期刊文献+
共找到42,807篇文章
< 1 2 250 >
每页显示 20 50 100
Facile Preparation of PVA-AA/TiO2 Composite Gel Particles and Their Tunable Photo-catalytic Property for the Degradation of Methyl Orange
1
作者 FANG Yanhong SU Xiaoying +1 位作者 QUAN Zhilong XIAO Congming 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第6期1479-1483,共5页
In the presence of titanium dioxide powder, cross-linking reaction between commercial polyvinyl alcohol(PVA)-based macromonomer and acrylic acid(AA) was initiated with potassium persulfate in an emulsifying system. As... In the presence of titanium dioxide powder, cross-linking reaction between commercial polyvinyl alcohol(PVA)-based macromonomer and acrylic acid(AA) was initiated with potassium persulfate in an emulsifying system. As a result, PVA-AA/TiO2 composite gel particles were obtained. The morphology and composition of the particles were analyzed with scanning electron microscopy(SEM), energy scattering x-ray spectroscopy(EDS), Fourier infrared spectroscopy(FTIR), and thermogravimetric analysis(TGA). The analysis results confirmed that the particles were the expected ones. TiO2 was dispersed homogeneously within the spheroidal particles. Compared to the control gel, the composite gel particles not only contained Ti element but also showed higher thermal stability. In addition, the photo-catalytic behavior of the particles for the degradation of methyl orange contained in aqueous solution was examined. The particles exhibited photocatalytic characteristic for the degradation of the model dye, which could be modulated by simply varying the amount of cross-linking agent or TiO2. The photo-catalytic degradation percentage of methyl orange maintained at 91%-96% after using the particles three times, which indicated that TiO2 could played its role repeatedly via being fixated within polyvinyl alcohol-based gel. 展开更多
关键词 titanium dioxide composite gel particles controlled preparation photo-catalytic degradation
下载PDF
Nanostructured ZnO/BiVO_(4)I-scheme heterojunctions for piezocatalytic degradation of organic dyes via harvesting ultrasonic vibration energy
2
作者 Yiling Li Xiaoyao Yu +2 位作者 Yingjie Zhou Yao Lin Ying Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期488-497,共10页
BiVO_(4)porous spheres modified by ZnO were designed and synthesized using a facile two-step method.The resulting ZnO/BiVO_(4)composite catalysts have shown remarkable efficiency as piezoelectric catalysts for degradi... BiVO_(4)porous spheres modified by ZnO were designed and synthesized using a facile two-step method.The resulting ZnO/BiVO_(4)composite catalysts have shown remarkable efficiency as piezoelectric catalysts for degrading Rhodamine B(RhB)unde mechanical vibrations,they exhibit superior activity compared to pure ZnO.The 40wt%ZnO/BiVO_(4)heterojunction composite displayed the highest activity,along with good stability and recyclability.The enhanced piezoelectric catalytic activity can be attributed to the form ation of an I-scheme heterojunction structure,which can effectively inhibit the electron-hole recombination.Furthermore,hole(h+)and superoxide radical(·O_(2)^(-))are proved to be the primary active species.Therefore,ZnO/BiVO_(4)stands as an efficient and stable piezoelectric catalyst with broad potential application in the field of environmental water pollution treatment. 展开更多
关键词 piezoelectric catalytic HETEROJUNCTION dye degradation ultrasonic vibration
下载PDF
Dynamic Regulation of Hydrogen Bonding Networks and Solvation Structures for Synergistic Solar‑Thermal Desalination of Seawater and Catalytic Degradation of Organic Pollutants
3
作者 Ming‑Yuan Yu Jing Wu +3 位作者 Guang Yin Fan‑Zhen Jiao Zhong‑Zhen Yu Jin Qu 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期548-565,共18页
Although solar steam generation strategy is efficient in desalinating seawater,it is still challenging to achieve continuous solar-thermal desalination of seawater and catalytic degradation of organic pollutants.Herei... Although solar steam generation strategy is efficient in desalinating seawater,it is still challenging to achieve continuous solar-thermal desalination of seawater and catalytic degradation of organic pollutants.Herein,dynamic regulations of hydrogen bonding networks and solvation structures are realized by designing an asymmetric bilayer membrane consisting of a bacterial cellulose/carbon nanotube/Co_(2)(OH)_(2)CO_(3)nanorod top layer and a bacterial cellulose/Co_(2)(OH)_(2)CO_(3)nanorod(BCH)bottom layer.Crucially,the hydrogen bonding networks inside the membrane can be tuned by the rich surface–OH groups of the bacterial cellulose and Co_(2)(OH)_(2)CO_(3)as well as the ions and radicals in situ generated during the catalysis process.Moreover,both SO_(4)^(2−)and HSO_(5)−can regulate the solvation structure of Na^(+)and be adsorbed more preferentially on the evaporation surface than Cl^(−),thus hindering the de-solvation of the solvated Na^(+)and subsequent nucleation/growth of NaCl.Furthermore,the heat generated by the solar-thermal energy conversion can accelerate the reaction kinetics and enhance the catalytic degradation efficiency.This work provides a flow-bed water purification system with an asymmetric solar-thermal and catalytic membrane for synergistic solar thermal desalination of seawater/brine and catalytic degradation of organic pollutants. 展开更多
