A series of carbon nanotubes/TiO2 nanotubes (CNTs/TNTs) composite photocatalysts were successfully prepared by incorporation of CNTs in HNO3 washing process. These photocatalysts were characterized by XRD, N2 physic...A series of carbon nanotubes/TiO2 nanotubes (CNTs/TNTs) composite photocatalysts were successfully prepared by incorporation of CNTs in HNO3 washing process. These photocatalysts were characterized by XRD, N2 physical adsorption, UV-vis diffuse reflectance spectroscopy, TEM and Raman spectroscopy, respectively, and their photocatalytic activities were tested by using methyl orange (MO) as a model compound. Also, the effects of amount of CNTs incorporated, calcination temperature and amount of catalyst on the photocatalytic activity of the composite photocatalyst were systematically investigated. The results show that the CNTs/TNTs composite exhibits much higher photocatalytic activity than that of the TNTs or CNTs alone.展开更多
BiVO4 photocatalysts co-doped with La and B were prepared by sol-gel method using citric acid as chelate. The samples were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning...BiVO4 photocatalysts co-doped with La and B were prepared by sol-gel method using citric acid as chelate. The samples were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), Bru-mauer-Emmett-Teller (BET), UV-Vis diffuse reflectance spectra (DRS) and the photocatalytic activity was investigated by photo-catalytic degradation of methyl orange (MO). The results showed that boron and lanthanum ions incorporated into the lattice of BiVO4, and co-doping led to more surface oxygen vacancies, high specific surface areas, small crystallite size, narrow band gap and intense light absorbance in visible region. And the doped La(III) ions could help the separation of photogenerated electrons. Com-pared with BiVO4 and B-BiVO4, the photocatalytic activity of La-B co-doped BiVO4 was remarkably improved due to the synergistic effects of the co-doped ions. The degradation rate of MO in 60 min was 98.4%when La doping content was 0.05 mol.%, which was much higher than that of pure BiVO4(20%) and B-BiVO4(37%).展开更多
基金Financial supports from the Project Supported by the Natural Science Foundation of the Jiangsu Province Higher Education Institutions of China(09KJD150002)Project Supported by the Graduate Innovation Program Foundation of the Jiangsu Province Higher Education Institutions of China(CXLX_0570)
文摘A series of carbon nanotubes/TiO2 nanotubes (CNTs/TNTs) composite photocatalysts were successfully prepared by incorporation of CNTs in HNO3 washing process. These photocatalysts were characterized by XRD, N2 physical adsorption, UV-vis diffuse reflectance spectroscopy, TEM and Raman spectroscopy, respectively, and their photocatalytic activities were tested by using methyl orange (MO) as a model compound. Also, the effects of amount of CNTs incorporated, calcination temperature and amount of catalyst on the photocatalytic activity of the composite photocatalyst were systematically investigated. The results show that the CNTs/TNTs composite exhibits much higher photocatalytic activity than that of the TNTs or CNTs alone.
基金Project supported by Program of National Natural Science Foundation of China for Youth(21207093,51004072)
文摘BiVO4 photocatalysts co-doped with La and B were prepared by sol-gel method using citric acid as chelate. The samples were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), Bru-mauer-Emmett-Teller (BET), UV-Vis diffuse reflectance spectra (DRS) and the photocatalytic activity was investigated by photo-catalytic degradation of methyl orange (MO). The results showed that boron and lanthanum ions incorporated into the lattice of BiVO4, and co-doping led to more surface oxygen vacancies, high specific surface areas, small crystallite size, narrow band gap and intense light absorbance in visible region. And the doped La(III) ions could help the separation of photogenerated electrons. Com-pared with BiVO4 and B-BiVO4, the photocatalytic activity of La-B co-doped BiVO4 was remarkably improved due to the synergistic effects of the co-doped ions. The degradation rate of MO in 60 min was 98.4%when La doping content was 0.05 mol.%, which was much higher than that of pure BiVO4(20%) and B-BiVO4(37%).