Perpendicular optical reversal of the linear dichroism transition has promising applications in polarization-sensitive optoelectronic devices. We perform a systematical study on the in-plane optical anisotropy of quas...Perpendicular optical reversal of the linear dichroism transition has promising applications in polarization-sensitive optoelectronic devices. We perform a systematical study on the in-plane optical anisotropy of quasi-one-dimensional PdBr_(2) by using combined measurements of the angle-resolved polarized Raman spectroscopy(ARPRS) and anisotropic optical absorption spectrum. The analyses of ARPRS data validate the anisotropic Raman properties of the PdBr_(2) flake.And anisotropic optical absorption spectrum of PdBr_(2) nanoflake demonstrates distinct optical linear dichroism reversal. Photodetector constructed by PdBr_(2) nanowire exhibits high responsivity of 747 A·W^(-1) and specific detectivity of 5.8×10^(12) Jones. And the photodetector demonstrates prominent polarization-sensitive photoresponsivity under 405-nm light irradiation with large photocurrent anisotropy ratio of 1.56, which is superior to those of most of previously reported quasi-one-dimensional counterparts. Our study offers fundamental insights into the strong optical anisotropy exhibited by PdBr_(2), establishing it as a promising candidate for miniaturization and integration trends of polarization-related applications.展开更多
In this study,circular dichroism(CD)and molecular dynamics(MD)simulation were used to investigate the thermal unfolding pathway of staphylococcal enterotoxin B(SEB)at temperatures of 298–371 and 298–500 K,and the re...In this study,circular dichroism(CD)and molecular dynamics(MD)simulation were used to investigate the thermal unfolding pathway of staphylococcal enterotoxin B(SEB)at temperatures of 298–371 and 298–500 K,and the relationship between the experimental and simulation results were explored.Our computational findings on the secondary structure of SEB showed that at room temperature,the CD spectroscopic results were highly consistent with the MD results.Moreover,under heating conditions,the changing trends of helix,sheet and random coil obtained by CD spectral fitting were highly consistent with those obtained by MD.In order to gain a deeper understanding of the thermal stability mechanism of SEB,the MD trajectories were analyzed in terms of root mean square deviation(RMSD),secondary structure assignment(SSA),radius of gyration(R_(g)),free energy surfaces(FES),solvent-accessible surface area(SASA),hydrogen bonds and salt bridges.The results showed that at low heating temperature,domain Ⅰ without loops(omitting the mobile loop region)mainly relied on hydrophobic interaction to maintain its thermal stability,whereas the thermal stability of domain Ⅱ was mainly controlled by salt bridges and hydrogen bonds.Under high heating temperature conditions,the hydrophobic interactions in domain Ⅰ without loops were destroyed and the secondary structure was almost completely lost,while domain Ⅱ could still rely on salt bridges as molecular staples to barely maintain the stability of the secondary structure.These results help us to understand the thermodynamic and kinetic mechanisms that maintain the thermal stability of SEB at the molecular level,and provide a direction for establishing safer and more effective food sterilization processes.展开更多
Chirality hold broad applications in life sciences,quantum devices,and various other areas.Traditionally,molecular chirality can be characterized by using steady-state circular dichroism spectroscopy.However,the techn...Chirality hold broad applications in life sciences,quantum devices,and various other areas.Traditionally,molecular chirality can be characterized by using steady-state circular dichroism spectroscopy.However,the techniques that can characterize excited state chirality are progressively capturing the public interest as it can provide the dynamic information for chirality generation and transfer.In this review,we focus on the theoretical background and the developmental history of femtosecond time-resolved circular dichroism spectroscopy(TRCD)techniques around the world.Additionally,we provide examples to showcase the utility of these techniques in the analysis of the dynamical molecular chemical structures,the investigation of molecular chirality generation,and the detection of electron spin dynamics in semiconductor quantum dots.展开更多