关键词 Solar steam generation Seawater desalination Catalytic degradation Bacterial cellulose Cobalt hydroxycarbonate nanorods
下载PDF
Inhibition of protein degradation increases the Bt protein concentration in Bt cotton 被引量:2
4
作者 Yuting Liu Hanjia Li +6 位作者 Yuan Chen Tambel Leila.I.M Zhenyu Liu Shujuan Wu Siqi Sun Xiang Zhang Dehua Chen 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第6期1897-1909,共13页
Bacillus thuringiensis(Bt)cotton production is challenged by two main problems,i.e.,the low concentration of Bt protein at the boll setting stage and the lowest insect resistance in bolls among all the cotton plant’s... Bacillus thuringiensis(Bt)cotton production is challenged by two main problems,i.e.,the low concentration of Bt protein at the boll setting stage and the lowest insect resistance in bolls among all the cotton plant’s organs.Therefore,increasing the Bt protein concentration at the boll stage,especially in bolls,has become the main goal for increasing insect resistance in cotton.In this study,two protein degradation inhibitors(ethylene diamine tetra acetic acid(EDTA)and leupeptin)were sprayed on the bolls,subtending leaves,and whole cotton plants at the peak flowering stage of two Bt cultivars(medium maturation Sikang 1(SK1))and early maturation Zhongmian 425(ZM425)in 2019 and 2020.The Bt protein content and protein degradation metabolism were assessed.The results showed that the Bt protein concentrations were enhanced by 21.3 to 38.8%and 25.0 to 38.6%in the treated bolls of SK1 and ZM425 respectively,while they were decreased in the subtending leaves of these treated bolls.In the treated leaves,the Bt protein concentrations increased by 7.6 to 23.5%and 11.2 to 14.9%in SK1 and ZM425,respectively.The combined application of EDTA and leupeptin to the whole cotton plant increased the Bt protein concentrations in both bolls and subtending leaves.The Bt protein concentrations in bolls were higher,increasing by 22.5 to 31.0%and 19.6 to 32.5%for SK1 and ZM425,respectively.The organs treated with EDTA or/and leupeptin showed reduced free amino acid contents,protease and peptidase activities and significant enhancements in soluble protein contents.These results indicated that inhibiting protein degradation could improve the protein content,thus increasing the Bt protein concentrations in the bolls or/and leaves of cotton plants.Therefore,the increase in the Bt protein concentration without yield reduction suggested that these two protein degradation inhibitors may be applicable for improving insect resistance in cotton production. 展开更多
关键词 Bt cotton Bt protein inhibition of protein degradation protein degradation metabolism
下载PDF
Achieving high-efficient photocatalytic persulfate-activated degradation of tetracycline via carbon dots modified MIL-101(Fe)octahedrons 被引量:1
5
作者 Hao Yuan Xinhai Sun +2 位作者 Shuai Zhang Weilong Shi Feng Guo 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期298-309,共12页
The synergistic reaction of photocatalysis and advanced oxidation is a valid strategy for the degradation of harmful antibiotic wastewater.Herein,carbon dots(CDs)modified MIL-101(Fe)octahedrons to form CDs/MIL-101(Fe)... The synergistic reaction of photocatalysis and advanced oxidation is a valid strategy for the degradation of harmful antibiotic wastewater.Herein,carbon dots(CDs)modified MIL-101(Fe)octahedrons to form CDs/MIL-101(Fe)composite photocatalyst was synthesized for visible light-driven photocatalytic/persulfate(PS)-activated tetracycline(TC)degradation.The electron spin resonance(ESR)spectra,scavenging experiment and electrochemical analysis were carried out to reveal that the high visible light-driven photocatalytic degradation activity of TC over CDs/MIL-101(Fe)photocatalysts is not only ascribed to the production of free active radicals in the CDs/MIL-101(Fe)/PS system(·OH,·SO_(4-),^(1)O_(2),h^(+)and·O_(2)^(-))but also attributed to the consumption of electrons caused by the PS,which can suppress the recombination of photo-generated carriers as well as strong light scattering and electron trapping effects of CDs.Finally,the possible degradation pathways were proposed by analyzing intermediates via liquid chromatography-mass spectrometry technique.This research presents a rational design conception to construct a CDs/PS-based photocatalysis/advanced oxidation technology with high-efficient degradation activity for the remediation of organic antibiotic pollutant wastewater and for the improvement of carrier transport kinetics of photocatalysts. 展开更多
