Based on the mechanism analysis of the polychlorination of long chain n-alkanes by photo-initiation,a kinetic model was developed. The model parameters were obtained by the method of non-linear fitting. The influences...Based on the mechanism analysis of the polychlorination of long chain n-alkanes by photo-initiation,a kinetic model was developed. The model parameters were obtained by the method of non-linear fitting. The influences of luminous intensity and concentration of molecular chlorine on the rate of polychlorination are demonstrated by the model. If the luminous intensity is adequate, the polychlorination rate of n-alkane is only controlled by the flow rate of molecular chlorine in a wide range of temperature, and the changes of temperature and luminous intensity have less effect on the reaction rate. In addition, the predictions of chlorine content of polychlorinated n-alkane calculated with the model agree very well with experimental results.展开更多
The effects of three organic colorants on photo-initiated crosslinking and photo-oxidation degradation of polyethylene (PE) samples irradiated by microwave excited (MWE) UV lamp in the melt and the related mechanism h...The effects of three organic colorants on photo-initiated crosslinking and photo-oxidation degradation of polyethylene (PE) samples irradiated by microwave excited (MWE) UV lamp in the melt and the related mechanism have been studied by gel content and thermal extension rate determinations,X-ray photoelectron spectroscopy (XPS),mechanical property tests,UV spectroscopy,and light microscope.The data from the gel content and thermal extension rate determinations of photo-crosslinked polyethylene (XLPE) sample...展开更多
Zwitterionic sulfobetaine-based monolithic stationary phases have attracted increasing attention for their use in hydrophilic interaction chromatography.In this study,a novel hydrophilic polymeric monolith was fabrica...Zwitterionic sulfobetaine-based monolithic stationary phases have attracted increasing attention for their use in hydrophilic interaction chromatography.In this study,a novel hydrophilic polymeric monolith was fabricated through photo-initiated copolymerization of 3-(3-vinyl-1-imidazolio)-1-propanesulfonate(SBVI)with pentaerythritol triacrylate using methanol and tetrahydrofuran as the porogenic system.Notably,the duration for the preparation of this novel monolith was as little as 5 min,which was significantly shorter than that required for previously reported sulfobetaine-based monoliths prepared via conventional thermally initiated copolymerization.Moreover,these monoliths showed good morphology,permeability,porosity(62.4%),mechanical strength(over 15 MPa),column efficiency(51,230 plates/m),and reproducibility(relative standard deviations for all analytes were lower than 4.6%).Mechanistic studies indicated that strong hydrophilic and negative electrostatic interactions might be responsible for the retention of polar analytes on the zwitterionic SBVI-based monolith.In particular,the resulting monolith exhibited good anti-protein adhesion ability and low nonspecific protein adsorption.These excellent features seem to favor its application in bioanalysis.Therefore,the novel zwitterionic sulfobetaine-based monolith was successfully employed for the highly selective separation of small bioactive compounds and the efficient enrichment of N-glycopeptides from complex samples.In this study,we prepared a novel zwitterionic sulfobetaine-based monolith with good performance and developed a simpler and faster method for preparation of zwitterionic monoliths.展开更多
Five fluorine-containing vinyl ether monomers were prepared by the reaction between 2-vinyloxy ethanol, a fluorinated alcohol and hexafluorobenzene in the presence of sodium hydride in dimethylformamide. Two represent...Five fluorine-containing vinyl ether monomers were prepared by the reaction between 2-vinyloxy ethanol, a fluorinated alcohol and hexafluorobenzene in the presence of sodium hydride in dimethylformamide. Two representative properties of these monomers, UV-curing behavior initiated by a cationic photo-initiator PAG 201 and surface free energy of coating films, were investigated. Photo-polymerization proceeded both rapidly and completely with a high double-bond conversion (〉 90%) and a fast curing rate (maximum curing time 〈 21 s) for three monomers. The surface energies of the monomers and the resulting polymer films were then investigated. The minimum surface free energy of the UV-cured homopolymer films reaches 7.1 mJ/m2. X-ray photoelectron spectroscopy data show that the low surthce tension is influenced by fluorine content in the soft segments and fluorinated chains' migration to the surface. The five monomers exhibit low viscosity, low surface energy, good thermal stability and good photo-polymerization properties, which make them great candidates for UV coating and photoresist applications.展开更多
文摘Based on the mechanism analysis of the polychlorination of long chain n-alkanes by photo-initiation,a kinetic model was developed. The model parameters were obtained by the method of non-linear fitting. The influences of luminous intensity and concentration of molecular chlorine on the rate of polychlorination are demonstrated by the model. If the luminous intensity is adequate, the polychlorination rate of n-alkane is only controlled by the flow rate of molecular chlorine in a wide range of temperature, and the changes of temperature and luminous intensity have less effect on the reaction rate. In addition, the predictions of chlorine content of polychlorinated n-alkane calculated with the model agree very well with experimental results.