Three series of amorphous copolymers containing azobenzene groups with various substituents and certain amounts of crosslinkable acrylic groups were prepared. The cross-linked polymer films were obtained by thermal po...Three series of amorphous copolymers containing azobenzene groups with various substituents and certain amounts of crosslinkable acrylic groups were prepared. The cross-linked polymer films were obtained by thermal polymerization of the acrylic groups in the copolymers, during which, by controlling the time of cross-linking reaction, the films can be made with different cross-linking degree (from 0 to 32%, which was monitored by FT-IR spectra measurement). Photo-induced alignment process of the films was performed under irradiation with linearly polarized light at 442 nm, and the effect of cross-linking degree on the photo-induced alignment rate was investigated. The dynamics of the photo-induced alignment was analyzed with biexponential curve fitting. The photo-induced alignment rate and the maximum transmittance of the films decreased because of the cross-linking. Furthermore, for the cross-linked samples, it was found that their saturated value of transmittances keep constant after repeated "writing" and "erasing" cycles. The findings reveal that the cross-linking of the film can effectively restrain the phototactic mass transport of azopolymer during irradiation by polarized light. The relationship between the cross-linking degree and the photo-induced alignment behavior of azopolymer is discussed in detail.展开更多
Photo-induced intramolecular electron transfer (PIET) and intramolecular vibrational relaxation (IVR) dynamics of the excited state of rhodamine 6G (Rh6G+) in DMSO are investigated by multiplex transient gratin...Photo-induced intramolecular electron transfer (PIET) and intramolecular vibrational relaxation (IVR) dynamics of the excited state of rhodamine 6G (Rh6G+) in DMSO are investigated by multiplex transient grating. Two major compo- nents are resolved in the dynamics of Rh6G+. The first component, with a lifetime τTPIET = 140 fs-260 fs, is attributed to PIET from the phenyl ring to the xanthene plane. The IVR process occurring in the range ZIVR = 3.3 ps-5.2 ps is much slower than the first component. The PIET and IVR processes occurring in the excited state of Rh6G+ are quantitatively determined, and a better understanding of the relationship between these processes is obtained.展开更多
The emeraldine base form of polyaniline (PANI) can be doped by a photo-induced doping method. In this method a. copolymer of vinylidene chloride and methyl acrylate (VCMAC) was used as photo acid generator which can r...The emeraldine base form of polyaniline (PANI) can be doped by a photo-induced doping method. In this method a. copolymer of vinylidene chloride and methyl acrylate (VCMAC) was used as photo acid generator which can release proton when it is exposed to ultraviolet light (lambda = 254 nm). The structure of PANI-VCMAC system before and after irradiation was characterized by elemental analysis, IR, XTP, anti SEM images. Results obtained indicate that the photo-induced doping characteristics, such as doping position and type of charge carriers, are similar to that of PANI doped with HCl. The poor room-temperature conductivity (similar to 10-S-5/cm) of PANI-VCMAC system after irradiation may be due to low doping degree (similar to pH=3) and the difference in morphology as compared with PANI-HCl film.展开更多
Femtosecond pump probe spectroscopy is employed to study the photo-induced absorption feature in the single-walled carbon nanotube transient spectrum. The two advantages of the experiment, a chirality enriched sample ...Femtosecond pump probe spectroscopy is employed to study the photo-induced absorption feature in the single-walled carbon nanotube transient spectrum. The two advantages of the experiment, a chirality enriched sample and tuning the pump wavelength to the resonance of a specific nanotube species, greatly facilitate the identification of the photo-induced absorption signal of one tube species. It is found that a photo-induced absorption feature is located at one radial breathing mode to the blue side of the E11 state. This finding prompts a new explanation for the origin of the photo-induced absorption: the transition from the ground state to a phonon coupled state near the E ii state. The explanation suggests a superposition mechanism of the photo-bleach and photo-induced absorption signals, which may serve as a key to the interpretation of the complex pump probe transient spectrum of carbon nanotubes. The finding sheds some light on the understanding of the complex non-radiative relaxation process and the electronic structure of single-walled carbon nanotubes.展开更多