关键词 Carbon dots MIL-101(Fe) PHOTOCATALYTIC Persulfate activation Tetracycline degradation
下载PDF
Synergistic microcystin degradation by a novel bacterium isolated from shrimp pond and fulvic acids 被引量:1
6
作者 Genghua QIN Wei DAI +3 位作者 Xiangdong BI Jiang WU Weilin RUAN Yanzhao WANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第6期1817-1826,共10页
Using the Widdel medium with extracted microcystin(MC)as the sole carbon and nitrogen sources,the MC-degrading bacteria community S_6 was enriched from the sediment of Litopenaeus vannamei pond,and a novel MC-degradin... Using the Widdel medium with extracted microcystin(MC)as the sole carbon and nitrogen sources,the MC-degrading bacteria community S_6 was enriched from the sediment of Litopenaeus vannamei pond,and a novel MC-degrading bacteria strain was isolated from S_6.According to 16S rDNA gene sequence and biochemical characteristics,the isolated strain was identified and named Nitratireductor aquimarinus D_(1).Fulvic acid(FA),as a widely existing photosensitizer involved in MC photodegradation,coexists with MC-degrading bacteria in natural water.The synergistic effects of N.aquimarinus D_(1) and FA on MC degradation were evaluated via comparing the degradation rate of MC induced by N.aquimarinus D_(1) and FA alone and in combination under natural light conditions.Compared with the control group,the supplementation of N.aquimarinus D_(1) and FA alone or in combination could significantly increase the degradation rate of MC(P<0.05).In the first 36 h,the degradation effect of FA on MC was better than that of N.aquimarinus D_(1),but the degradation effect was opposite at 48 h.N.aquimarinus D_(1) and FA did not show synergistic effect on MC degradation until 48 h.In the application of N.aquimarinus and FA to degrade MC in aquaculture pond,there might be a time-lag effect in the synergistic degradation. 展开更多
关键词 synergistic degradation MICROCYSTIN N.aquimarinus D_1 fulvic acid
下载PDF
Carbon-doped CuFe_(2)O_(4) with C-O-M channels for enhanced Fenton-like degradation of tetracycline hydrochloride: From construction to mechanism 被引量:1
7
作者 Hong Qin Yangzhuo He +9 位作者 Piao Xu Yuan Zhu Han Wang Ziwei Wang Yin Zhao Haijiao Xie Quyang Tian Changlin Wang Ying Zeng Yicheng Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第4期732-747,共16页
Carbon-doped copper ferrite(C–CuFe_(2)O_(4))was synthesized by a simple two-step hydrothermal method,which showed enhanced tetracycline hydrochloride(TCH)removal efficiency as compared to the pure CuFe_(2)O_(4) in Fe... Carbon-doped copper ferrite(C–CuFe_(2)O_(4))was synthesized by a simple two-step hydrothermal method,which showed enhanced tetracycline hydrochloride(TCH)removal efficiency as compared to the pure CuFe_(2)O_(4) in Fenton-like reaction.A removal efficiency of 94%was achieved with 0.2 g L^(-1) catalyst and 20 mmol L^(-1) H_(2)O_(2) within 90 min.We demonstrated that 5%C–CuFe_(2)O_(4) catalyst in the presence of H_(2)O_(2) was significantly efficient for TCH degradation under the near-neutral pH(5–9)without buffer.Multiple techniques,including SEM,TEM,XRD,FTIR,Raman,XPS M€ossbauer and so on,were conducted to investigate the structures,morphologies and electronic properties of as-prepared samples.The introduction of carbon can effectively accelerate electron transfer by cooperating with Cu and Fe to activate H_(2)O_(2) to generate·OH and·O_(2)^(-).Particularly,theoretical calculations display that the p,p,d orbital hybridization of C,O,Cu and Fe can form C–O–Cu and C–O–Fe bonds,and the electrons on carbon can transfer to metal Cu and Fe along the C–O–Fe and C–O–Cu channels,thus forming electron-rich reactive centers around Fe and Cu.This work provides lightful reference for the modification of spinel ferrites in Fenton-like application. 展开更多
关键词 Fenton-like reaction CuFe_(2)O_(4) Tetracycline hydrochloride degradation
下载PDF
Synthesis of Cu2O/Ag Composite with Visible Light Photocatalytic Degradation Activity for in situ SERS Analysis 被引量:2
8
作者 吴义平 吴边边 唐祥虎 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2017年第2期166-172,I0001,共8页
