophosphorus pesticides in contaminated foodstuffs using probiotics has been increasingly under the spotlight in recent years,though the biodegradation mechanism and derived intermediate products remain unclear.This study aimed to help fill this knowledge gap and examined the degradation mechanism of organophosphorus pesticide,chlorpyrifos,in milk by Lactobacillus delbrueckii ssp.bulgaricus using gas chromatography-tandem mass spectrometry(GC-MS/MS)combined with transcriptome analysis.After the strain was cultured for 20 h in the presence of chlorpyrifos,differential expressions of 383 genes were detected,including genes probably implicated during chlorpyrifos degradation such as those related to hydrolase,phosphoesterase,diphosphatase,oxidoreductase,dehydratase,as well as membrane transporters.GC-MS/MS analysis revealed the changes of secondary metabolites in L.bulgaricus during milk fermentation due to chlorpyrifos stress.6-Methylhexahydro-2H-azepin-2-one,2,6-dihydroxypyridine and methyl 2-aminooxy-4-methylpentanoate as intermediates,along with the proposed pathways,might be involved in chlorpyrifos biodegradation by L.bulgaricus.展开更多
The sensitivity of biodegradation on diamondoids was investigated using a series of biodegraded oil samples from the Ronier tectonic unit of Bongor Basin,Chad.The results suggest that diamondoids,including adamantanes...The sensitivity of biodegradation on diamondoids was investigated using a series of biodegraded oil samples from the Ronier tectonic unit of Bongor Basin,Chad.The results suggest that diamondoids,including adamantanes(As)and diamantanes(Ds),are relatively resistant to biodegradation and obvious biodegradation was observed in oils with a Peters-Moldowan(PM)biodegradation rank of 6 or more.Overall,the sensibility of biodegradation on diamondoids is generally similar to hopanes and regular steranes.As biodegradation evolves,the changes in concentration and components of diamondoids show that the biodegradation process is selective and stepwise.The significant increase of MD/MA and DMD/DMA for oils with a PM ranking 6^(+) indicates that diamantanes are generally more resistant to biodegradation than adamantanes.The similar trends of DMA/MA,EA/MA,MD/D,DMD/MD and other relevant indexes,show that higher alkylation homologs are more resistant to biodegradation.The commonly used diamondoid ratios,such as MAI,EAI,MDI and DMID-1,are obviously affected by biodegradation at the stage of high-level biodegradation,which may indicate that these ratios should be used with caution in case of severely degraded oils.展开更多
Considering the serious barriers/issues induced by the accumulated starch generated in white water system of old corrugated cardboard(OCC)pulping process,large amounts of accumulated starch in white water would be dec...Considering the serious barriers/issues induced by the accumulated starch generated in white water system of old corrugated cardboard(OCC)pulping process,large amounts of accumulated starch in white water would be decomposed by microorganisms and could not be utilized,thereby resulting in severe resource wastage and environmental pollution.This study mainly explored the effects of biodegradation/hydrolysis conditions of the two types of starch substrates(native starch and enzymatically(α-amylase)hydrolyzed starch),which were treated via microorganism degradation within the simulated white water from OCC pulping system and their biodegradation products on the key properties were characterized via X-ray diffraction(XRD),Fourier-transform infrared spectroscopy(FT-IR),and gel permeation chromatography(GPC)technologies.The effects of system temperature,pH value,starch concentration,and biodegradation time on starch biodegradation ratio and the characteristics of obtained biodegradated products from the two types of starches were studied.In addition,the effect ofα-amylase dosage on the biodegradation ratio of enzymatically hydrolyzed starch and its properties was investigated.It was found that the native starch presented a maximal degradation ratio at a system temperature of 55℃and pH value range of 5-7,respectively,the corresponding starch concentration within simulated white water system was 200 mg/L.Whereas the enzymatically hydrolyzed starch exhibited a highest degradation ratio at a system temperature of 50℃and pH value of 5.5,respectively,and the corresponding starch concentration within simulated white water system was 100 mg/L.It was verified that native starch is more readily bio-hydrolyzed and biodegradation-susceptive by microorganisms in simulated white water system of OCC pulping process,while the enzymatically hydrolyzed starch exhibits better biodegradation/hydrolysis resistance to the microbial degradation than that of native starch.This study provides a practical and interesting approach to investigate the starch hydrolysis or biodegradation behaviors in white water system of OCC pulping process,which would greatly contribute to the full recycling and valorized application of starch as a versatile additive during paperboard production.展开更多
Mg-Cu alloys are promising antibacterial implant materials.However,their clinical applications have been impeded by their high initial biodegradation rate,which can be alleviated using nanotechnology by for example su...Mg-Cu alloys are promising antibacterial implant materials.However,their clinical applications have been impeded by their high initial biodegradation rate,which can be alleviated using nanotechnology by for example surface nanomodification to obtain a gradient nanostructured surface layer.The present work(i)produced a gradient nanostructured surface layer with a∼500µm thickness on a Mg-0.2 Cu alloy by a surface mechanical grinding treatment(SMGT),and(ii)studied the biodegradation behavior in Hank's solution.The initial biodegradation rate of the SMGTed samples was significantly lower than that of the unSMGTed original counterparts,which was attributed to the surface nanocrystallization,and the fragmentation and re-dissolution of Mg_(2)Cu particles in the surface of the SMGTed Mg-0.2 Cu alloy.Furthermore,the SMGTed Mg-0.2 Cu alloy had good antibacterial efficacy.This work creatively used SMGT technology to produce a high-performance Mg alloy implant material.展开更多
The biodegradation of polymeric biocomposites formed from epoxidized linseed oil and various types of fillers(pine needles,pine bark,grain mill waste,rapeseed cake)and a control sample without filler was studied durin...The biodegradation of polymeric biocomposites formed from epoxidized linseed oil and various types of fillers(pine needles,pine bark,grain mill waste,rapeseed cake)and a control sample without filler was studied during 180 days of exposure to two types of forest soil:deciduous and coniferous.The weight loss,morphological,and structural changes of polymer composites were noticed after 180 days of the soil burial test.The greatest weight loss of all tested samples was observed in coniferous forest soil(41.8%–63.2%),while in deciduous forest soil,it ranged between 37.7%and 42.3%.The most significant changes in the intensities of the signals evaluated by attenuated total reflectance infrared spectroscopy,as well as morphological changes determined by scanning electron microscopy,were assessed for polymer composite with rapeseed cake and specimen without filler in coniferous forest soil and are in a good agreement with weight loss results.Whereas significantly lower changes in weight loss,morphology,and structure of polymeric film with pine bark were noticed in both soils.It was suggested that fungi of Trichoderma,Penicillium,Talaromyces and Clonostachys genera are the possible soil microorganisms that degrade linseed oil-based cross-linked polymer composites.Moreover,the novel polymer composites have the potential to be an environmentally friendly alternative to petroleum-based mulching films.展开更多