基金the National Natural Science Foundation of China (No.20704040).
文摘The effects of three organic colorants on photo-initiated crosslinking and photo-oxidation degradation of polyethylene (PE) samples irradiated by microwave excited (MWE) UV lamp in the melt and the related mechanism have been studied by gel content and thermal extension rate determinations,X-ray photoelectron spectroscopy (XPS),mechanical property tests,UV spectroscopy,and light microscope.The data from the gel content and thermal extension rate determinations of photo-crosslinked polyethylene (XLPE) sample...
基金supported by the National Natural Science Foundation of China(Grant Nos.:82173773 and 82073806)the Natural Science Foundation of Guangdong Province,China(Grant Nos.:2020A1515010569 and 2021A0505030039)Science and Technology Program of Guangzhou,China(Grant No.:202102020729).
文摘Zwitterionic sulfobetaine-based monolithic stationary phases have attracted increasing attention for their use in hydrophilic interaction chromatography.In this study,a novel hydrophilic polymeric monolith was fabricated through photo-initiated copolymerization of 3-(3-vinyl-1-imidazolio)-1-propanesulfonate(SBVI)with pentaerythritol triacrylate using methanol and tetrahydrofuran as the porogenic system.Notably,the duration for the preparation of this novel monolith was as little as 5 min,which was significantly shorter than that required for previously reported sulfobetaine-based monoliths prepared via conventional thermally initiated copolymerization.Moreover,these monoliths showed good morphology,permeability,porosity(62.4%),mechanical strength(over 15 MPa),column efficiency(51,230 plates/m),and reproducibility(relative standard deviations for all analytes were lower than 4.6%).Mechanistic studies indicated that strong hydrophilic and negative electrostatic interactions might be responsible for the retention of polar analytes on the zwitterionic SBVI-based monolith.In particular,the resulting monolith exhibited good anti-protein adhesion ability and low nonspecific protein adsorption.These excellent features seem to favor its application in bioanalysis.Therefore,the novel zwitterionic sulfobetaine-based monolith was successfully employed for the highly selective separation of small bioactive compounds and the efficient enrichment of N-glycopeptides from complex samples.In this study,we prepared a novel zwitterionic sulfobetaine-based monolith with good performance and developed a simpler and faster method for preparation of zwitterionic monoliths.
基金financially supported by the Beijing Municipal Natural Science Foundation(No.2112020)
文摘Five fluorine-containing vinyl ether monomers were prepared by the reaction between 2-vinyloxy ethanol, a fluorinated alcohol and hexafluorobenzene in the presence of sodium hydride in dimethylformamide. Two representative properties of these monomers, UV-curing behavior initiated by a cationic photo-initiator PAG 201 and surface free energy of coating films, were investigated. Photo-polymerization proceeded both rapidly and completely with a high double-bond conversion (〉 90%) and a fast curing rate (maximum curing time 〈 21 s) for three monomers. The surface energies of the monomers and the resulting polymer films were then investigated. The minimum surface free energy of the UV-cured homopolymer films reaches 7.1 mJ/m2. X-ray photoelectron spectroscopy data show that the low surthce tension is influenced by fluorine content in the soft segments and fluorinated chains' migration to the surface. The five monomers exhibit low viscosity, low surface energy, good thermal stability and good photo-polymerization properties, which make them great candidates for UV coating and photoresist applications.