A multifunctional Cu2O/Ag micro-nanocomposite, which has the characteristics of high cat- alytic activities under the visible light and high surface-enhanced Raman scattering (SERS) activity, was fabricated via a fa... A multifunctional Cu2O/Ag micro-nanocomposite, which has the characteristics of high cat- alytic activities under the visible light and high surface-enhanced Raman scattering (SERS) activity, was fabricated via a facile method and employed for the in situ SERS monitoring of the photocatalytic degradation reaction of crystal violet. Through the variation of the AgNO3 concentration, Ag content on the Cu2O template can be controllably tuned, which has great influence on the SERS effect. The results indicate that Ag nanopartieles form on the Cu2O nanoframes to obtain the Cu2O/Ag nanoeomposite, which can act as an excellent bifunetional platform for in situ monitoring of photocatalytic degradation of organic pollutions by SERS. 展开更多
关键词 Cuprous oxide Silver nanoparticle Surface-enhanced Raman scattering photo-catalytic degradation In situ detection
下载PDF
Microbial Degradation of Organic Contaminants in Streambed/Floodplain Sediments in Passaic River—New Jersey Area
9
作者 Taheim Evans English Meghann Trombetta +1 位作者 Alyssa Beres Yusuf Yildiz 《American Journal of Analytical Chemistry》 CAS 2024年第4期139-150,共12页
This paper is intended to explore soil organic matter and carbon isotope fractionation at three locations of the Passaic River to determine if microbial degradation of organic contaminants in soil is correlated to the... This paper is intended to explore soil organic matter and carbon isotope fractionation at three locations of the Passaic River to determine if microbial degradation of organic contaminants in soil is correlated to the surrounding physical environment. Microbial degradation of organic contaminants is important for the detoxification of toxic substances thereby minimizing stagnation in the environment and accumulating in the food chain. Since organic contaminants are not easily dissolved in water, they will penetrate sediment and end up enriching the adjacent soil. The hypothesis that we are testing is microbial activity and carbon isotope fractionation will be greater in preserved soils than urban soils. The reason why this is expected to be the case is the expectation of higher microbial activity in preserved environments due to less exposure to pollutants, better soil structure, higher organic matter content, and more favorable conditions for microbial growth. This is contrasted with urban soils, which are impacted by pollutants and disturbances, potentially inhibiting microbial activity. We wish to collect soil samples adjacent to the Passaic River at a pristine location, Great Swamp Wildlife Refuge, a suburban location, Goffle Brook Park, Hawthorne NJ, and an urban location, Paterson NJ. These soil samples will be weighed for soil organic matter (SOM) and weighed for isotope ratio mass spectrometry (IRMS) to test organic carbon isotopes. High SOM and δ13C depletion activity indicate microbial growth based on the characteristics of the soil horizon rather than the location of the soil sample which results in degradation of organic compounds. 展开更多
关键词 Organic Contaminant PCBS Microbial degradation Passaic River
下载PDF
Photocatalytic Degradation of Plastic Waste: Recent Progress and Future Perspectives
10
作者 Amra Bratovcic 《Advances in Nanoparticles》 CAS 2024年第3期61-78,共18页
Microplastics are persistent anthropogenic pollutants that have become a global concern due to their widespread distribution and unfamiliar threat to the environment and living organisms. Conventional technologies are... Microplastics are persistent anthropogenic pollutants that have become a global concern due to their widespread distribution and unfamiliar threat to the environment and living organisms. Conventional technologies are unable to fully decompose and mineralize plastic waste. Therefore, there is a need to develop an environmentally friendly, innovative and sustainable photocatalytic process that can destroy these wastes with much less energy and chemical consumption. In photocatalysis, various nanomaterials based on wide energy band gap semiconductors such as TiO2 and ZnO are used for the conversion of plastic contaminants into environmentally friendly compounds. In this work, the removal of plastic fragments by photocatalytic reactions using newly developed photocatalytic composites and the mechanism of photocatalytic degradation of microplastics are systematically investigated. In these degradation processes, sunlight or an artificial light source is used to activate the photocatalyst in the presence of oxygen. 展开更多
关键词 Plastic Waste Microplastics Photocatalytic Method degradation SEMICONDUCTORS Heterogeneous Photocatalysts
下载PDF
Mechanochemical synthesis of Ag/TiO_(2)@PANI nanocomposites for enhanced toluene photocatalytic degradation under near-ultraviolet light