GeS4 bulk glasses were prepared by the melt-quench technique and the samples were irradiated by 532-nm linearly polarized light. After the laser treatment, the photo-induced changes of the samples were investigated by...GeS4 bulk glasses were prepared by the melt-quench technique and the samples were irradiated by 532-nm linearly polarized light. After the laser treatment, the photo-induced changes of the samples were investigated by UV-1601 speetrophotometer and optical second-order nonlinear tester. The results show that the transmittance of the samples around 532 nm obviously decreases and Bragg reflector forms, which is due to the production of photon-generated carriers. With the increase of laser pulse energy or the extension of irradiation duration, the Bragg reflector increases and gradually tends to be stable. These can be ascribed to the excitation- capture process of the carriers. After irradiation, the relaxation phenomenon results from the release of part of the absorbed energy in the glass matrix. And the fitting equation of the relaxation process is consistent with a conventional Kohlrausch stretched exponential function. The origin of the second harmonic generation (SHG) is because of the dipole reorientation caused by the photo-induced anisotropy in the glass.展开更多
Surface enhanced Raman scattering (SERS) spectroscopy was first utilized to study the photo-orientation behaviour of the photoreactive groups on a novel photo-alignment film surface and elucidate the generation mechan...Surface enhanced Raman scattering (SERS) spectroscopy was first utilized to study the photo-orientation behaviour of the photoreactive groups on a novel photo-alignment film surface and elucidate the generation mechanism of pretilt angle. The novel photo-alignment film was prepared by spin-coating a solution of ladderlike polysiloxane (LPS) bearing dual photoreactive group on an ITO surface and by irradiation with linear-polarized ultraviolet (LPUV) light A Si—H terminal compound (M) containing an identical photosensitive part has been used to fabricate a model film for SERS investigation.展开更多
By using first-principles simulations based on time-dependent density functional theory, the chemical reaction of an HCl molecule encapsulated in C60 induced by femtosecond laser pulses is observed. The H atom starts ...By using first-principles simulations based on time-dependent density functional theory, the chemical reaction of an HCl molecule encapsulated in C60 induced by femtosecond laser pulses is observed. The H atom starts to leave the Cl atom and is reflected by the C60 wall. The coherent nuclear dynamic behaviors of bond breakage and recombination of the HCl molecule occurring in both polarized parallel and perpendicular to the H-Cl bond axis are investigated. The radial oscillation is also found in the two polarization directions of the laser pulse. The relaxation time of the H-Cl bond lengths in transverse polarization is slow in comparison with that in longitudinal polarization. Those results are important for studying the dynamics of the chemical bond at an atomic level.展开更多
The initiation mechanism of the copolymerization of 2-vinylnaphthalene with maleic anhydride was studied under irradiation of 365 nm. The excited complex was formed from (1) the local excitation of 2-vinylnaphthalene ...The initiation mechanism of the copolymerization of 2-vinylnaphthalene with maleic anhydride was studied under irradiation of 365 nm. The excited complex was formed from (1) the local excitation of 2-vinylnaphthalene followed by the charge-transfer interaction with maleic anhydride and (2) the excitation of the ground state charge-transfer complex, and then it collapsed to 1,4-tetramethylene biradical for initiation. A1: 1 alternating copolymer was formed in different monomer feeds. Addition of benzophenone could greatly enhance the rate of copolymerization through energy-transfer mechanism.展开更多
Diphenyl-2, 2-dicyanoethylene reacts with 10-methyl-9, 10-dihydroacridine in deaerated acetonitrile under irradiation with l>320 nm to give the coupling product 1, 1-diphenyl-1-(10-methyl-9-acridinyl)-2, 2-dicyanoe...Diphenyl-2, 2-dicyanoethylene reacts with 10-methyl-9, 10-dihydroacridine in deaerated acetonitrile under irradiation with l>320 nm to give the coupling product 1, 1-diphenyl-1-(10-methyl-9-acridinyl)-2, 2-dicyanoethane, which has been characterized by X-ray crystallographic, MS and NMR analyses.展开更多
