B and N mixed anions co-doped titania with various crystal phases such as anatase,brookite,and rutile were successfully synthesized by a hydrothermal synthesis followed by heat treatment in an ammonia gas atmosphere a...B and N mixed anions co-doped titania with various crystal phases such as anatase,brookite,and rutile were successfully synthesized by a hydrothermal synthesis followed by heat treatment in an ammonia gas atmosphere at 550-650℃(denoted as BN-Ana_x,BN-Bro_x,and BN-Rut_x,x is the treatment temperature).The colors of as-prepared BN-Ana,BN-Bro,and BN-Rut are red,yellow-green,and cyangreen,respectively.The color changing mechanism of titania was related to their various band gap structure and the existence of B-N bonding.The nitridation temperature exhibits effective color changing compared to that of nitridation time.The different phases of the mixed anion codoped titania possess different photocatalytic deNO_(x) activity.The BN-Ana and BN-Rut show poor photocatalytic deNO_(x) activity,while the BN-Bro shows excellent photocatalytic deNO_(x) activity,better than that of standard titania photocatalyst Degussa P25.The colorful titania with low-photocatalytic activity is heavy metal elements free,indicating their possible applications as nontoxic color pigments or novel cosmetic raw materials.展开更多
A series of photocatalysts of un-doped, single-doped and co-doped nanometer titanium diox- ide (TiO2) have been successfully prepared by template method using Fe(NO3)3.9H2O, La(NO3)3.6H2O, and tetrabutyl titanat...A series of photocatalysts of un-doped, single-doped and co-doped nanometer titanium diox- ide (TiO2) have been successfully prepared by template method using Fe(NO3)3.9H2O, La(NO3)3.6H2O, and tetrabutyl titanate as precursors and glucan as template. Scanning electron microscopy, X-ray diffraction, and N2 adsorption-desorption measurement were employed to characterize the morphology, crystal structure and surface structure of the samples. The photo-absorbance of the obtained catalysts was measured by UV-Vis absorption spectroscopy, and the photocatalytic activities of the prepared samples under UV and visible light were estimated by measuring the degradation rate of methyl orange in an aqueous solution. The characterizations indicated that the prepared photocatalysts consisted of anatase phase and possessed high surface area of ca. 163-176 m2/g. It was shown that the Fe and La co-doped nano-TiO2 could be activated by visible light and could thus be used as an effective catalyst in photo-oxidation reactions. The synergistic effect of Fe and La co-doping played an important role in improving the photocatalytic activity. In addition, the possibility of cyclic usage of co-doped nano-TiO2 was also confirmed, the photocatalytic activity of codoped nano-TiO2 remained above 89.6% of the fresh sample after being used four times.展开更多
UV-visible light induced photocatalytic degradation of methylene blue (MB) over Fe-doped diopside was investigated. The structure, composition, morphology and absorption property of UV-visible light of as-prepared sam...UV-visible light induced photocatalytic degradation of methylene blue (MB) over Fe-doped diopside was investigated. The structure, composition, morphology and absorption property of UV-visible light of as-prepared samples were characterized using XRD, SEM, FTIR and UV-vis DRS. The experimental results show that doping Fe3+ induced the formation of some new species in diopside, and promoted light adsorption property of diopside in UV-visible region. Photochemical reactivity of Fe-doped diopside obviously depended on the content of doping Fe3+. The diopside with 1.848% Fe3+ exhibited the superior photocatalytic activity with 95% degradation of MB under UV-visible light for 3 h. The photocatalytic degradation kinetics of MB over all samples showed the first-order reaction nature.展开更多
CaTiO 3-Fex was characterized by X-ray diffractometry, scanning electron microscopy equipped with an energy dispersive spectrometry system, Fourier transform infrared spectra, and UV-visible spectra. Effects of Fe con...CaTiO 3-Fex was characterized by X-ray diffractometry, scanning electron microscopy equipped with an energy dispersive spectrometry system, Fourier transform infrared spectra, and UV-visible spectra. Effects of Fe content on photocatalytic activity of CaTiO3-Fex were investigated through measuring photocatalytic degradation rate of methylene blue. The results show that chemical compositions of CaTiO3-Fex remained unchanged with increasing Fe content from 0 to 4.745%. However, the light absorption ability of CaTiO3-Fex exhibited a significant increase with increasing Fe content. Photocatalytic degradation of methylene blue over CaTiO3-Fex followed the first-order reaction kinetics. Based on changes of the concentration of methylene blue and its degradation kinetics, CaTiO3-Fe0.474% has shown to have optimal photocatalytic activity. The degradation rate of methylene blue over CaTiO3-Fe0.474% was almost 100% under UV-visible light irradiation for 3.0 h. The kobs of methylene blue over CaTiO 3-Fe0.474% was 1.33 h-1 and was 7 times that over CaTiO3-Fe0.展开更多
Lanthanum doped mesoporous titanium dioxide photocatalysts with different La content were synthesized by template method using tetrabutyltitanate (Ti(OC4H9)4) as precursor and Pluronic P123 as template. The cataly...Lanthanum doped mesoporous titanium dioxide photocatalysts with different La content were synthesized by template method using tetrabutyltitanate (Ti(OC4H9)4) as precursor and Pluronic P123 as template. The catalysts were characterized by thermogravimetric dif ferential thermal analysis, N2 adsorption-desorption measurements, X-ray diffraction, and UV-Vis adsorption spectroscopy. The effect of La3+ doping concentration from 0.1% to 1% on the photocatalytic activity of mesoporous TiO2 was investigated. The characterizations indicated that the photocatalysts possessed a homogeneous pore diameter of about 10 nm with high surface area of 165 m2/g. X-ray photoelectron spectroscopy measurements in- dicated the presence of C in the doped samples in addition to La. Compared with pure mesoporous TiO2, the La-doped samples extended the photoabsorption edge into the visible light region. The results of phenol photodecomposition showed that La-doped mesoporous TiO2 exhibited higher photocatalytic activities than pure mesoporous TiO2 under UV and visible light irradiation.展开更多