Three kerogen samples(JJZG-1,JJZG-2 and JJZG-3)isolated from the Permian Lucaogou shales of varying biodegradation levels(BLs≈0,3 and 7,respectively)were subjected to sequential stepwise pyrolysis combined with on-li...Three kerogen samples(JJZG-1,JJZG-2 and JJZG-3)isolated from the Permian Lucaogou shales of varying biodegradation levels(BLs≈0,3 and 7,respectively)were subjected to sequential stepwise pyrolysis combined with on-line detection of gas chromatography-mass spectrometry(GC-MS).Occluded fractions(bitumenⅡ)released at low-temperature steps(≥410℃)show consistent biodegradative signatures with that reported for solvent-extracted fractions(bitumenⅠ)of the original shales,e.g.,broad range of abundant n-alkanes,isoprenoids and regular hopanes for the non-biodegraded JJZG-1;trace n-alkanes and abundant hopanes for the moderately biodegraded JJZG-2;and no n-alkanes but still prominent hopanes including the microbially produced 25-nohopanes for the severely biodegraded JJZG-3.This consistency between bitumenⅡand bitumenⅠfractions indicates the biodegradability of the kerogenoccluded bitumenⅡwith limited protection from host kerogen.A minor level of protection was suggested by the trace distribution of n-alkanes in the bitumenⅡof JJZG-2,whereas the bitumenⅠhad no nalkanes.The kerogen itself was more resistant to biodegradation as reflected by the persistence of high abundances of both n-alkanes and hopanes in the high temperature(≥460℃)products of all three kerogen samples.However,the relative abundances of these product groups did show some evidence of biodegradation alteration,e.g.,ratios of n-C_(15)alkene/C_(27)hop-17(21)-ene at 510℃pyrolysis decreased by order of magnitude from the non-biodegraded(JJZG-1=27.4)to highly biodegraded(0.3 for JJZG-3)samples.The reduced biodegradation impact on the kerogen fraction(Cf.bitumen fractions)was also evident by the absence of 25-norhopanes in the high-temperature analysis of the JJZG-3 kerogen.展开更多
Biodegradable polylactic acid(PLA)melt-blown nonwovens are attractive candidates to replace nondegradable polypropylene melt-blown nonwovens.However,it is still an extremely challenging task to prepare PLA melt-blown ...Biodegradable polylactic acid(PLA)melt-blown nonwovens are attractive candidates to replace nondegradable polypropylene melt-blown nonwovens.However,it is still an extremely challenging task to prepare PLA melt-blown nonwovens with sufficient mechanical properties for practical application.Herein,we report a simple strategy for the large-scale preparation of biodegradable PLA/poly(3-hydroxybutyrate-co-3-hydroxyvalerate)(PHBV)melt-blown nonwovens with high strength and excellent toughness.In this process,a small amount of PHBV is added to PLA to improve the latter’s crystallization rate and crystallinity.In addition,when the PHBV content increases from 0 to 7.5 wt%,the diameters of the PLA/PHBV melt-blown fibers decrease significantly(with the proportion of nanofibers increasing from 7.7%to 42.9%).The resultant PLA/PHBV(5 wt%PHBV)melt-blown nonwovens exhibit the highest mechanical properties.The tensile stress,elongation,and toughness of PLA/PHBV(5 wt%PHBV)melt-blown nonwovens reach 2.5 MPa,45%,and 1.0 MJm3,respectively.More importantly,PLA/PHBV melt-blown nonwovens can be completely degraded into carbon dioxide and water after four months in the soil,making them environmentally friendly.A general tensile-failure model of melt-blown nonwovens is proposed in this study,which may shed light on mechanical performance enhancement for nonwovens.展开更多
Biodegradable implants are critical for regenerative orthopaedic procedures,but they may suffer from too fast corrosion in human-body environment.This necessitates the synthesis of a suitable coating that may improve ...Biodegradable implants are critical for regenerative orthopaedic procedures,but they may suffer from too fast corrosion in human-body environment.This necessitates the synthesis of a suitable coating that may improve the corrosion resistance of these implants without compromising their mechanical integrity.In this study,an AZ91 magnesium alloy,as a representative for a biodegradable Mg implant material,was modified with a thin reduced graphene oxide(RGO)-calcium carbonate(CaCO_(3))composite coating.Detailed analytical and in-vitro electrochemical characterization reveals that this coating significantly improves the corrosion resistance and mechanical integrity,and thus has the potential to greatly extend the related application field.展开更多
The cardiovascular diseases(CVD)continue to be the major threat to global public health over the years,while one of the effective methods to treat CVD is stent intervention.Biomedical magnesium(Mg)alloys have great po...The cardiovascular diseases(CVD)continue to be the major threat to global public health over the years,while one of the effective methods to treat CVD is stent intervention.Biomedical magnesium(Mg)alloys have great potential applications in cardiovascular stents benefit from their excellent biodegradability and absorbability.However,excessive degradation rate and the delayed surface endothelialization still limit their further application.In this study,we modified a Mg-Zn-Y-Nd alloy(ZE21B)by preparing MgF_(2) as the corrosion resistance layer,the dopamine polymer film(PDA)as the bonding layer,and hyaluronic acid(HA)loaded astaxanthin(ASTA)as an important layer to directing the cardiovascular cells fate.The electrochemical test results showed that the MgF_(2)/PDA/HA-ASTA coating improved the corrosion resistance of ZE21B.The cytocompatibility experiments also demonstrated that this novel composite coating also selectively promoted endothelial cells proliferation,inhibited hyperproliferation of smooth muscle cells and adhesion of macrophages.Compared with the HAloaded rapamycin(RAPA)coating,our MgF_(2)/PDA/HA-ASTA coating showed better blood compatibility and cytocompatibility,indicating stronger multi-functions for the ZE21B alloy on cardiovascular application.展开更多
Laser powder bed fusion(L-PBF)has been employed to additively manufacture WE43 magnesium(Mg)alloy biodegradable implants,but WE43 L-PBF samples exhibit excessively rapid corrosion.In this work,dense WE43 L-PBF samples...Laser powder bed fusion(L-PBF)has been employed to additively manufacture WE43 magnesium(Mg)alloy biodegradable implants,but WE43 L-PBF samples exhibit excessively rapid corrosion.In this work,dense WE43 L-PBF samples were built with the relativity density reaching 99.9%.High temperature oxidation was performed on the L-PBF samples in circulating air via various heating temperatures and holding durations.The oxidation and diffusion at the elevated temperature generated a gradient structure composed of an oxide layer at the surface,a transition layer in the middle and the matrix.The oxide layer consisted of rare earth(RE)oxides,and became dense and thick with increasing the holding duration.The matrix was composed ofα-Mg,RE oxides and Mg_(24)RE_(5) precipitates.The precipitates almost disappeared in the transition layer.Enhanced passivation effect was observed in the samples treated by a suitable high temperature oxidation.The original L-PBF samples lost 40%weight after 3-day immersion in Hank’s solution,and broke into fragments after 7-day immersion.The casted and solution treated samples lost roughly half of the weight after 28-day immersion.The high temperature oxidation samples,which were heated at 525℃ for 8 h,kept the structural integrity,and lost only 6.88%weight after 28-day immersion.The substantially improved corrosion resistance was contributed to the gradient structure at the surface.On one hand,the outmost dense layer of RE oxides isolated the corrosive medium;on the other hand,the transition layer considerably inhibited the corrosion owing to the lack of precipitates.Overall,high temperature oxidation provides an efficient,economic and safe approach to inhibit the corrosion of WE43 L-PBF samples,and has promising prospects for future clinical applications.展开更多