The investigation of electrical properties in alexandrite (BeAl<sub>2</sub>O<sub>4</sub>:Cr<sup>3+</sup>) in synthetic and natural forms is presented in this paper. Alexandrite is a...The investigation of electrical properties in alexandrite (BeAl<sub>2</sub>O<sub>4</sub>:Cr<sup>3+</sup>) in synthetic and natural forms is presented in this paper. Alexandrite is a rare and precious mineral that changes color according to the light incident on it. In the synthetic form, it is used technologically as an active laser medium. The electrical characterization was obtained using the Thermally Stimulated Depolarization Current (TSDC) technique, an interesting tool to study the behavior of impurities in insulators. Alexandrite presented the electric dipole relaxation phenomenon, both in natural and in synthetic samples. It was possible to observe TSDC bands for the synthetic sample at around 170 K, and at around 175 K for the natural sample. Besides, photo-induced TSDC measurements were performed through the excitement of the samples by using a continuous wave argon laser. In addition, photoluminescence measurements were performed to verify in advance whether the laser light would be absorbed by the sample, and in order to complement the photo-induced TSDC measurements analysis. The results of photo-induced TSDC experiments have contributed to the understanding of the TSDC bands behavior: the results obtained with the technique suggest that there is an effective participation of Cr<sup>3+</sup> ions in the formation of TSDC bands because they were more intense when the sample was exposed to the argon laser beam.展开更多
Chiral nanostructures have attracted much attention due to the valuable applications in biochemistry, medicine industries, and photonic devices. In this study, we propose an ease-of-fabrication planar nanostructure th...Chiral nanostructures have attracted much attention due to the valuable applications in biochemistry, medicine industries, and photonic devices. In this study, we propose an ease-of-fabrication planar nanostructure that consists of rectangular nanohole arrays in which the Z-shaped nanorod is arranged. Theoretically, such chiral nanostructure supports significant absorption circular dichroism (CD) compared with the Z-shaped nanorod because charge distributions are tuned after the introduction of the rectangular frame. Meanwhile, the Z-shaped nanorod directs the flow of current on the rectangular frame, thereby generating the effective quadruple electron oscillation in the Z-shaped nanorod. A novel mode also emerges when an identical Z-shaped nanorod is added into the rectangular hole. The studies will provide a novel approach to enhance the CD effect of planar structures. .展开更多
We systematically investigate the phonon dichroism in proximitized graphene with broken time-reversal symmetry.We find that in the absence of any type of spin–orbit coupling,phonon dichroism vanishes.Linear and circu...We systematically investigate the phonon dichroism in proximitized graphene with broken time-reversal symmetry.We find that in the absence of any type of spin–orbit coupling,phonon dichroism vanishes.Linear and circular phonon dichroism occur in the presence of uniform(staggered)intrinsic spin–orbit coupling and ferromagnetic(antiferromagnetic)exchange coupling.All these situations can be distinguished by their specific behaviors of phonon absorption at the transition point.Our finding provides new possibilities to use phonon dichroism to identify the form of spin–orbit coupling and exchange coupling in proximitized graphene on various magnetic substrates.展开更多