In order to improve the photocatalytic performance of mesoporous titania under visible light, a series of photocatalysts of S and Ag co-doped mesoporous titania have been successfully prepared by template method using...In order to improve the photocatalytic performance of mesoporous titania under visible light, a series of photocatalysts of S and Ag co-doped mesoporous titania have been successfully prepared by template method using thiourea, AgNO3 and tetrabutyl titanate as precursors and Pluronic P123 (EO20PO70EO20) as template. Scanning electron microscopy (SEM), X-ray diffraction (XRD), nitrogen adsorption-desorption measurements, and UV-visible spectroscopy (UV-Vis) were employed to characterize the morphology, crystal structure, surface structure, and optical absorption properties of the samples. The microcrystal of the photocatalysts consisted of anatase phase and was approximately present in the form of spherical particle. The photocatalytic performance was studied by photodegradation methyl orange (MO) in water under UV and visible light irradiation. The calcination temperature and the doping content influenced the photoactivity. In addition, the possibility of cyclic usage of co-doped mesoporous titania was also confirmed, the photocatalytic activity of mesoporous titania remained above 89% of that of the fresh sample after being used four times. It was shown that the co-doped mesoporous titania could be activated by visible light and could thus be potentially applied for the treatment of water contaminated by organic pollutants. The synergistic effect of sulfur and silver co-doping played an important role in improving the photocatalytic activity.展开更多
Tin oxide nanociystals with diameters smaller than 10 nm were synthesized using Na2SnO3 and CO2 as reactants and cetyltrimethylammonium bromide(CTAB) as stabilizer under mild conditions.As a mild acidic gas,CO2 is f...Tin oxide nanociystals with diameters smaller than 10 nm were synthesized using Na2SnO3 and CO2 as reactants and cetyltrimethylammonium bromide(CTAB) as stabilizer under mild conditions.As a mild acidic gas,CO2 is favorable for the accurate adjustment of pH value of Na2SnO3 solution.Stannate salt is stable,cheap and easy in operation.The effects of Na2SnO3concentration,CTAB concentration,aging temperature,and aging time on the nanociystals were studied.It was found that,with the increasing Na2SnO3 concentration,aging temperature and aging time,SnO2 nanociystals size decreases.The formation of SnO2nanociystals can be interpreted by electrostatic-interaction mechanism.SnO2 nanociystals show high photocatalytic activities in the degradation of Rhodamine B solution.The catalytic activity of small nanocrystals is higher than that of large ones.展开更多
The photocatalytic activity of cobalt octakis(butylthio) porphyrazine(CoPz(BuS)8) was assessed through photodegradation of the dye rhodamine B(RhB) in water under irradiation with a Xe lamp and aerated conditi...The photocatalytic activity of cobalt octakis(butylthio) porphyrazine(CoPz(BuS)8) was assessed through photodegradation of the dye rhodamine B(RhB) in water under irradiation with a Xe lamp and aerated conditions.The photocatalytic activity of CoPz(BuS)8 loaded on Al2O3 or SiO2@Fe3O4nanoparticles or coordinated with an axial azide ligand was also investigated.The results demonstrated that the photocatalytic activity of CoPz(BuS)8 loaded on Al2O3 was higher than that loaded on SiO2@Fe3O4.The kinetic curves of RhB degradation in aqueous solutions at different pH indicated the pseudo first-order kinetics of the reaction.The highest degradation rate for CoPz(BuS)8 loaded Al2O3 at pH = 4 after 160 min was 84.6%.However,the advantages of easier separation and recycling as well as the ability to terminate the reaction at any time for the CoPz(BuS)8 loaded SiO2@Fe3O4 cannot be ignored.When electron-rich NaN3 was coordinated with CoPz(BuS)8 as an axial ligand and loaded on Al2O3,the resulting catalyst produced more active oxygen species such as O2^- and HO· to promote the quicker degradation of RhB than that by the other catalysts.For the N3-coordinated CoPz(BuS)8 loaded on Al2O3,the reactions at pH = 4 and 7 distinctly deviated from first-order kinetics,and the degradation rate reached 77.6%after 80 min at pH = 4.展开更多
The fabrication of well defined hierarchical structures of anatase TiO_(2) with a high percentage of reactive facets is of great importance and challenging.Hierarchically flower-like TiO_(2) superstructures(HFTS)self-...The fabrication of well defined hierarchical structures of anatase TiO_(2) with a high percentage of reactive facets is of great importance and challenging.Hierarchically flower-like TiO_(2) superstructures(HFTS)self-assembled from anatase TiO_(2) nanosheets with exposed{001}facets(up to 87%)were synthesized by a simple alcohothermal strategy in a HF-H_(2)O-C_(2)H_(5)OH mixed solution using titanate nanotubes as precursor.The samples were characterized by X-ray diffraction,scanning electron microscopy,transmission electron microscopy,and N2 adsorption-desorption isotherms.The photocatalytic activity was evaluated by the photocatalytic oxidation decomposition of acetone in air and methyl orange in aqueous solution under UV illumination.The photocatalytic activity of HFTS was much higher than that of commercial Degussa P25 and tabular-shaped anatase TiO_(2) obtained using pure water as the synthesis medium.The enhancement in photocatalytic activity was related to several factors,including the hierarchically porous structure,exposed{001}facets,and increased light harvesting ability.The HFTS was also of interest for use in solar cells,photocatalytic H_(2) production,optoelectronic devices,sensors,and catalysis.展开更多