Recent advances in functionally graded additive manufacturing(FGAM)technology have enabled the seamless hybridization of multiple functionalities in a single structure.Soft robotics can become one of the largest benef...Recent advances in functionally graded additive manufacturing(FGAM)technology have enabled the seamless hybridization of multiple functionalities in a single structure.Soft robotics can become one of the largest beneficiaries of these advances,through the design of a facile four-dimensional(4D)FGAM process that can grant an intelligent stimuli-responsive mechanical functionality to the printed objects.Herein,we present a simple binder jetting approach for the 4D printing of functionally graded porous multi-materials(FGMM)by introducing rationally designed graded multiphase feeder beds.Compositionally graded cross-linking agents gradually form stable porous network structures within aqueous polymer particles,enabling programmable hygroscopic deformation without complex mechanical designs.Furthermore,a systematic bed design incorporating additional functional agents enables a multi-stimuli-responsive and untethered soft robot with stark stimulus selectivity.The biodegradability of the proposed 4D-printed soft robot further ensures the sustainability of our approach,with immediate degradation rates of 96.6%within 72 h.The proposed 4D printing concept for FGMMs can create new opportunities for intelligent and sustainable additive manufacturing in soft robotics.展开更多
Current biodegradation timelines show that polyesters take over 200 years to break down. A crucial component of several industries, polyesters are relied upon for materials development and thus require sustainable alt...Current biodegradation timelines show that polyesters take over 200 years to break down. A crucial component of several industries, polyesters are relied upon for materials development and thus require sustainable alternatives. Recent works in generative modeling have made it possible to produce large sets of chemical structures, but current molecular screening methods are expensive, not scalable, and are oversimplified. This work evaluates whether a molecule’s biodegradability potential can be accurately predicted by training a model on recent experimental data. Additionally, three chemical descriptors were evaluated on the final molecules for their effects on biodegradability: molecular structure, bond types, and solubility. A Gradient Boosted Machine was trained on a dataset of 600 molecules and their binary labels on biodegradability. The classification model effectively captured the biodegradability property, yielding an Area Under the Receiver Operating Characteristics, AUROC, of 84% and an Area Under the Precision Recall Curve, or AUPRC, of 87%. Additionally, an existing amortized synthetic tree generation model, SynNet, validated each molecule by showing chemical synthesizability and producing simple and interpretable synthesis pathways. This approach of filtering by prediction and chemical rule interpretation is inexpensive, highly scalable and can capture the necessary complexity. Using this method, novel polyester candidates can be polymerized and produced into sustainable fabrics, reducing environmental stress from textile-reliant industries.展开更多
Biodegradable magnesium alloys have been widely used in medical implants. But safety concerns were put forward for the high degradation rate of biodegradable magnesium alloy. The optimal biodegradable magnesium alloys...Biodegradable magnesium alloys have been widely used in medical implants. But safety concerns were put forward for the high degradation rate of biodegradable magnesium alloy. The optimal biodegradable magnesium alloys that give rise to the desired degradation rate hasn’t yet to be defined. Assessing the degradation rate of biodegradable magnesium alloys involves in vitro testing, in vivo testing, numerical modeling, understanding the factors influencing their degradation in physiological environments, biocompatibility testing, and clinical studies. It is important to standardize analytical tools aimed at assessing the degradation rate of biodegradable magnesium alloys. It is advisable to identify the threshold for safe degradation rate of biodegradable magnesium alloys in biomedical applications.展开更多
Background: Cosmetic formulations, and particularly solar products which contain mineral and chemical UV-filters, are often suspected of causing harmful effects on marine fauna and flora. After the publication of our ...Background: Cosmetic formulations, and particularly solar products which contain mineral and chemical UV-filters, are often suspected of causing harmful effects on marine fauna and flora. After the publication of our work in 2019 concerning the ecotoxicological effects of such formulations on corals (Seriatopora hystrix), we here provide some new information about the biodegradability and the ecotoxicological effects of these products on marine zoo- and phytoplankton. Therefore, we choose to realize in silico and in vitro studies of the biodegradability of several solar products but also to evaluate the ecotoxicological effects of these products on one phytoplankton, i.e. Phaeodactylum tricornutum, and one zooplankton, i.e. Acartia tonsa, of a great importance for sea species survival (notably as sources of food). Materials and methods: Two different approaches were used to study the biodegradability of the tested products: One in silico method and an in vitro one. 2 solar products were involved in the in silico study which consisted in the determination of the degradation factor (DF) of each ingredient of the tested formulas in order to finally obtain their estimated biodegradability percentage. Already available data concerning each ingredient coupled to a computer model developed with one of our partners were used to achieve this study. The in vitro study involved 8 formulas containing UV-filters and was led by following the OECD 301 F guidelines. Ecotoxicological studies of 7 of the formulas containing UV-filters were for their part realized by following the ISO 10253 guidelines for the experiments led with Phaeodactylum tricornutum, and the ISO 14669 guidelines for the experiments led with Acartia tonsa. In these studies, the effect of each tested product on crustaceans’ mortality and algal growth inhibition was assessed. Results: The in silico study predicted that formulas containing chemical UV-filters display a high biodegradability (superior to the threshold value of 60% given by the OECD 301 F guidelines). In the in vitro part of our work, the 8 tested formulas showed a biodegradability slightly inferior to the one predicted in the in silico experiments. Therefore, in order to evaluate if these calculated biodegradability value could have significant harmful effects on zoo- or phytoplankton, we studied the effect of our products regarding the growth inhibition on Phaeodactylum tricornutum and the mortality on Acartia tonsa. In this last part of the study, all the tested products were classified as “non ecotoxic” following an internal classification based on Part 4 entitled “Environmental Hazards” of Globally Harmonized System of Classification and Labelling of Chemicals (GHS), 9<sup>th</sup> edition (2021). Conclusions: These results are notably in line with those published by our teams in 2019 on the effects of solar cosmetic products on corals and seem to confirm that formulas containing mineral and chemical UV-filters can be daily used without displaying significant noxious effects on marine fauna and flora. .展开更多