11
作者 Qiulian Zhu Binghao Wang +3 位作者 Ying Mo Shengfan Liao Yinfei Chen Hanfeng Lu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第11期222-229,共8页
Photocatalytic oxidation technology is a promising green technology for degrading volatile organic compounds(VOCs)due to its non-toxic,environmentally friendly,energy-saving and affordable characteristics.In this pape... Photocatalytic oxidation technology is a promising green technology for degrading volatile organic compounds(VOCs)due to its non-toxic,environmentally friendly,energy-saving and affordable characteristics.In this paper,Ag/TiO_(2)@PANI-MC with high stability and activity was synthesized by the mechanochemical method.The designed Ag/TiO_(2)@PANI-MC were of high specific surface area,light absorption capacity and low recombination rate of electronehole pairs,which was demonstrated by various characterizations.When applied in photocatalytic toluene oxidation,the conversion is 17%at 20℃under 100 W high-pressure mercury lamp.This photocatalytic performance is with less temperature sensitivity and significantly improved compared with Ag/TiO_(2)or TiO_(2)catalysts.Furthermore,the reaction routine was also confirmed by gas chromatography-mass spectrometry and toluene was mineralized to CO_(2).More importantly,the Ag/TiO_(2)@PANI-MC indicated good reusability after three cycles,which was verified by the Fourier transform-infrared spectroscopy comparison with fresh and used catalysts.Our work proves a potential way of constructing nanocomposites based on mechanochemical synthesis for enhanced toluene photocatalytic degradation. 展开更多
关键词 TOLUENE Photocatalytic degradation Mechanochemical synthesis NANOCOMPOSITE
下载PDF
Biodegradation of Crystalline Chitin:A Review of Recent Advancement,Challenges,and Future Study Directions
12
作者 SONG Jianlin SU Haipeng +1 位作者 SUN Jianan MAO Xiangzhao 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第5期1319-1328,共10页
Chitin is the second most abundant renewable polysaccharide on Earth.The degradation of chitin into soluble and bioactive N-acetyl chitooligosaccharides(NCOSs)and N-acetyl-D-glucosamine(GlcNAc)has emerged as a pivotal... Chitin is the second most abundant renewable polysaccharide on Earth.The degradation of chitin into soluble and bioactive N-acetyl chitooligosaccharides(NCOSs)and N-acetyl-D-glucosamine(GlcNAc)has emerged as a pivotal step in the efficient and sustainable utilization of chitin resources.However,because of its dense structure,high crystallinity,and poor solubility,chitin typically needs pretreatment via chemical,physical,and other methods before enzymatic conversion to enhance the accessibility between substrates and enzyme molecules.Consequently,there has been considerable interest in exploring the direct biological degradation of crystalline chitin as a cost-effective and environment-friendly technology.This review endeavors to present several biological methods for the direct degradation of chitin.We primarily focused on the importance of chitinase containing chitin-binding domain(CBD).Additionally,various modification strategies for increasing the degradation efficiency of crystalline chitin were introduced.Subsequently,the review systematically elucidated critical components of multi-enzyme catalytic systems,highlighting their potential for chitin degradation.Furthermore,the application of microorganisms in the degradation of crystalline chitin was also discussed.The insights in this review contribute to the explorations and investigations of enzymatic and microbial approaches for the direct degradation of crystalline chitin,thereby fostering advancements in biomass conversion. 展开更多
关键词 crystalline chitin CHITINASE biological degradation engineering MICROORGANISMS
下载PDF
BiOBr nanosheets coupling with biomass carbon derived from locust leaves for enhanced photocatalytic degradation of rhodamine B
13
作者 Hongtao Wang Xiangrui Fan +4 位作者 Mingming Yan Tianyu Guo Xingfa Li Chao Chen Yu Qi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第10期31-43,共13页