Cerium-doped titanium dioxide nano-powders were prepared through the sol-gel method and the compound sampies were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV/Vis diffus...Cerium-doped titanium dioxide nano-powders were prepared through the sol-gel method and the compound sampies were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV/Vis diffuse reflectance spectra (DRS). The photocatalytic activity was evaluated by photocatalytic degradation of phenol in water. The results of XRD, TEM, and DRS show that pure TiO2 and Ce-doped TiO2 powder crystallines are a mixture of anatase and rutile ; the doping can retard the development of the grain size of TiO2 and decrease the diameter of TiO2 from more than 20 nm of pure TiO2 to about 10 nm; the doped TiO2 can improve the light absorption of TiO2 and suitable doping content tends to move the DRS spectrum of TiO2 towards visible light, but too much doping is not good for the light absorption ability. The results of the photocatalytic experiments show that doping with Ce content of 0.08% -0.4% can increase the photocatalytic activity of TiO2; however, doping with Ce content of 0.5% -2.5% can significantly decrease the photocatalytic activity of TiO2. The favorite doping content is 0.4% in the range of our experiments.展开更多
Iron(Ⅲ)-doped nanostructure TiO2-coated SiO2 (TiO2/SiO2) particles were prepared using the layer-by-layer assembly technique and their photocatalytic property was studied. TiO2 colloids were synthesized employing...Iron(Ⅲ)-doped nanostructure TiO2-coated SiO2 (TiO2/SiO2) particles were prepared using the layer-by-layer assembly technique and their photocatalytic property was studied. TiO2 colloids were synthesized employing the sol-gel method with TiChas a precursor. The samples were characterized by Fourier transform infrared spectroscopy (FTIR), SEM, EDS, XPS, and XRD. The experimental results show that TiO2 nanopowders on the surface of SiO2 particles are well distributed, the amount of TiO2 is increased with the adding of coating layers, the pure anatase-TiO2 coating layers are synthesized at 500℃, and the photocatalytic activity of Fe^3+-doped TiO2/SiO2 is higher than that of undoped TiO2/SiO2.展开更多
CuO was synthesized by thermal decomposition of Cu(NO3)2·3H2O at various temperatures and characterized by powder X-ray diffractometry(XRD) as well as scanning electron microscopy(SEM).The effects of calcination ...CuO was synthesized by thermal decomposition of Cu(NO3)2·3H2O at various temperatures and characterized by powder X-ray diffractometry(XRD) as well as scanning electron microscopy(SEM).The effects of calcination temperature,category of sacrificial reagent,initial sacrificial reagent concentration,and Ag loading content on the photocatalytic activity of the as-obtained CuO sample were investigated.The results show that the as-obtained CuO exhibits high activity for photocatalysis of H2 evolution reaction(HER) in oxalic acid solution under simulated sunlight irradiation.The highest photocatalytic activity of the as-obtained CuO was achieved at the calcination temperature of 1000℃,and oxalic acid was used as the sacrificial reagent with the concentration 0.05 mol/L.H2 evolution rate is as high as 2.98 mmol/(h·g) with 2%(mass fraction) loaded Ag.The possible photocatalytic reaction mechanism on the CuO photocatalyst for HER in oxalic acid solution was also discussed.展开更多
Transparent anatase TiO2 nanometer thin films with photocatalytic activity were prepared via the sol-gel method on soda-lime glass. The thickness , crystalline phase, grain size, surface hydroxyl amount and so on were...Transparent anatase TiO2 nanometer thin films with photocatalytic activity were prepared via the sol-gel method on soda-lime glass. The thickness , crystalline phase, grain size, surface hydroxyl amount and so on were characterized by scanning electron microscopy (SEM) , X-ray diffraction (XRD), transmission electron microscopy ( TEM), X-ray photoelectron spectroscopy (XPS) and UV-visible spectrophotometer ( UV-VIS). The photocatalytic activity of TiO2 thin films was evaluated for the photocatalytic decolorization of aqueous methyl orange . The effects of film thickness on the crystalline phase, grain size, transmittance and photocatalytic activity of nanometer Ti02 thin films were discussed.展开更多
Two kinds of TiO_2 nanometer thin films were prepared on stainless steel bythe reverse micellar and sol-gel methods, respectively. The calcined TiO_ 2 thin films werecharacterized by X-ray diffraction (XRD), atomic fo...Two kinds of TiO_2 nanometer thin films were prepared on stainless steel bythe reverse micellar and sol-gel methods, respectively. The calcined TiO_ 2 thin films werecharacterized by X-ray diffraction (XRD), atomic force microscopy (AFM), BET surface area and X-rayphotoelectron spectroscopy (XPS). Photocatalytic activity was evaluated by photocatalyticdecoloration of methyl orange aqueous solution. The results showed that the TiO_2 thin filmsprepared by reverse micellar method (designated as RM-TiO_2 films) showed higher photocatalyticactivity than those by sol-gel method (designated as SG-TiO_2 films). This is attributed to the factthat the former is composed of smaller monodispersed spherical particles with a size of about 15 nmand possesses higher surface areas.展开更多