ObjectiveThis study aimed to investigate the biodegradation effect and biodegradation mechanism of aniline aerofloat wastewater. MethodSmall-scale processing of simulated aniline aerofloat wastewater was carried out w...ObjectiveThis study aimed to investigate the biodegradation effect and biodegradation mechanism of aniline aerofloat wastewater. MethodSmall-scale processing of simulated aniline aerofloat wastewater was carried out with SBR (Sequencing Batch Reactor) system; intermediate products in the process were analyzed using high-performance liquid chromatography. ResultAccording to the experimental results, the small-scale process was basically stably operated after 40 days of activation and regulation, leading to relatively ideal degradation effect on aniline aerofloat, the COD removal efficiency reached 64.3% , degradation rate of aniline aerofloat reached 93.4%, which could be applied in the treatment of mine flotation wastewater containing such pollutant. During the degradation process, pH increased from 5.83 to 6.60 and then dropped to 6.17, which might be caused by the thiocyanate ions and aniline generated in the degradation process. Aniline aerofloat mainly produced two preliminary products during the biodegradation process: aniline and a substance that was difficult to be biodegraded under aerobic conditions, which was the main reason for the relatively high COD value in effluent. Furthermore, aniline was eventually biodegraded. ConclusionThis study provided basis for the development of biological treatment of flotation wastewater in China and showed great significance for the improvement of ecological environment around the mines.展开更多
By using plate screening techniques with five phthalate esters (DMP, DEP, DBP, DEHP and DOP) as energy and carbon sources, an active strain was isolated from the sediments of Chaohu Lake, which was identified as Bur...By using plate screening techniques with five phthalate esters (DMP, DEP, DBP, DEHP and DOP) as energy and carbon sources, an active strain was isolated from the sediments of Chaohu Lake, which was identified as Burkholderia pickettil and named B. pickettii.z-1. The biodegradation of five phthalate esters by B. pick- ettii.z-1 strain was in accordance with the pseudo first-order kinetic equation: Ct = C0.e-kt. As the concentration of phthalate esters increased, the degradation rate of phthalate esters was reduced. B. pickettii.z-1 strain exhibited remarkably different degradation effects on various PAEs. Specifically, short-side-chain DMP and DEP were degraded rapidly, while long-side-chain DBP and DEHP were degraded slowly.展开更多
The ability of Yarrowia lipolytica W29 immobilized by calcium alginate to degrade oil and chemical oxygen demand (COD) was examined. The degradation rules of oil and COD by immobilized cells with the cell density of...The ability of Yarrowia lipolytica W29 immobilized by calcium alginate to degrade oil and chemical oxygen demand (COD) was examined. The degradation rules of oil and COD by immobilized cells with the cell density of 6.65 × 10^6 CFU/mL degraded 2000 mg/L oil and 2000 mg/L COD within 50 h at 30℃ (pH 7.0, 150 r/min), similarly to those of free cells, and the degradation efficiencies of oil and COD by immobilized cells were above 80%, respectively. The factors affecting oil and COD degradation by immobilized cells were investigated, the results showed that immobilized cells had high thermostability compared to that of free cells, and substrate concentration significantly affected degrading ability of immobilized cells. Storage stability and reusability tests revealed that the oil degradation ability of immobilized cells was stable after storing at 4~C for 30 d and reuse for 12 times, respectively, the COD degradation rate of immobilized cells was also maintained 82% at the sixth cycle. These results suggested that immobilized Y lipolytica might be applicable to a wastewater treatment system for the removal of oil and COD.展开更多
A new phenol-degrading bacterium with high biodegradation activity and high tolerance of phenol, strain PD 12, was isolated from the activated sludge of Tianjin Jizhuangzi Wastewater Treatment Facility in China. This ...A new phenol-degrading bacterium with high biodegradation activity and high tolerance of phenol, strain PD 12, was isolated from the activated sludge of Tianjin Jizhuangzi Wastewater Treatment Facility in China. This strain was capable of removing 500 mg phenol/L in liquid minimal medium by 99.6% within 9 h and metabolizing phenol at concentrations up to 1100 mg/L. DNA sequencing and homologous analysis of 16S rRNA gene identified PD12 to be an Acinetobacter sp. Polyvinyl alcohol (PVA) was used as a gel matrix to immobilize Acinetobacter sp. strain PDI2 by repeated freezing and thawing. The factors affecting phenol degradation of immobilized cells were investigated, and the results showed that the immobilized cells could tolerate a high phenol level and protected the bacteria against changes in temperature and pH. Storage stability and reusability tests revealed that the phenol degradation functions of immobilized cells were stable after reuse for 50 times or storing at 4℃ for 50 d. These results indicate that immobilized Acinetobacter sp. strain PD 12 possesses a good application potential in the treatment of phenol-containing wastewater.展开更多
More than 100 t of nitrobenzene (NB) and related compounds were discharged into the Songhua River,the fourth longest river in China,because of the world-shaking explosion of an aniline production factory located in Ji...More than 100 t of nitrobenzene (NB) and related compounds were discharged into the Songhua River,the fourth longest river in China,because of the world-shaking explosion of an aniline production factory located in Jilin City on November 13,2005.As one of the efforts to predict the fate of residual NB in the river,NB biodegradation abilities by microbes in the water and sediments from different river sections were evaluated systematically.The results indicated that microbial communities from any section of ...展开更多
Response surface methodology (RSM) was employed to evaluate the optimum aerobic biodegradation of dichloromethane (DCM) in pure culture. The parameters investigated include the initial DCM concentration, glucose a...Response surface methodology (RSM) was employed to evaluate the optimum aerobic biodegradation of dichloromethane (DCM) in pure culture. The parameters investigated include the initial DCM concentration, glucose as an inducer and hydrogen peroxide as terminal electron acceptor (TEA). Maximum aerobic biodegradation efficiency was predicted to occur when the initial DCM concentration was 380 mg/L, glucose 13.72 mg/L, and H202 115 mg/L. Under these conditions the aerobic biodegradation rate reached up to 93.18%, which was significantly higher than that obtained under original conditions. Without addition of glucose degradation efficiencies were ≤ 80% at DCM concentrations ≤ 326 mg/L. When concentrations of DCM were more than 480 rag/L, the addition of hydrogen peroxide did not help to significantly increase DCM degradation efficiency. When DCM concentrations increased from 240 to 480 rag/L, the overall DCM degradation efficiency decreased from 91% to 60% in the presence of HaO2 for 120 mg/L.展开更多
基金supported by Natural Science Foundation of China(41907357)Natural Science Foundation of Shandong(ZR2019PC048)the Key R&D project of Shandong Province(2021TZXD007).