Linear dichroism (LD) spectroscopy is an important technique in the study of the orientation and organization of pigments in the photosynthetic membrane complexes in vivo and in vitro . In this work, the orient...Linear dichroism (LD) spectroscopy is an important technique in the study of the orientation and organization of pigments in the photosynthetic membrane complexes in vivo and in vitro . In this work, the orientation of the pigments in the isolated photosystem Ⅱ (PSⅡ) sub_core reaction center complexes was analyzed and characterized by means of low temperature absorption and LD spectroscopy. The preparations containing different amounts of CP47 isolated from spinach (Spinacia oleracea L.) chloroplast were used in order to investigate the orientation of pigments in the PSⅡ sub_core CP47/D1/D2/Cyt b_559 (CP47/D1/D2) complexes. Chlorophyll a (Chl a) absorbing at 680 nm in CP47/D1/D2/Cyt b_559 complex showed an orientation of the Q y transition parallel to the membrane plane. It is proposed that there are two forms of β_carotene (β_Car) in CP47/D1/D2/Cyt b_559 complex, denoted as β_Car (Ⅰ) and β_Car (Ⅱ), with different orientations, β_Car (Ⅰ) at 470 and 505 nm is roughly parallel to the membrane plane, and β_Car (Ⅱ) at 460 and 490 nm seems to be perpendicular orientation. Upon the photoinhibitory experiment β_Car (Ⅱ) was found to be photosensitive and easily photodamaged. It also showed that the positive LD signal observed at 680 nm was quite complicated. This signal is tentatively attributed to P680 and some Chl a of antenna in CP47 protein based upon our measurements.展开更多
基金Project supported by the National Key Research and Development Program of China (Grant Nos. 2022YFA1403203 and 2021YFA1600201)the National Natural Science Foundation of China (Grant No. 12274414)the Basic Research Program of the Chinese Academy of Sciences Based on Major Scientific Infrastructures (Contract No. JZHKYPT-2021-08)。
文摘Perpendicular optical reversal of the linear dichroism transition has promising applications in polarization-sensitive optoelectronic devices. We perform a systematical study on the in-plane optical anisotropy of quasi-one-dimensional PdBr_(2) by using combined measurements of the angle-resolved polarized Raman spectroscopy(ARPRS) and anisotropic optical absorption spectrum. The analyses of ARPRS data validate the anisotropic Raman properties of the PdBr_(2) flake.And anisotropic optical absorption spectrum of PdBr_(2) nanoflake demonstrates distinct optical linear dichroism reversal. Photodetector constructed by PdBr_(2) nanowire exhibits high responsivity of 747 A·W^(-1) and specific detectivity of 5.8×10^(12) Jones. And the photodetector demonstrates prominent polarization-sensitive photoresponsivity under 405-nm light irradiation with large photocurrent anisotropy ratio of 1.56, which is superior to those of most of previously reported quasi-one-dimensional counterparts. Our study offers fundamental insights into the strong optical anisotropy exhibited by PdBr_(2), establishing it as a promising candidate for miniaturization and integration trends of polarization-related applications.
文摘In this study,circular dichroism(CD)and molecular dynamics(MD)simulation were used to investigate the thermal unfolding pathway of staphylococcal enterotoxin B(SEB)at temperatures of 298–371 and 298–500 K,and the relationship between the experimental and simulation results were explored.Our computational findings on the secondary structure of SEB showed that at room temperature,the CD spectroscopic results were highly consistent with the MD results.Moreover,under heating conditions,the changing trends of helix,sheet and random coil obtained by CD spectral fitting were highly consistent with those obtained by MD.In order to gain a deeper understanding of the thermal stability mechanism of SEB,the MD trajectories were analyzed in terms of root mean square deviation(RMSD),secondary structure assignment(SSA),radius of gyration(R_(g)),free energy surfaces(FES),solvent-accessible surface area(SASA),hydrogen bonds and salt bridges.The results showed that at low heating temperature,domain Ⅰ without loops(omitting the mobile loop region)mainly relied on hydrophobic interaction to maintain its thermal stability,whereas the thermal stability of domain Ⅱ was mainly controlled by salt bridges and hydrogen bonds.Under high heating temperature conditions,the hydrophobic interactions in domain Ⅰ without loops were destroyed and the secondary structure was almost completely lost,while domain Ⅱ could still rely on salt bridges as molecular staples to barely maintain the stability of the secondary structure.These results help us to understand the thermodynamic and kinetic mechanisms that maintain the thermal stability of SEB at the molecular level,and provide a direction for establishing safer and more effective food sterilization processes.
基金funded by the National Natural Science FoundationofChina(No.92156024and No.92356307 to Jinquan Chen)Menghui Jia thanks the Materials Characterization Center and the Office of Laboratory and Equipment of East China Normal University for funding support(ECNUETR2023-13).