In order to achieve effective, economic, and easily achievable photocatalyst for the degradation of dye methyl orange(MeO), ZnO, ZnO/ZnS and ZnO/ZnS/α-Fe2O3 nanocomposites were prepared by simple chemical synthetic...In order to achieve effective, economic, and easily achievable photocatalyst for the degradation of dye methyl orange(MeO), ZnO, ZnO/ZnS and ZnO/ZnS/α-Fe2O3 nanocomposites were prepared by simple chemical synthetic route in the aqueous medium. Phase, crystallinity, surface structure and surface behavior of the synthesized materials were determined by X-ray diffraction(XRD) and Brunauer-Emmett-Teller analysis(BET) techniques. XRD study established formation of good crystalline ZnO, ZnO/ZnS and ZnO/ZnS/α-Fe2O3 nanomaterials. By using intensity of constituent peaks in the XRD pattern, the compositions of nanocomposites were determined. From the BET analysis, the prepared materials show mesoporous behavior, type Ⅳ curves along with H4 hysteresis. The ZnO/ZnS/α-Fe2O3 composite shows the largest surface area among three materials. From the UV-visible spectra, the band gap energy of the materials was determined. Photoluminescence spectra(PL) were used to determine the emission behavior and surface defects in the materials. In PL spectra, the intensity of UV peak of ZnO/ZnS is lowered than that of ZnO while in case of ZnO/ZnS/α-Fe2O3, the intensity further decreased. The visible emission spectra of ZnO/ZnS increased compared with ZnO while in ZnO/ZnS/α-Fe2O3 it is further increased compared with ZnO/ZnS. The as-synthesized materials were used as photocatalysts for the degradation of dye MeO. The photo-degradation data revealed that the ZnO/ZnS/α-Fe2O3 is the best photocatalyst among three specimens for the degradation of dye MeO. The decrease of intensity of UV emission peak and the increase of intensity of visible emission cause the decrease of recombination of electrons and holes which are ultimately responsible for the highest photocatalytic activity of ZnO/ZnS/α-Fe2O3.展开更多
Cu2O is a promising photocatalyst,but it suffers from poor photocatalytic activity and stability,especially for Cu2O cubes.Herein,we report the deposition of CuO and Au nanodomains on Cu2O cubes to form dual surface h...Cu2O is a promising photocatalyst,but it suffers from poor photocatalytic activity and stability,especially for Cu2O cubes.Herein,we report the deposition of CuO and Au nanodomains on Cu2O cubes to form dual surface heterostructures(HCs)to improve photocatalytic activity and stability.The apparent quantum efficiency of Au/CuO/Cu2O HCs was ca.123 times that of pristine Cu2O.In addition,the Au/CuO/Cu2O HCs maintained nearly 80%of its original activity after eight cycles in contrast to five cycles for the Au/Cu2O material.Therefore,CuO and Au domains greatly improved the photocatalytic activity and stability of the Cu2O cubes due to the synergistic effect of the HCs.展开更多
To further improve the charge separation and photocatalytic activities of g-C3N4 and CdMoO4 under visible light irradiation,CdMoO4/g-C3N4 composites were rationally synthesized by a facile precipitation-calcination pr...To further improve the charge separation and photocatalytic activities of g-C3N4 and CdMoO4 under visible light irradiation,CdMoO4/g-C3N4 composites were rationally synthesized by a facile precipitation-calcination procedure.The crystal phases,morphologies,chemical compositions,textural structures,and optical properties of the as-prepared composites were characterized by the corresponding analytical techniques.The photocatalytic activities toward degradation of rhodamine B solution were evaluated under visible light irradiation.The results revealed that integrating CdMoO4 with g-C3N4 could remarkably improve the charge separation and photocatalytic activity,compared with those of pristine g-C3N4 and CdMoO4.This would be because the CdMoO4/g-C3N4 composites could facilitate the transfer and separation of the photoexcited electron-hole pairs,which was confirmed by electrochemical impedance spectroscopy,transient photocurrent responses,and photoluminescence measurements.Moreover,active species trapping experiments demonstrated that holes(h+)and superoxide radicals(?O2?)were the main active species during the photocatalytic reaction.A possible photocatalytic mechanism was proposed on the basis of the energy band structures determined by Mott-Schottky tests.This work would provide further insights into the rational fabrication of composites for organic contaminant removal.展开更多
(La, N) co-doped TiO2 photocatalysts were synthesized using TiC14 sol-gel autoignidng synthesis (SAS) starting from a complex compound system of TiCl4-La(NO3)3-citric acid-NH4NO3-NHyH2O, in which the (La, N) c...(La, N) co-doped TiO2 photocatalysts were synthesized using TiC14 sol-gel autoignidng synthesis (SAS) starting from a complex compound system of TiCl4-La(NO3)3-citric acid-NH4NO3-NHyH2O, in which the (La, N) co-doped process was accompushed in the formation of TiO2 nanocrystals. The prepared samples were characterized by using X-ray diffraction (XRD), X-ray photoemission spectroscopy (XPS) and UV-vis diffuse reflectance spectra. The results indicated that nitrogen and lanthanum were incorporated into the lattice and interstices of titania nanocrystals, which resulted in narrowing the band gap and promoting the separation of photoexcited hole-electron pairs, respectively, and showing expected red-shifts and enhanced photocatalytic activity under visible light. The mechanism on nitrogen doping and enhancement in photocatalyfic activity of (La, N) co-doped titania by SAS was discussed in detail.展开更多