文摘Bioremediation of organophosphorus pesticides in contaminated foodstuffs using probiotics has been increasingly under the spotlight in recent years,though the biodegradation mechanism and derived intermediate products remain unclear.This study aimed to help fill this knowledge gap and examined the degradation mechanism of organophosphorus pesticide,chlorpyrifos,in milk by Lactobacillus delbrueckii ssp.bulgaricus using gas chromatography-tandem mass spectrometry(GC-MS/MS)combined with transcriptome analysis.After the strain was cultured for 20 h in the presence of chlorpyrifos,differential expressions of 383 genes were detected,including genes probably implicated during chlorpyrifos degradation such as those related to hydrolase,phosphoesterase,diphosphatase,oxidoreductase,dehydratase,as well as membrane transporters.GC-MS/MS analysis revealed the changes of secondary metabolites in L.bulgaricus during milk fermentation due to chlorpyrifos stress.6-Methylhexahydro-2H-azepin-2-one,2,6-dihydroxypyridine and methyl 2-aminooxy-4-methylpentanoate as intermediates,along with the proposed pathways,might be involved in chlorpyrifos biodegradation by L.bulgaricus.
基金funded by the National Natural Science Foundation of China(No.42272160,No.41502133).
文摘The sensitivity of biodegradation on diamondoids was investigated using a series of biodegraded oil samples from the Ronier tectonic unit of Bongor Basin,Chad.The results suggest that diamondoids,including adamantanes(As)and diamantanes(Ds),are relatively resistant to biodegradation and obvious biodegradation was observed in oils with a Peters-Moldowan(PM)biodegradation rank of 6 or more.Overall,the sensibility of biodegradation on diamondoids is generally similar to hopanes and regular steranes.As biodegradation evolves,the changes in concentration and components of diamondoids show that the biodegradation process is selective and stepwise.The significant increase of MD/MA and DMD/DMA for oils with a PM ranking 6^(+) indicates that diamantanes are generally more resistant to biodegradation than adamantanes.The similar trends of DMA/MA,EA/MA,MD/D,DMD/MD and other relevant indexes,show that higher alkylation homologs are more resistant to biodegradation.The commonly used diamondoid ratios,such as MAI,EAI,MDI and DMID-1,are obviously affected by biodegradation at the stage of high-level biodegradation,which may indicate that these ratios should be used with caution in case of severely degraded oils.
基金financial support from the China Postdoctoral Science Foundation (No. 2022M712379, No. 2021M692401)National Natural Science Foundation of China (No. 32101470)+3 种基金Foundation (No. 2021KF37) of Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control,College of Light Industry and Food Engineering, Guangxi UniversityFoundation of Tianjin Key Laboratory of Pulp & Paper of Tianjin University of Science & Technology (No. 202003, No. 202106)Research Foundation from the University of New BrunswickPost-Doctoral Fellow Programs from Zhejiang Jingxing Paper Co., Ltd
文摘Considering the serious barriers/issues induced by the accumulated starch generated in white water system of old corrugated cardboard(OCC)pulping process,large amounts of accumulated starch in white water would be decomposed by microorganisms and could not be utilized,thereby resulting in severe resource wastage and environmental pollution.This study mainly explored the effects of biodegradation/hydrolysis conditions of the two types of starch substrates(native starch and enzymatically(α-amylase)hydrolyzed starch),which were treated via microorganism degradation within the simulated white water from OCC pulping system and their biodegradation products on the key properties were characterized via X-ray diffraction(XRD),Fourier-transform infrared spectroscopy(FT-IR),and gel permeation chromatography(GPC)technologies.The effects of system temperature,pH value,starch concentration,and biodegradation time on starch biodegradation ratio and the characteristics of obtained biodegradated products from the two types of starches were studied.In addition,the effect ofα-amylase dosage on the biodegradation ratio of enzymatically hydrolyzed starch and its properties was investigated.It was found that the native starch presented a maximal degradation ratio at a system temperature of 55℃and pH value range of 5-7,respectively,the corresponding starch concentration within simulated white water system was 200 mg/L.Whereas the enzymatically hydrolyzed starch exhibited a highest degradation ratio at a system temperature of 50℃and pH value of 5.5,respectively,and the corresponding starch concentration within simulated white water system was 100 mg/L.It was verified that native starch is more readily bio-hydrolyzed and biodegradation-susceptive by microorganisms in simulated white water system of OCC pulping process,while the enzymatically hydrolyzed starch exhibits better biodegradation/hydrolysis resistance to the microbial degradation than that of native starch.This study provides a practical and interesting approach to investigate the starch hydrolysis or biodegradation behaviors in white water system of OCC pulping process,which would greatly contribute to the full recycling and valorized application of starch as a versatile additive during paperboard production.
基金Financially supported by Natural Science Foundation of China(No.51874368).
文摘Mg-Cu alloys are promising antibacterial implant materials.However,their clinical applications have been impeded by their high initial biodegradation rate,which can be alleviated using nanotechnology by for example surface nanomodification to obtain a gradient nanostructured surface layer.The present work(i)produced a gradient nanostructured surface layer with a∼500µm thickness on a Mg-0.2 Cu alloy by a surface mechanical grinding treatment(SMGT),and(ii)studied the biodegradation behavior in Hank's solution.The initial biodegradation rate of the SMGTed samples was significantly lower than that of the unSMGTed original counterparts,which was attributed to the surface nanocrystallization,and the fragmentation and re-dissolution of Mg_(2)Cu particles in the surface of the SMGTed Mg-0.2 Cu alloy.Furthermore,the SMGTed Mg-0.2 Cu alloy had good antibacterial efficacy.This work creatively used SMGT technology to produce a high-performance Mg alloy implant material.