文摘Chirality hold broad applications in life sciences,quantum devices,and various other areas.Traditionally,molecular chirality can be characterized by using steady-state circular dichroism spectroscopy.However,the techniques that can characterize excited state chirality are progressively capturing the public interest as it can provide the dynamic information for chirality generation and transfer.In this review,we focus on the theoretical background and the developmental history of femtosecond time-resolved circular dichroism spectroscopy(TRCD)techniques around the world.Additionally,we provide examples to showcase the utility of these techniques in the analysis of the dynamical molecular chemical structures,the investigation of molecular chirality generation,and the detection of electron spin dynamics in semiconductor quantum dots.
基金This work was supported by the National Natural Science Foundation of China (No.50573071, No.50533040, No.50703038, No.50773075, and No.50640420265), the National Basic Research Program of China (No.2006cb302900), and the Chinese Academy of Sciences (No.kjcx2.yw.H02).
文摘Three series of amorphous copolymers containing azobenzene groups with various substituents and certain amounts of crosslinkable acrylic groups were prepared. The cross-linked polymer films were obtained by thermal polymerization of the acrylic groups in the copolymers, during which, by controlling the time of cross-linking reaction, the films can be made with different cross-linking degree (from 0 to 32%, which was monitored by FT-IR spectra measurement). Photo-induced alignment process of the films was performed under irradiation with linearly polarized light at 442 nm, and the effect of cross-linking degree on the photo-induced alignment rate was investigated. The dynamics of the photo-induced alignment was analyzed with biexponential curve fitting. The photo-induced alignment rate and the maximum transmittance of the films decreased because of the cross-linking. Furthermore, for the cross-linked samples, it was found that their saturated value of transmittances keep constant after repeated "writing" and "erasing" cycles. The findings reveal that the cross-linking of the film can effectively restrain the phototactic mass transport of azopolymer during irradiation by polarized light. The relationship between the cross-linking degree and the photo-induced alignment behavior of azopolymer is discussed in detail.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.21003033 and 21203047)the Guangxi Provincial Natural Science Foundation,China(Grant Nos.2012GXNSFBA053012 and 2014GXNSFAA118019)the Research Foundation of Education Bureau of Guangxi Zhuang Autonomous Region,China(Grant No.ZD2014127)
文摘Photo-induced intramolecular electron transfer (PIET) and intramolecular vibrational relaxation (IVR) dynamics of the excited state of rhodamine 6G (Rh6G+) in DMSO are investigated by multiplex transient grating. Two major compo- nents are resolved in the dynamics of Rh6G+. The first component, with a lifetime τTPIET = 140 fs-260 fs, is attributed to PIET from the phenyl ring to the xanthene plane. The IVR process occurring in the range ZIVR = 3.3 ps-5.2 ps is much slower than the first component. The PIET and IVR processes occurring in the excited state of Rh6G+ are quantitatively determined, and a better understanding of the relationship between these processes is obtained.
基金The work was supported by the National Natural Science Foundation of China
文摘The emeraldine base form of polyaniline (PANI) can be doped by a photo-induced doping method. In this method a. copolymer of vinylidene chloride and methyl acrylate (VCMAC) was used as photo acid generator which can release proton when it is exposed to ultraviolet light (lambda = 254 nm). The structure of PANI-VCMAC system before and after irradiation was characterized by elemental analysis, IR, XTP, anti SEM images. Results obtained indicate that the photo-induced doping characteristics, such as doping position and type of charge carriers, are similar to that of PANI doped with HCl. The poor room-temperature conductivity (similar to 10-S-5/cm) of PANI-VCMAC system after irradiation may be due to low doping degree (similar to pH=3) and the difference in morphology as compared with PANI-HCl film.
文摘Femtosecond pump probe spectroscopy is employed to study the photo-induced absorption feature in the single-walled carbon nanotube transient spectrum. The two advantages of the experiment, a chirality enriched sample and tuning the pump wavelength to the resonance of a specific nanotube species, greatly facilitate the identification of the photo-induced absorption signal of one tube species. It is found that a photo-induced absorption feature is located at one radial breathing mode to the blue side of the E11 state. This finding prompts a new explanation for the origin of the photo-induced absorption: the transition from the ground state to a phonon coupled state near the E ii state. The explanation suggests a superposition mechanism of the photo-bleach and photo-induced absorption signals, which may serve as a key to the interpretation of the complex pump probe transient spectrum of carbon nanotubes. The finding sheds some light on the understanding of the complex non-radiative relaxation process and the electronic structure of single-walled carbon nanotubes.