BiOClxBr1-x catalysts were synthesized through an alcoholysis method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM)...BiOClxBr1-x catalysts were synthesized through an alcoholysis method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and diffuse reflectance spectroscopy (DRS). The as-prepared photocatalysts were found to be tetragonal crystal structure and lamellar plate morphology. Their band gaps were between 3.44 and 2.83 eV. The effect of light response on the photocatalytic activity of BiOClxBrl-x was investigated by degradation of Rhodamine B (RhB). Complete removal of RhB from water was realized under simulated sunlight irradiation for 50 min with BiOC10.5Br0.5. Mechanism studies showed that photo- generated holes and superoxide anion radicals played important roles in RhB photodegradation. The results of chemical oxygen demand (COD) confirmed RhB mineralization. The effect of light response on the activity of BiOClxBr1-x was further investigated under monochromatic light irradiation, and BiOCl0.5Br0.5 catalyst exhibited the highest activity. Furthermore, BiOC10.5Br0.5 exhibited high stability, suggesting its practical application for the removal of RhB pollutant from water.展开更多
Pure ZnS and Ni^2+-doped ZnS nanorods (Zn1-xNixS, x=0, 0.01, 0.03, 0.05 and 0.07, mole fraction,%) were synthesized by hydrothermal method. The effects of Ni2+ doping on the phase-structure, morphology, elemental comp...Pure ZnS and Ni^2+-doped ZnS nanorods (Zn1-xNixS, x=0, 0.01, 0.03, 0.05 and 0.07, mole fraction,%) were synthesized by hydrothermal method. The effects of Ni2+ doping on the phase-structure, morphology, elemental composition and optical properties of the samples were investigated by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), X-ray energy dispersive spectrometry (EDS) and ultraviolet–visible spectroscopy (UV-Vis), respectively. The photocatalytic activity of Zn1-xNixS nanorods was evaluated by the photodegradation of organic dyes Rhodamine B (RhB) in aqueous solution under UV light irradiation. The results show that all samples exhibit wurtzite structure with good crystallization. The morphologies are one-dimensional nanorods with good dispersion, and the distortion of the lattice constant occurs. The band gap of Zn1-xNixS samples is smaller than that of pure ZnS, thus red shift occurs. Ni^2+-doped ZnS nanocrystals can enhance photocatalytic activities for the photodegradation of RhB. Especially, Zn0.97Ni0.03S sample exhibits better photocatalytic performance and photocatalytic stability for the decomposition of RhB.展开更多
基金supported by the KOSéCosmetology Research Foundationthe Japan Society funded the present work for the Promotion of Science (JSPS)Grant-in-Aid for Scientific Research (Nos.16H06439 and 20H00297)。
文摘B and N mixed anions co-doped titania with various crystal phases such as anatase,brookite,and rutile were successfully synthesized by a hydrothermal synthesis followed by heat treatment in an ammonia gas atmosphere at 550-650℃(denoted as BN-Ana_x,BN-Bro_x,and BN-Rut_x,x is the treatment temperature).The colors of as-prepared BN-Ana,BN-Bro,and BN-Rut are red,yellow-green,and cyangreen,respectively.The color changing mechanism of titania was related to their various band gap structure and the existence of B-N bonding.The nitridation temperature exhibits effective color changing compared to that of nitridation time.The different phases of the mixed anion codoped titania possess different photocatalytic deNO_(x) activity.The BN-Ana and BN-Rut show poor photocatalytic deNO_(x) activity,while the BN-Bro shows excellent photocatalytic deNO_(x) activity,better than that of standard titania photocatalyst Degussa P25.The colorful titania with low-photocatalytic activity is heavy metal elements free,indicating their possible applications as nontoxic color pigments or novel cosmetic raw materials.
文摘A series of photocatalysts of un-doped, single-doped and co-doped nanometer titanium diox- ide (TiO2) have been successfully prepared by template method using Fe(NO3)3.9H2O, La(NO3)3.6H2O, and tetrabutyl titanate as precursors and glucan as template. Scanning electron microscopy, X-ray diffraction, and N2 adsorption-desorption measurement were employed to characterize the morphology, crystal structure and surface structure of the samples. The photo-absorbance of the obtained catalysts was measured by UV-Vis absorption spectroscopy, and the photocatalytic activities of the prepared samples under UV and visible light were estimated by measuring the degradation rate of methyl orange in an aqueous solution. The characterizations indicated that the prepared photocatalysts consisted of anatase phase and possessed high surface area of ca. 163-176 m2/g. It was shown that the Fe and La co-doped nano-TiO2 could be activated by visible light and could thus be used as an effective catalyst in photo-oxidation reactions. The synergistic effect of Fe and La co-doping played an important role in improving the photocatalytic activity. In addition, the possibility of cyclic usage of co-doped nano-TiO2 was also confirmed, the photocatalytic activity of codoped nano-TiO2 remained above 89.6% of the fresh sample after being used four times.
基金Projects (50874029, 51090384) supported by the National Natural Science Foundation of China
文摘UV-visible light induced photocatalytic degradation of methylene blue (MB) over Fe-doped diopside was investigated. The structure, composition, morphology and absorption property of UV-visible light of as-prepared samples were characterized using XRD, SEM, FTIR and UV-vis DRS. The experimental results show that doping Fe3+ induced the formation of some new species in diopside, and promoted light adsorption property of diopside in UV-visible region. Photochemical reactivity of Fe-doped diopside obviously depended on the content of doping Fe3+. The diopside with 1.848% Fe3+ exhibited the superior photocatalytic activity with 95% degradation of MB under UV-visible light for 3 h. The photocatalytic degradation kinetics of MB over all samples showed the first-order reaction nature.