文摘The biodegradation of polymeric biocomposites formed from epoxidized linseed oil and various types of fillers(pine needles,pine bark,grain mill waste,rapeseed cake)and a control sample without filler was studied during 180 days of exposure to two types of forest soil:deciduous and coniferous.The weight loss,morphological,and structural changes of polymer composites were noticed after 180 days of the soil burial test.The greatest weight loss of all tested samples was observed in coniferous forest soil(41.8%–63.2%),while in deciduous forest soil,it ranged between 37.7%and 42.3%.The most significant changes in the intensities of the signals evaluated by attenuated total reflectance infrared spectroscopy,as well as morphological changes determined by scanning electron microscopy,were assessed for polymer composite with rapeseed cake and specimen without filler in coniferous forest soil and are in a good agreement with weight loss results.Whereas significantly lower changes in weight loss,morphology,and structure of polymeric film with pine bark were noticed in both soils.It was suggested that fungi of Trichoderma,Penicillium,Talaromyces and Clonostachys genera are the possible soil microorganisms that degrade linseed oil-based cross-linked polymer composites.Moreover,the novel polymer composites have the potential to be an environmentally friendly alternative to petroleum-based mulching films.
基金supported by the National Natural Science Foundation of China(grants No.41972163 and 42173055).
文摘Three kerogen samples(JJZG-1,JJZG-2 and JJZG-3)isolated from the Permian Lucaogou shales of varying biodegradation levels(BLs≈0,3 and 7,respectively)were subjected to sequential stepwise pyrolysis combined with on-line detection of gas chromatography-mass spectrometry(GC-MS).Occluded fractions(bitumenⅡ)released at low-temperature steps(≥410℃)show consistent biodegradative signatures with that reported for solvent-extracted fractions(bitumenⅠ)of the original shales,e.g.,broad range of abundant n-alkanes,isoprenoids and regular hopanes for the non-biodegraded JJZG-1;trace n-alkanes and abundant hopanes for the moderately biodegraded JJZG-2;and no n-alkanes but still prominent hopanes including the microbially produced 25-nohopanes for the severely biodegraded JJZG-3.This consistency between bitumenⅡand bitumenⅠfractions indicates the biodegradability of the kerogenoccluded bitumenⅡwith limited protection from host kerogen.A minor level of protection was suggested by the trace distribution of n-alkanes in the bitumenⅡof JJZG-2,whereas the bitumenⅠhad no nalkanes.The kerogen itself was more resistant to biodegradation as reflected by the persistence of high abundances of both n-alkanes and hopanes in the high temperature(≥460℃)products of all three kerogen samples.However,the relative abundances of these product groups did show some evidence of biodegradation alteration,e.g.,ratios of n-C_(15)alkene/C_(27)hop-17(21)-ene at 510℃pyrolysis decreased by order of magnitude from the non-biodegraded(JJZG-1=27.4)to highly biodegraded(0.3 for JJZG-3)samples.The reduced biodegradation impact on the kerogen fraction(Cf.bitumen fractions)was also evident by the absence of 25-norhopanes in the high-temperature analysis of the JJZG-3 kerogen.
基金supported by the National Key Research and Development Program of China(2022YFB3804903 and 2022YFB3804900)the National Natural Science Foundation of China(52273052)+1 种基金the Program of Shanghai Academic/Technology Research Leader(21XD1420100)the International Cooperation Fund of Science and Technology Commission of Shanghai Municipality(21130750100).
文摘Biodegradable polylactic acid(PLA)melt-blown nonwovens are attractive candidates to replace nondegradable polypropylene melt-blown nonwovens.However,it is still an extremely challenging task to prepare PLA melt-blown nonwovens with sufficient mechanical properties for practical application.Herein,we report a simple strategy for the large-scale preparation of biodegradable PLA/poly(3-hydroxybutyrate-co-3-hydroxyvalerate)(PHBV)melt-blown nonwovens with high strength and excellent toughness.In this process,a small amount of PHBV is added to PLA to improve the latter’s crystallization rate and crystallinity.In addition,when the PHBV content increases from 0 to 7.5 wt%,the diameters of the PLA/PHBV melt-blown fibers decrease significantly(with the proportion of nanofibers increasing from 7.7%to 42.9%).The resultant PLA/PHBV(5 wt%PHBV)melt-blown nonwovens exhibit the highest mechanical properties.The tensile stress,elongation,and toughness of PLA/PHBV(5 wt%PHBV)melt-blown nonwovens reach 2.5 MPa,45%,and 1.0 MJm3,respectively.More importantly,PLA/PHBV melt-blown nonwovens can be completely degraded into carbon dioxide and water after four months in the soil,making them environmentally friendly.A general tensile-failure model of melt-blown nonwovens is proposed in this study,which may shed light on mechanical performance enhancement for nonwovens.
文摘Biodegradable implants are critical for regenerative orthopaedic procedures,but they may suffer from too fast corrosion in human-body environment.This necessitates the synthesis of a suitable coating that may improve the corrosion resistance of these implants without compromising their mechanical integrity.In this study,an AZ91 magnesium alloy,as a representative for a biodegradable Mg implant material,was modified with a thin reduced graphene oxide(RGO)-calcium carbonate(CaCO_(3))composite coating.Detailed analytical and in-vitro electrochemical characterization reveals that this coating significantly improves the corrosion resistance and mechanical integrity,and thus has the potential to greatly extend the related application field.
基金For financial support,the authors gratefully acknowledge the National Natural Science Foundation of China(U2004164)the National Key Research and Development Program of China(2018YFC1106703)the Key Projects of the Joint Fund of the National Natural Science Foundation of China(U1804251).
文摘The cardiovascular diseases(CVD)continue to be the major threat to global public health over the years,while one of the effective methods to treat CVD is stent intervention.Biomedical magnesium(Mg)alloys have great potential applications in cardiovascular stents benefit from their excellent biodegradability and absorbability.However,excessive degradation rate and the delayed surface endothelialization still limit their further application.In this study,we modified a Mg-Zn-Y-Nd alloy(ZE21B)by preparing MgF_(2) as the corrosion resistance layer,the dopamine polymer film(PDA)as the bonding layer,and hyaluronic acid(HA)loaded astaxanthin(ASTA)as an important layer to directing the cardiovascular cells fate.The electrochemical test results showed that the MgF_(2)/PDA/HA-ASTA coating improved the corrosion resistance of ZE21B.The cytocompatibility experiments also demonstrated that this novel composite coating also selectively promoted endothelial cells proliferation,inhibited hyperproliferation of smooth muscle cells and adhesion of macrophages.Compared with the HAloaded rapamycin(RAPA)coating,our MgF_(2)/PDA/HA-ASTA coating showed better blood compatibility and cytocompatibility,indicating stronger multi-functions for the ZE21B alloy on cardiovascular application.