A series of BiOBr@biomass carbon derived from locust leaves materials(BiOBr@BC)were fabricated and the photocatalytic property was investigated for photocatalytic degradation of rhodamine B(RhB)under visible light.The... A series of BiOBr@biomass carbon derived from locust leaves materials(BiOBr@BC)were fabricated and the photocatalytic property was investigated for photocatalytic degradation of rhodamine B(RhB)under visible light.The morphology,structure and photoelectrochemical properties of the photocatalysts were characterized by means of SEM,TEM,XRD,XPS,FT-IR,BET,PL,UV-vis/DRS,and EIS techniques.The results showed that the introduction of BC significantly enhanced the photocatalytic activity.When the content of biomass carbon(BC)in a composite is 3%(based on the mass of BiOBr),the obtained BiOBr@BC-3 exhibits excellent photocatalytic activity,degrading 99%of RhB within 20 min.The excellent degradation efficiency after the introduction of BC can be attributed to the enhanced visible light absorption,narrower band gap,and fast electron-hole pair separation rate.The photocatalytic mechanism on the degradation of RhB was illustrated based on the radicals'trapping experiments and semiconductor energy band position.The proposed material is expected to be of significant application value in the field of wastewater treatment. 展开更多
关键词 degradation Rhodamine B ADSORPTION BiOBr Renewable energy
下载PDF
Achieving high strength and rapid degradation in Mg-Gd-Ni alloys by regulating LPSO phase morphology combined with extrusion
14
作者 Kai Ma Jingfeng Wang +7 位作者 Yinhong Peng Chaoneng Dai Yuanlang Pan Ye Wang Danqian Wang Jinxing Wang Yanlong Ma Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2312-2326,共15页
In this study,Mg-13.2Gd-4.3Ni alloys containing continuous bulk-shaped long-period stacking ordered(LPSO),lamellar LPSO,and a small amount of eutectic phase were prepared,and the evolution of microstructure at differe... In this study,Mg-13.2Gd-4.3Ni alloys containing continuous bulk-shaped long-period stacking ordered(LPSO),lamellar LPSO,and a small amount of eutectic phase were prepared,and the evolution of microstructure at different extrusion temperatures and its influence on mechanical and degradation properties as well as corrosion mechanism were investigated.Preheating before extrusion can effectively promote the precipitation of lamellar LPSO in matrix.EX400 with higher volume fraction of non-DRXed grains exhibited higher strength,which was mainly due to strong texture,high dislocation density,and high volume fraction of lamellar LPSO.The EX420 with higher volume fraction of DRXed grains showed higher degradation rate,which was mainly due to the higher density of grain boundary.The EX400 exhibited excellent comprehensive properties with tensile yield strength(TYS)of 334 MPa,ultimate tensile strength(UTS)of 484 MPa and elongation(EL)of 7.4%,ultimate compressive strength(UCS)of 638 MPa and compressive yield strength(CYS)of 443 MPa,degradation rate of 86.1 mg/cm^(2)/h at 93℃in 3 wt.%KCl solution. 展开更多
关键词 Mg-Gd-Ni alloys LPSO Mechanical properties degradation rate
下载PDF
Molecular Dynamics-Based Simulation of Polyethylene Pipe Degradation in High Temperature and High Pressure Conditions
15
作者 Guowei Feng Qing Li +5 位作者 Yang Wang Nan Lin Sixi Zha Hang Dong Ping Chen Minjun Zheng 《Fluid Dynamics & Materials Processing》 EI 2024年第9期2139-2161,共23页
High-density polyethylene(HDPE)pipes have gradually become the first choice for gas networks because of their excellent characteristics.As the use of pipes increases,there will unavoidably be a significant amount of w... High-density polyethylene(HDPE)pipes have gradually become the first choice for gas networks because of their excellent characteristics.As the use of pipes increases,there will unavoidably be a significant amount of waste generated when the pipes cease their operation life,which,if improperly handled,might result in major environmental contamination issues.In this study,the thermal degradation of polyethylene materials is simulated for different pressures(10,50,100,and 150 MPa)and temperatures(2300,2500,2700,and 2900 K)in the framework of Reactive Force Field(ReaxFF)molecular dynamics simulation.The main gas products,density,energy,and the mean square displacement with temperature and pressure are also calculated.The findings indicate that raising the temperature leads to an increase in the production of gas products,while changing the pressure has an impact on the direction in which the products are generated;the faster the temperature drops,the less dense the air;both temperature and pressure increase impact the system’s energy conversion or distribution mechanism,changing the system’s potential energy as well as its total energy;the rate at which molecules diffuse increases with temperature,and decreases with pressure.The results of this investigation provide a theoretical basis for the development of the pyrolytic treatment of polyethylene waste materials. 展开更多
关键词 ReaxFF MD high-density polyethylene degradation TEMPERATURE PRESSURE
下载PDF
Defect mediated losses and degradation of perovskite solar cells:Origin impacts and reliable characterization techniques
16
作者 Himangshu Baishy Ramkrishna Das Adhikari +5 位作者 Mayur Jagdishbhai Patel Deepak Yadav Tapashi Sarmah Mizanur Alam Manab Kalita Parameswar Krishnan lyer 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期217-253,共37页