基金Project(51090384)supported by the National Natural Science Foundation of ChinaProject(2012AA062304)supported by the Hi-tech Research and Development Program of China+1 种基金Project(2012CBA01205)supported by the National Basic Research Program of ChinaProject(N110502002)supported by Fundamental Research Funds for the Central Universities,China
文摘CaTiO 3-Fex was characterized by X-ray diffractometry, scanning electron microscopy equipped with an energy dispersive spectrometry system, Fourier transform infrared spectra, and UV-visible spectra. Effects of Fe content on photocatalytic activity of CaTiO3-Fex were investigated through measuring photocatalytic degradation rate of methylene blue. The results show that chemical compositions of CaTiO3-Fex remained unchanged with increasing Fe content from 0 to 4.745%. However, the light absorption ability of CaTiO3-Fex exhibited a significant increase with increasing Fe content. Photocatalytic degradation of methylene blue over CaTiO3-Fex followed the first-order reaction kinetics. Based on changes of the concentration of methylene blue and its degradation kinetics, CaTiO3-Fe0.474% has shown to have optimal photocatalytic activity. The degradation rate of methylene blue over CaTiO3-Fe0.474% was almost 100% under UV-visible light irradiation for 3.0 h. The kobs of methylene blue over CaTiO 3-Fe0.474% was 1.33 h-1 and was 7 times that over CaTiO3-Fe0.
文摘Lanthanum doped mesoporous titanium dioxide photocatalysts with different La content were synthesized by template method using tetrabutyltitanate (Ti(OC4H9)4) as precursor and Pluronic P123 as template. The catalysts were characterized by thermogravimetric dif ferential thermal analysis, N2 adsorption-desorption measurements, X-ray diffraction, and UV-Vis adsorption spectroscopy. The effect of La3+ doping concentration from 0.1% to 1% on the photocatalytic activity of mesoporous TiO2 was investigated. The characterizations indicated that the photocatalysts possessed a homogeneous pore diameter of about 10 nm with high surface area of 165 m2/g. X-ray photoelectron spectroscopy measurements in- dicated the presence of C in the doped samples in addition to La. Compared with pure mesoporous TiO2, the La-doped samples extended the photoabsorption edge into the visible light region. The results of phenol photodecomposition showed that La-doped mesoporous TiO2 exhibited higher photocatalytic activities than pure mesoporous TiO2 under UV and visible light irradiation.
基金This work was supported by the National Natural Sci- ence Foundation of China (No.41373127) and the Liaoning Provincial Natural Science Foundation of China (No.2013020121).
文摘In order to improve the photocatalytic performance of mesoporous titania under visible light, a series of photocatalysts of S and Ag co-doped mesoporous titania have been successfully prepared by template method using thiourea, AgNO3 and tetrabutyl titanate as precursors and Pluronic P123 (EO20PO70EO20) as template. Scanning electron microscopy (SEM), X-ray diffraction (XRD), nitrogen adsorption-desorption measurements, and UV-visible spectroscopy (UV-Vis) were employed to characterize the morphology, crystal structure, surface structure, and optical absorption properties of the samples. The microcrystal of the photocatalysts consisted of anatase phase and was approximately present in the form of spherical particle. The photocatalytic performance was studied by photodegradation methyl orange (MO) in water under UV and visible light irradiation. The calcination temperature and the doping content influenced the photoactivity. In addition, the possibility of cyclic usage of co-doped mesoporous titania was also confirmed, the photocatalytic activity of mesoporous titania remained above 89% of that of the fresh sample after being used four times. It was shown that the co-doped mesoporous titania could be activated by visible light and could thus be potentially applied for the treatment of water contaminated by organic pollutants. The synergistic effect of sulfur and silver co-doping played an important role in improving the photocatalytic activity.
基金Projects (20676016,21076024) supported by the National Natural Science Foundation of China
文摘Tin oxide nanociystals with diameters smaller than 10 nm were synthesized using Na2SnO3 and CO2 as reactants and cetyltrimethylammonium bromide(CTAB) as stabilizer under mild conditions.As a mild acidic gas,CO2 is favorable for the accurate adjustment of pH value of Na2SnO3 solution.Stannate salt is stable,cheap and easy in operation.The effects of Na2SnO3concentration,CTAB concentration,aging temperature,and aging time on the nanociystals were studied.It was found that,with the increasing Na2SnO3 concentration,aging temperature and aging time,SnO2 nanociystals size decreases.The formation of SnO2nanociystals can be interpreted by electrostatic-interaction mechanism.SnO2 nanociystals show high photocatalytic activities in the degradation of Rhodamine B solution.The catalytic activity of small nanocrystals is higher than that of large ones.