基金funded by the National Key Research and Development Program of China (2018YFE0104200)National Natural Science Foundation of China (51875310, 52175274, 82172065)Tsinghua Precision Medicine Foundation
文摘Laser powder bed fusion(L-PBF)has been employed to additively manufacture WE43 magnesium(Mg)alloy biodegradable implants,but WE43 L-PBF samples exhibit excessively rapid corrosion.In this work,dense WE43 L-PBF samples were built with the relativity density reaching 99.9%.High temperature oxidation was performed on the L-PBF samples in circulating air via various heating temperatures and holding durations.The oxidation and diffusion at the elevated temperature generated a gradient structure composed of an oxide layer at the surface,a transition layer in the middle and the matrix.The oxide layer consisted of rare earth(RE)oxides,and became dense and thick with increasing the holding duration.The matrix was composed ofα-Mg,RE oxides and Mg_(24)RE_(5) precipitates.The precipitates almost disappeared in the transition layer.Enhanced passivation effect was observed in the samples treated by a suitable high temperature oxidation.The original L-PBF samples lost 40%weight after 3-day immersion in Hank’s solution,and broke into fragments after 7-day immersion.The casted and solution treated samples lost roughly half of the weight after 28-day immersion.The high temperature oxidation samples,which were heated at 525℃ for 8 h,kept the structural integrity,and lost only 6.88%weight after 28-day immersion.The substantially improved corrosion resistance was contributed to the gradient structure at the surface.On one hand,the outmost dense layer of RE oxides isolated the corrosive medium;on the other hand,the transition layer considerably inhibited the corrosion owing to the lack of precipitates.Overall,high temperature oxidation provides an efficient,economic and safe approach to inhibit the corrosion of WE43 L-PBF samples,and has promising prospects for future clinical applications.
基金supported by National R&D Program through the NRF funded by Ministry of Science and ICT(2021M3D1A2049315)and the Technology Innovation Program(20021909,Development of H2 gas detection films(?0.1%)and process technologies)funded by the Ministry of Trade,Industry&Energy(MOTIE,Korea)supported by the Basic Science Program through the NRF of Korea,funded by the Ministry of Science and ICT,Korea.(Project Number:NRF-2022R1C1C1008845)supported by Basic Science Research Program through the NRF funded by the Ministry of Education(Project Number:NRF-2022R1A6A3A13073158)。
文摘Recent advances in functionally graded additive manufacturing(FGAM)technology have enabled the seamless hybridization of multiple functionalities in a single structure.Soft robotics can become one of the largest beneficiaries of these advances,through the design of a facile four-dimensional(4D)FGAM process that can grant an intelligent stimuli-responsive mechanical functionality to the printed objects.Herein,we present a simple binder jetting approach for the 4D printing of functionally graded porous multi-materials(FGMM)by introducing rationally designed graded multiphase feeder beds.Compositionally graded cross-linking agents gradually form stable porous network structures within aqueous polymer particles,enabling programmable hygroscopic deformation without complex mechanical designs.Furthermore,a systematic bed design incorporating additional functional agents enables a multi-stimuli-responsive and untethered soft robot with stark stimulus selectivity.The biodegradability of the proposed 4D-printed soft robot further ensures the sustainability of our approach,with immediate degradation rates of 96.6%within 72 h.The proposed 4D printing concept for FGMMs can create new opportunities for intelligent and sustainable additive manufacturing in soft robotics.
文摘Current biodegradation timelines show that polyesters take over 200 years to break down. A crucial component of several industries, polyesters are relied upon for materials development and thus require sustainable alternatives. Recent works in generative modeling have made it possible to produce large sets of chemical structures, but current molecular screening methods are expensive, not scalable, and are oversimplified. This work evaluates whether a molecule’s biodegradability potential can be accurately predicted by training a model on recent experimental data. Additionally, three chemical descriptors were evaluated on the final molecules for their effects on biodegradability: molecular structure, bond types, and solubility. A Gradient Boosted Machine was trained on a dataset of 600 molecules and their binary labels on biodegradability. The classification model effectively captured the biodegradability property, yielding an Area Under the Receiver Operating Characteristics, AUROC, of 84% and an Area Under the Precision Recall Curve, or AUPRC, of 87%. Additionally, an existing amortized synthetic tree generation model, SynNet, validated each molecule by showing chemical synthesizability and producing simple and interpretable synthesis pathways. This approach of filtering by prediction and chemical rule interpretation is inexpensive, highly scalable and can capture the necessary complexity. Using this method, novel polyester candidates can be polymerized and produced into sustainable fabrics, reducing environmental stress from textile-reliant industries.
文摘Biodegradable magnesium alloys have been widely used in medical implants. But safety concerns were put forward for the high degradation rate of biodegradable magnesium alloy. The optimal biodegradable magnesium alloys that give rise to the desired degradation rate hasn’t yet to be defined. Assessing the degradation rate of biodegradable magnesium alloys involves in vitro testing, in vivo testing, numerical modeling, understanding the factors influencing their degradation in physiological environments, biocompatibility testing, and clinical studies. It is important to standardize analytical tools aimed at assessing the degradation rate of biodegradable magnesium alloys. It is advisable to identify the threshold for safe degradation rate of biodegradable magnesium alloys in biomedical applications.
文摘Background: Cosmetic formulations, and particularly solar products which contain mineral and chemical UV-filters, are often suspected of causing harmful effects on marine fauna and flora. After the publication of our work in 2019 concerning the ecotoxicological effects of such formulations on corals (Seriatopora hystrix), we here provide some new information about the biodegradability and the ecotoxicological effects of these products on marine zoo- and phytoplankton. Therefore, we choose to realize in silico and in vitro studies of the biodegradability of several solar products but also to evaluate the ecotoxicological effects of these products on one phytoplankton, i.e. Phaeodactylum tricornutum, and one zooplankton, i.e. Acartia tonsa, of a great importance for sea species survival (notably as sources of food). Materials and methods: Two different approaches were used to study the biodegradability of the tested products: One in silico method and an in vitro one. 2 solar products were involved in the in silico study which consisted in the determination of the degradation factor (DF) of each ingredient of the tested formulas in order to finally obtain their estimated biodegradability percentage. Already available data concerning each ingredient coupled to a computer model developed with one of our partners were used to achieve this study. The in vitro study involved 8 formulas containing UV-filters and was led by following the OECD 301 F guidelines. Ecotoxicological studies of 7 of the formulas containing UV-filters were for their part realized by following the ISO 10253 guidelines for the experiments led with Phaeodactylum tricornutum, and the ISO 14669 guidelines for the experiments led with Acartia tonsa. In these studies, the effect of each tested product on crustaceans’ mortality and algal growth inhibition was assessed. Results: The in silico study predicted that formulas containing chemical UV-filters display a high biodegradability (superior to the threshold value of 60% given by the OECD 301 F guidelines). In the in vitro part of our work, the 8 tested formulas showed a biodegradability slightly inferior to the one predicted in the in silico experiments. Therefore, in order to evaluate if these calculated biodegradability value could have significant harmful effects on zoo- or phytoplankton, we studied the effect of our products regarding the growth inhibition on Phaeodactylum tricornutum and the mortality on Acartia tonsa. In this last part of the study, all the tested products were classified as “non ecotoxic” following an internal classification based on Part 4 entitled “Environmental Hazards” of Globally Harmonized System of Classification and Labelling of Chemicals (GHS), 9<sup>th</sup> edition (2021). Conclusions: These results are notably in line with those published by our teams in 2019 on the effects of solar cosmetic products on corals and seem to confirm that formulas containing mineral and chemical UV-filters can be daily used without displaying significant noxious effects on marine fauna and flora. .