The rapid advancement of halide-based hybrid perovskite materials has garnered significant research attention,particularly in the domain of photovoltaic technology.Owing to their exceptional optoelec-tronic properties... The rapid advancement of halide-based hybrid perovskite materials has garnered significant research attention,particularly in the domain of photovoltaic technology.Owing to their exceptional optoelec-tronic properties,they demonstrated power conversion efficiency(PcE)of over 25%in single junction solar cells.Despite the notable progress in PCE over the past decade,the inherent high defect density pre-senting in perovskite materials gives rise to several loss mechanisms and associated ion migration in per-ovskite solar cells(PsCs)during operational conditions.These factors collectively contribute to a significant stability challenge in PsCs,placing their longevity far behind for commercialization.While numerous reports have explored defects,ion migration,and their impacts on device performance,a com-prehensive correlation between the types of defects and the degradation kinetics of perovskite materials and PsCs has been lacking.In this context,this review aims to provide a comprehensive overview of the origins of defects and ion migration,emphasizing their correlation with the degradation kinetics of per-ovskite materials and PsCs,leveraging reliable characterization techniques.Furthermore,these charac-terization techniques are intended to comprehend loss mechanisms by different passivation approaches to enhance the durability and PCE of PSCs. 展开更多
关键词 Perovskite solar cells Defects lon migration degradation Stability
下载PDF
Genome Sequencing,Probiotic Analysis,and Oxalate Degradation Modification of Limosilactobacillus reuteri Q35
17
作者 NIU Dong-Yu KONG Ling-Hui +1 位作者 LIU Xiang-Yong QIN Jia-Yang 《中国生物化学与分子生物学报》 CAS CSCD 北大核心 2024年第11期1585-1595,共11页
Limosilactobacillus reuteri is a microbe intricately linked to humans and animal health.A thorough assessment of its safety and potential benefits is imperative prior to its application in human and animals.In this in... Limosilactobacillus reuteri is a microbe intricately linked to humans and animal health.A thorough assessment of its safety and potential benefits is imperative prior to its application in human and animals.In this investigation,we performed a comprehensive analysis encompassing genome sequencing,genomic analysis,and phenotypic characterization of L.reuteri Q35,an exceptionally proficient producer of reuterin.The whole genome sequencing results showed that the complete genome sequence spans 2145158 bp with a GC content of 38.9%and encompasses 2121 genes.Initial identification of antibiotic-resistant genes,virulence factors,and toxin-coding genes in the genome substantiated the strain’s low-risk status.Subsequent tests for antibiotic resistance,acute oral toxicology,and hemolysis further confirmed its elevated safety level.The genome of L.reuteri Q35 was found to contain genes associated with adhesion and stress tolerance.Following exposure to artificial gastric juice and bile salt,the strain exhibited a higher survival rate and demonstrated a strong scavenging ability for hydroxyl free radicals in antioxidant capacity tests.These findings suggested that L.reuteri Q35 possesses unique probiotic properties.Additionally,the genome of strain Q35 harbors three truncated oxaloyl-CoA decarboxylase genes(oxc1,oxc2 and oxc3),overexpression of which resulted in a significant increase in ammonium oxalate degradation from 29.5%to 48.8%.These findings highlight that L.reuteri Q35 exhibits both favorable safety characteristics alongside beneficial properties,making it a promising candidate for treating metabolic disorders such as hyperoxaluria. 展开更多
关键词 Limosilactobacillus reuteri genomic analysis SAFETY probiotic oxalate degradation
下载PDF
A Generalized Gibbs Potential Model for Materials Degradation
18
作者 J. W. McPherson 《World Journal of Condensed Matter Physics》 CAS 2024年第4期107-127,共21页
It is well known that work done on a material by conservative forces (electrical, mechanical, chemical) will increase the Gibbs Potential of the material. The increase in Gibbs Potential can be stored in the material ... It is well known that work done on a material by conservative forces (electrical, mechanical, chemical) will increase the Gibbs Potential of the material. The increase in Gibbs Potential can be stored in the material and is free/available to do work at some later time. However, it will be shown in this paper that while in this state of higher Gibbs potential, the material is metastable and the material will degrade spontaneously/naturally with time in an effort to reach a lower Gibbs Potential. A generalized Gibbs Potential Model is developed herein to better understand its impact on a materials degradation rate. Special attention will be given to dielectrics degradation. 展开更多