基金supported by National Natural Science Foundation of China (20977115, 21272281)Natural Science Foundation of Hubei Province (2014CFB919)the Science and Technology Plan Innovation Team of Wuhan City (2015070504020220)~~
文摘The photocatalytic activity of cobalt octakis(butylthio) porphyrazine(CoPz(BuS)8) was assessed through photodegradation of the dye rhodamine B(RhB) in water under irradiation with a Xe lamp and aerated conditions.The photocatalytic activity of CoPz(BuS)8 loaded on Al2O3 or SiO2@Fe3O4nanoparticles or coordinated with an axial azide ligand was also investigated.The results demonstrated that the photocatalytic activity of CoPz(BuS)8 loaded on Al2O3 was higher than that loaded on SiO2@Fe3O4.The kinetic curves of RhB degradation in aqueous solutions at different pH indicated the pseudo first-order kinetics of the reaction.The highest degradation rate for CoPz(BuS)8 loaded Al2O3 at pH = 4 after 160 min was 84.6%.However,the advantages of easier separation and recycling as well as the ability to terminate the reaction at any time for the CoPz(BuS)8 loaded SiO2@Fe3O4 cannot be ignored.When electron-rich NaN3 was coordinated with CoPz(BuS)8 as an axial ligand and loaded on Al2O3,the resulting catalyst produced more active oxygen species such as O2^- and HO· to promote the quicker degradation of RhB than that by the other catalysts.For the N3-coordinated CoPz(BuS)8 loaded on Al2O3,the reactions at pH = 4 and 7 distinctly deviated from first-order kinetics,and the degradation rate reached 77.6%after 80 min at pH = 4.
基金supported by the National Natural Science Foundation of China(50625208,20773097,and 20877061)the National Basic Research Program of China(973Program,2007CB613302and2009CB939704)Fundamental Research Funds for the Central Universities(2010-YB-01)
文摘The fabrication of well defined hierarchical structures of anatase TiO_(2) with a high percentage of reactive facets is of great importance and challenging.Hierarchically flower-like TiO_(2) superstructures(HFTS)self-assembled from anatase TiO_(2) nanosheets with exposed{001}facets(up to 87%)were synthesized by a simple alcohothermal strategy in a HF-H_(2)O-C_(2)H_(5)OH mixed solution using titanate nanotubes as precursor.The samples were characterized by X-ray diffraction,scanning electron microscopy,transmission electron microscopy,and N2 adsorption-desorption isotherms.The photocatalytic activity was evaluated by the photocatalytic oxidation decomposition of acetone in air and methyl orange in aqueous solution under UV illumination.The photocatalytic activity of HFTS was much higher than that of commercial Degussa P25 and tabular-shaped anatase TiO_(2) obtained using pure water as the synthesis medium.The enhancement in photocatalytic activity was related to several factors,including the hierarchically porous structure,exposed{001}facets,and increased light harvesting ability.The HFTS was also of interest for use in solar cells,photocatalytic H_(2) production,optoelectronic devices,sensors,and catalysis.
文摘Cerium-doped titanium dioxide nano-powders were prepared through the sol-gel method and the compound sampies were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV/Vis diffuse reflectance spectra (DRS). The photocatalytic activity was evaluated by photocatalytic degradation of phenol in water. The results of XRD, TEM, and DRS show that pure TiO2 and Ce-doped TiO2 powder crystallines are a mixture of anatase and rutile ; the doping can retard the development of the grain size of TiO2 and decrease the diameter of TiO2 from more than 20 nm of pure TiO2 to about 10 nm; the doped TiO2 can improve the light absorption of TiO2 and suitable doping content tends to move the DRS spectrum of TiO2 towards visible light, but too much doping is not good for the light absorption ability. The results of the photocatalytic experiments show that doping with Ce content of 0.08% -0.4% can increase the photocatalytic activity of TiO2; however, doping with Ce content of 0.5% -2.5% can significantly decrease the photocatalytic activity of TiO2. The favorite doping content is 0.4% in the range of our experiments.
基金the Nationnal Natural Science Foundation of China (No. 50342016).
文摘Iron(Ⅲ)-doped nanostructure TiO2-coated SiO2 (TiO2/SiO2) particles were prepared using the layer-by-layer assembly technique and their photocatalytic property was studied. TiO2 colloids were synthesized employing the sol-gel method with TiChas a precursor. The samples were characterized by Fourier transform infrared spectroscopy (FTIR), SEM, EDS, XPS, and XRD. The experimental results show that TiO2 nanopowders on the surface of SiO2 particles are well distributed, the amount of TiO2 is increased with the adding of coating layers, the pure anatase-TiO2 coating layers are synthesized at 500℃, and the photocatalytic activity of Fe^3+-doped TiO2/SiO2 is higher than that of undoped TiO2/SiO2.
基金Project(20876039) supported by the National Natural Science Foundation of ChinaProject(09JJ3023) supported by Natural Science Foundation of Hunan Province, China
文摘CuO was synthesized by thermal decomposition of Cu(NO3)2·3H2O at various temperatures and characterized by powder X-ray diffractometry(XRD) as well as scanning electron microscopy(SEM).The effects of calcination temperature,category of sacrificial reagent,initial sacrificial reagent concentration,and Ag loading content on the photocatalytic activity of the as-obtained CuO sample were investigated.The results show that the as-obtained CuO exhibits high activity for photocatalysis of H2 evolution reaction(HER) in oxalic acid solution under simulated sunlight irradiation.The highest photocatalytic activity of the as-obtained CuO was achieved at the calcination temperature of 1000℃,and oxalic acid was used as the sacrificial reagent with the concentration 0.05 mol/L.H2 evolution rate is as high as 2.98 mmol/(h·g) with 2%(mass fraction) loaded Ag.The possible photocatalytic reaction mechanism on the CuO photocatalyst for HER in oxalic acid solution was also discussed.