基金Supported by Major Special Science and Technology Project of Guangdong Province(2010B080703035)~~
文摘ObjectiveThis study aimed to investigate the biodegradation effect and biodegradation mechanism of aniline aerofloat wastewater. MethodSmall-scale processing of simulated aniline aerofloat wastewater was carried out with SBR (Sequencing Batch Reactor) system; intermediate products in the process were analyzed using high-performance liquid chromatography. ResultAccording to the experimental results, the small-scale process was basically stably operated after 40 days of activation and regulation, leading to relatively ideal degradation effect on aniline aerofloat, the COD removal efficiency reached 64.3% , degradation rate of aniline aerofloat reached 93.4%, which could be applied in the treatment of mine flotation wastewater containing such pollutant. During the degradation process, pH increased from 5.83 to 6.60 and then dropped to 6.17, which might be caused by the thiocyanate ions and aniline generated in the degradation process. Aniline aerofloat mainly produced two preliminary products during the biodegradation process: aniline and a substance that was difficult to be biodegraded under aerobic conditions, which was the main reason for the relatively high COD value in effluent. Furthermore, aniline was eventually biodegraded. ConclusionThis study provided basis for the development of biological treatment of flotation wastewater in China and showed great significance for the improvement of ecological environment around the mines.
基金Supported by National High Technology Research and Development Program of China(2013AA102804B)Fund of Anhui Province Environmental Protection(2013-008)~~
文摘By using plate screening techniques with five phthalate esters (DMP, DEP, DBP, DEHP and DOP) as energy and carbon sources, an active strain was isolated from the sediments of Chaohu Lake, which was identified as Burkholderia pickettil and named B. pickettii.z-1. The biodegradation of five phthalate esters by B. pick- ettii.z-1 strain was in accordance with the pseudo first-order kinetic equation: Ct = C0.e-kt. As the concentration of phthalate esters increased, the degradation rate of phthalate esters was reduced. B. pickettii.z-1 strain exhibited remarkably different degradation effects on various PAEs. Specifically, short-side-chain DMP and DEP were degraded rapidly, while long-side-chain DBP and DEHP were degraded slowly.
基金supported by the National Key Technologies R & D Program of China (No. 2007BAC23B01)the Program of Department of Education, Jiangxi Province, China (No. 2007-41).
文摘The ability of Yarrowia lipolytica W29 immobilized by calcium alginate to degrade oil and chemical oxygen demand (COD) was examined. The degradation rules of oil and COD by immobilized cells with the cell density of 6.65 × 10^6 CFU/mL degraded 2000 mg/L oil and 2000 mg/L COD within 50 h at 30℃ (pH 7.0, 150 r/min), similarly to those of free cells, and the degradation efficiencies of oil and COD by immobilized cells were above 80%, respectively. The factors affecting oil and COD degradation by immobilized cells were investigated, the results showed that immobilized cells had high thermostability compared to that of free cells, and substrate concentration significantly affected degrading ability of immobilized cells. Storage stability and reusability tests revealed that the oil degradation ability of immobilized cells was stable after storing at 4~C for 30 d and reuse for 12 times, respectively, the COD degradation rate of immobilized cells was also maintained 82% at the sixth cycle. These results suggested that immobilized Y lipolytica might be applicable to a wastewater treatment system for the removal of oil and COD.
基金Project supported by the Undergraduate Research Foundation of Nankai University (2004).
文摘A new phenol-degrading bacterium with high biodegradation activity and high tolerance of phenol, strain PD 12, was isolated from the activated sludge of Tianjin Jizhuangzi Wastewater Treatment Facility in China. This strain was capable of removing 500 mg phenol/L in liquid minimal medium by 99.6% within 9 h and metabolizing phenol at concentrations up to 1100 mg/L. DNA sequencing and homologous analysis of 16S rRNA gene identified PD12 to be an Acinetobacter sp. Polyvinyl alcohol (PVA) was used as a gel matrix to immobilize Acinetobacter sp. strain PDI2 by repeated freezing and thawing. The factors affecting phenol degradation of immobilized cells were investigated, and the results showed that the immobilized cells could tolerate a high phenol level and protected the bacteria against changes in temperature and pH. Storage stability and reusability tests revealed that the phenol degradation functions of immobilized cells were stable after reuse for 50 times or storing at 4℃ for 50 d. These results indicate that immobilized Acinetobacter sp. strain PD 12 possesses a good application potential in the treatment of phenol-containing wastewater.
文摘More than 100 t of nitrobenzene (NB) and related compounds were discharged into the Songhua River,the fourth longest river in China,because of the world-shaking explosion of an aniline production factory located in Jilin City on November 13,2005.As one of the efforts to predict the fate of residual NB in the river,NB biodegradation abilities by microbes in the water and sediments from different river sections were evaluated systematically.The results indicated that microbial communities from any section of ...
基金supported by the Hi-Tech Research and Development Program (863) of China(No. 2006AA06A310)the National Natural Science Foundation of China(No.20476099)
文摘Response surface methodology (RSM) was employed to evaluate the optimum aerobic biodegradation of dichloromethane (DCM) in pure culture. The parameters investigated include the initial DCM concentration, glucose as an inducer and hydrogen peroxide as terminal electron acceptor (TEA). Maximum aerobic biodegradation efficiency was predicted to occur when the initial DCM concentration was 380 mg/L, glucose 13.72 mg/L, and H202 115 mg/L. Under these conditions the aerobic biodegradation rate reached up to 93.18%, which was significantly higher than that obtained under original conditions. Without addition of glucose degradation efficiencies were ≤ 80% at DCM concentrations ≤ 326 mg/L. When concentrations of DCM were more than 480 rag/L, the addition of hydrogen peroxide did not help to significantly increase DCM degradation efficiency. When DCM concentrations increased from 240 to 480 rag/L, the overall DCM degradation efficiency decreased from 91% to 60% in the presence of HaO2 for 120 mg/L.