基金Supported by the Natural Science Foundation of Hubei Province(No.2013CFA008)NCET(No.11-0687)
文摘GeS4 bulk glasses were prepared by the melt-quench technique and the samples were irradiated by 532-nm linearly polarized light. After the laser treatment, the photo-induced changes of the samples were investigated by UV-1601 speetrophotometer and optical second-order nonlinear tester. The results show that the transmittance of the samples around 532 nm obviously decreases and Bragg reflector forms, which is due to the production of photon-generated carriers. With the increase of laser pulse energy or the extension of irradiation duration, the Bragg reflector increases and gradually tends to be stable. These can be ascribed to the excitation- capture process of the carriers. After irradiation, the relaxation phenomenon results from the release of part of the absorbed energy in the glass matrix. And the fitting equation of the relaxation process is consistent with a conventional Kohlrausch stretched exponential function. The origin of the second harmonic generation (SHG) is because of the dipole reorientation caused by the photo-induced anisotropy in the glass.
基金This work was supported by the National Natural Science Foundation of China (No. 50073028, 29974036, 20174047).
文摘Surface enhanced Raman scattering (SERS) spectroscopy was first utilized to study the photo-orientation behaviour of the photoreactive groups on a novel photo-alignment film surface and elucidate the generation mechanism of pretilt angle. The novel photo-alignment film was prepared by spin-coating a solution of ladderlike polysiloxane (LPS) bearing dual photoreactive group on an ITO surface and by irradiation with linear-polarized ultraviolet (LPUV) light A Si—H terminal compound (M) containing an identical photosensitive part has been used to fabricate a model film for SERS investigation.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11074176 and 10976019) and the Doctoral Program of Higher Education of China (Grant No. 20100181110080).
文摘By using first-principles simulations based on time-dependent density functional theory, the chemical reaction of an HCl molecule encapsulated in C60 induced by femtosecond laser pulses is observed. The H atom starts to leave the Cl atom and is reflected by the C60 wall. The coherent nuclear dynamic behaviors of bond breakage and recombination of the HCl molecule occurring in both polarized parallel and perpendicular to the H-Cl bond axis are investigated. The radial oscillation is also found in the two polarization directions of the laser pulse. The relaxation time of the H-Cl bond lengths in transverse polarization is slow in comparison with that in longitudinal polarization. Those results are important for studying the dynamics of the chemical bond at an atomic level.
基金Project Supported by the National Natural Science Foundation of China.
文摘The initiation mechanism of the copolymerization of 2-vinylnaphthalene with maleic anhydride was studied under irradiation of 365 nm. The excited complex was formed from (1) the local excitation of 2-vinylnaphthalene followed by the charge-transfer interaction with maleic anhydride and (2) the excitation of the ground state charge-transfer complex, and then it collapsed to 1,4-tetramethylene biradical for initiation. A1: 1 alternating copolymer was formed in different monomer feeds. Addition of benzophenone could greatly enhance the rate of copolymerization through energy-transfer mechanism.
文摘Diphenyl-2, 2-dicyanoethylene reacts with 10-methyl-9, 10-dihydroacridine in deaerated acetonitrile under irradiation with l>320 nm to give the coupling product 1, 1-diphenyl-1-(10-methyl-9-acridinyl)-2, 2-dicyanoethane, which has been characterized by X-ray crystallographic, MS and NMR analyses.