关键词 Materials degradation degradation Rate Gibbs Potential Gibbs Free Energy Activation Energy Dielectrics Dielectric Breakdown Time-Dependent Dielectric Breakdown TDDB Bond Breakage Thermochemical E-Model
下载PDF
Equivalent linear model for seismic damage evaluation of single-degree-of-freedom systems representing reinforced concrete structures considering cyclic degradation behavior
19
作者 Lulu Yan Ding-Hao Yu 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第3期637-648,共12页
In this study,a novel equivalent damping ratio model that is suitable for reinforced concrete(RC)structures considering cyclic degradation behavior is developed,and a new equivalent linearization analysis method for i... In this study,a novel equivalent damping ratio model that is suitable for reinforced concrete(RC)structures considering cyclic degradation behavior is developed,and a new equivalent linearization analysis method for implementing the proposed equivalent damping ratio model for use in seismic damage evaluation is presented.To this end,Ibarra’s peak-oriented model,which incorporates an energy-based degradation rule,is selected for representing hysteretic behavior of RC structure,and the optimized equivalent damping for predicting the maximum displacement response is presented by using the empirical method,in which the effect of cyclic degradation is considered.Moreover,the relationship between the hysteretic energy dissipation of the inelastic system and the elastic strain energy of the equivalent linear system is established so that the proposed equivalent linear system can be directly integrated with the Park-Ang seismic model to implement seismic damage evaluation.Due to the simplicity of the equivalent linearization method,the proposed method provides an efficient and reliable way of obtaining comprehensive insight into the seismic performance of RC structures.The verification demonstrates the validity of the proposed method. 展开更多
关键词 degrading system equivalent linear system equivalent damping seismic damage RC structures
下载PDF
Facilitated Prediction of Micropollutant Degradation via UV-AOPs in Various Waters by Combining Model Simulation and Portable Measurement
20
作者 Yanyan Huang Mengkai Li +3 位作者 Zhe Sun Wentao Li James R.Bolton Zhimin Qiang 《Engineering》 SCIE EI CAS CSCD 2024年第6期87-95,共9页
The degradation of micropollutants in water via ultraviolet(UV)-based advanced oxidation processes(AOPs)is strongly dependent on the water matrix.Various reactive radicals(RRs)formed in UV-AOPs have different reaction... The degradation of micropollutants in water via ultraviolet(UV)-based advanced oxidation processes(AOPs)is strongly dependent on the water matrix.Various reactive radicals(RRs)formed in UV-AOPs have different reaction selectivities toward water matrices and degradation efficiencies for target micropollutants.Hence,process selection and optimization are crucial.This study developed a facilitated prediction method for the photon fluence-based rate constant for micropollutant degradation(K′_(p,MP))in various UV-AOPs by combining model simulation with portable measurement.Portable methods for measuring the scavenging capacities of the principal RRs(RRSCs)involved in UV-AOPs(i.e.,HO^(·),SO_(4)^(·-),and Cl^(·))using a mini-fluidic photoreaction system were proposed.The simulation models consisted of photochemical,quantitative structure–activity relationship,and radical concentration steady-state approximation models.The RRSCs were determined in eight test waters,and a higher RRSC was found to be associated with a more complex water matrix.Then,by taking sulfamethazine,caffeine,and carbamazepine as model micropollutants,the k′_(p,MP) values in various UV-AOPs were predicted and further verified experimentally.A lower k′_(p,MP) was found to be associated with a higher RRSC for a stronger RR competition;for example,k′_(p,MP) values of 130.9 and 332.5 m^(2) einstein^(–1),respectively,were obtained for carbamazepine degradation by UV/H_(2)O_(2) in the raw water(RRSC=9.47×10^(4) s^(-1))and sand-filtered effluent(RRSC=2.87×10^(4) s^(-1))of a drinking water treatment plant.The developed method facilitates process selection and optimization for UV-AOPs,which is essential for increasing the efficiency and cost-effectiveness of water treatment. 展开更多
关键词 UV-AOPs Micropollutant degradation Reactive radicals Water matrix Model simulation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部