文摘The investigation of electrical properties in alexandrite (BeAl<sub>2</sub>O<sub>4</sub>:Cr<sup>3+</sup>) in synthetic and natural forms is presented in this paper. Alexandrite is a rare and precious mineral that changes color according to the light incident on it. In the synthetic form, it is used technologically as an active laser medium. The electrical characterization was obtained using the Thermally Stimulated Depolarization Current (TSDC) technique, an interesting tool to study the behavior of impurities in insulators. Alexandrite presented the electric dipole relaxation phenomenon, both in natural and in synthetic samples. It was possible to observe TSDC bands for the synthetic sample at around 170 K, and at around 175 K for the natural sample. Besides, photo-induced TSDC measurements were performed through the excitement of the samples by using a continuous wave argon laser. In addition, photoluminescence measurements were performed to verify in advance whether the laser light would be absorbed by the sample, and in order to complement the photo-induced TSDC measurements analysis. The results of photo-induced TSDC experiments have contributed to the understanding of the TSDC bands behavior: the results obtained with the technique suggest that there is an effective participation of Cr<sup>3+</sup> ions in the formation of TSDC bands because they were more intense when the sample was exposed to the argon laser beam.
文摘Chiral nanostructures have attracted much attention due to the valuable applications in biochemistry, medicine industries, and photonic devices. In this study, we propose an ease-of-fabrication planar nanostructure that consists of rectangular nanohole arrays in which the Z-shaped nanorod is arranged. Theoretically, such chiral nanostructure supports significant absorption circular dichroism (CD) compared with the Z-shaped nanorod because charge distributions are tuned after the introduction of the rectangular frame. Meanwhile, the Z-shaped nanorod directs the flow of current on the rectangular frame, thereby generating the effective quadruple electron oscillation in the Z-shaped nanorod. A novel mode also emerges when an identical Z-shaped nanorod is added into the rectangular hole. The studies will provide a novel approach to enhance the CD effect of planar structures. .
基金supported by the National Natural Science Foundation of China(Grant No.11904062)the Starting Research Fund from Guangzhou University(Grant No.RQ2020076)Guangzhou Basic Research Program,jointed funded by Guangzhou University(Grant No.202201020186)。
文摘We systematically investigate the phonon dichroism in proximitized graphene with broken time-reversal symmetry.We find that in the absence of any type of spin–orbit coupling,phonon dichroism vanishes.Linear and circular phonon dichroism occur in the presence of uniform(staggered)intrinsic spin–orbit coupling and ferromagnetic(antiferromagnetic)exchange coupling.All these situations can be distinguished by their specific behaviors of phonon absorption at the transition point.Our finding provides new possibilities to use phonon dichroism to identify the form of spin–orbit coupling and exchange coupling in proximitized graphene on various magnetic substrates.
基金Commissaire Energie de Atomique de Francethe 9th Five-Year Major Program of the National Natural Science Foundation of China(39890390)+1 种基金the State Key Basic Research Development Plan of China(973)(G1998010100)Innovation of Laboratory of Photosynthests Basic Research,Institute of Botany,The Chinese Acadeny of Sciences
文摘Linear dichroism (LD) spectroscopy is an important technique in the study of the orientation and organization of pigments in the photosynthetic membrane complexes in vivo and in vitro . In this work, the orientation of the pigments in the isolated photosystem Ⅱ (PSⅡ) sub_core reaction center complexes was analyzed and characterized by means of low temperature absorption and LD spectroscopy. The preparations containing different amounts of CP47 isolated from spinach (Spinacia oleracea L.) chloroplast were used in order to investigate the orientation of pigments in the PSⅡ sub_core CP47/D1/D2/Cyt b_559 (CP47/D1/D2) complexes. Chlorophyll a (Chl a) absorbing at 680 nm in CP47/D1/D2/Cyt b_559 complex showed an orientation of the Q y transition parallel to the membrane plane. It is proposed that there are two forms of β_carotene (β_Car) in CP47/D1/D2/Cyt b_559 complex, denoted as β_Car (Ⅰ) and β_Car (Ⅱ), with different orientations, β_Car (Ⅰ) at 470 and 505 nm is roughly parallel to the membrane plane, and β_Car (Ⅱ) at 460 and 490 nm seems to be perpendicular orientation. Upon the photoinhibitory experiment β_Car (Ⅱ) was found to be photosensitive and easily photodamaged. It also showed that the positive LD signal observed at 680 nm was quite complicated. This signal is tentatively attributed to P680 and some Chl a of antenna in CP47 protein based upon our measurements.