基金This work was financially supported by Foundation for Uni-versity Key Teacher by the Ministry of Education, the National Natu-ral Science Foundation of China (No. 50072016) and the Key Re-search Project of the Ministry of Education(No.99087)
文摘Transparent anatase TiO2 nanometer thin films with photocatalytic activity were prepared via the sol-gel method on soda-lime glass. The thickness , crystalline phase, grain size, surface hydroxyl amount and so on were characterized by scanning electron microscopy (SEM) , X-ray diffraction (XRD), transmission electron microscopy ( TEM), X-ray photoelectron spectroscopy (XPS) and UV-visible spectrophotometer ( UV-VIS). The photocatalytic activity of TiO2 thin films was evaluated for the photocatalytic decolorization of aqueous methyl orange . The effects of film thickness on the crystalline phase, grain size, transmittance and photocatalytic activity of nanometer Ti02 thin films were discussed.
基金This project is financially supported by the National Natural Science Foundation of China (No.s 50272049, 50072016) The Excellent Young Teachers Program of MOE, China (No. (2002)350)
文摘Two kinds of TiO_2 nanometer thin films were prepared on stainless steel bythe reverse micellar and sol-gel methods, respectively. The calcined TiO_ 2 thin films werecharacterized by X-ray diffraction (XRD), atomic force microscopy (AFM), BET surface area and X-rayphotoelectron spectroscopy (XPS). Photocatalytic activity was evaluated by photocatalyticdecoloration of methyl orange aqueous solution. The results showed that the TiO_2 thin filmsprepared by reverse micellar method (designated as RM-TiO_2 films) showed higher photocatalyticactivity than those by sol-gel method (designated as SG-TiO_2 films). This is attributed to the factthat the former is composed of smaller monodispersed spherical particles with a size of about 15 nmand possesses higher surface areas.
文摘In order to achieve effective, economic, and easily achievable photocatalyst for the degradation of dye methyl orange(MeO), ZnO, ZnO/ZnS and ZnO/ZnS/α-Fe2O3 nanocomposites were prepared by simple chemical synthetic route in the aqueous medium. Phase, crystallinity, surface structure and surface behavior of the synthesized materials were determined by X-ray diffraction(XRD) and Brunauer-Emmett-Teller analysis(BET) techniques. XRD study established formation of good crystalline ZnO, ZnO/ZnS and ZnO/ZnS/α-Fe2O3 nanomaterials. By using intensity of constituent peaks in the XRD pattern, the compositions of nanocomposites were determined. From the BET analysis, the prepared materials show mesoporous behavior, type Ⅳ curves along with H4 hysteresis. The ZnO/ZnS/α-Fe2O3 composite shows the largest surface area among three materials. From the UV-visible spectra, the band gap energy of the materials was determined. Photoluminescence spectra(PL) were used to determine the emission behavior and surface defects in the materials. In PL spectra, the intensity of UV peak of ZnO/ZnS is lowered than that of ZnO while in case of ZnO/ZnS/α-Fe2O3, the intensity further decreased. The visible emission spectra of ZnO/ZnS increased compared with ZnO while in ZnO/ZnS/α-Fe2O3 it is further increased compared with ZnO/ZnS. The as-synthesized materials were used as photocatalysts for the degradation of dye MeO. The photo-degradation data revealed that the ZnO/ZnS/α-Fe2O3 is the best photocatalyst among three specimens for the degradation of dye MeO. The decrease of intensity of UV emission peak and the increase of intensity of visible emission cause the decrease of recombination of electrons and holes which are ultimately responsible for the highest photocatalytic activity of ZnO/ZnS/α-Fe2O3.
基金supported by National Natural Science Foundation of China(21573263,21872157,51402346)National Key Research and Development Program of China from Ministry of Science and Technology of China(2016YFE0105700)+2 种基金Jiangsu Provincial Fundamental Research Foundation of China(BK20151236)Henan provincial co-operation and open foundation(60)China Postdoctoral Science Foundation(2018M632984)~~
文摘Cu2O is a promising photocatalyst,but it suffers from poor photocatalytic activity and stability,especially for Cu2O cubes.Herein,we report the deposition of CuO and Au nanodomains on Cu2O cubes to form dual surface heterostructures(HCs)to improve photocatalytic activity and stability.The apparent quantum efficiency of Au/CuO/Cu2O HCs was ca.123 times that of pristine Cu2O.In addition,the Au/CuO/Cu2O HCs maintained nearly 80%of its original activity after eight cycles in contrast to five cycles for the Au/Cu2O material.Therefore,CuO and Au domains greatly improved the photocatalytic activity and stability of the Cu2O cubes due to the synergistic effect of the HCs.
基金supported by the Open Project Program of Hubei Key Laboratory of Animal Nutrition and Feed Science,Wuhan Polytechnic University(No.201808)Hubei Important Project of Technological Innovation(2018ABA094)~~
文摘To further improve the charge separation and photocatalytic activities of g-C3N4 and CdMoO4 under visible light irradiation,CdMoO4/g-C3N4 composites were rationally synthesized by a facile precipitation-calcination procedure.The crystal phases,morphologies,chemical compositions,textural structures,and optical properties of the as-prepared composites were characterized by the corresponding analytical techniques.The photocatalytic activities toward degradation of rhodamine B solution were evaluated under visible light irradiation.The results revealed that integrating CdMoO4 with g-C3N4 could remarkably improve the charge separation and photocatalytic activity,compared with those of pristine g-C3N4 and CdMoO4.This would be because the CdMoO4/g-C3N4 composites could facilitate the transfer and separation of the photoexcited electron-hole pairs,which was confirmed by electrochemical impedance spectroscopy,transient photocurrent responses,and photoluminescence measurements.Moreover,active species trapping experiments demonstrated that holes(h+)and superoxide radicals(?O2?)were the main active species during the photocatalytic reaction.A possible photocatalytic mechanism was proposed on the basis of the energy band structures determined by Mott-Schottky tests.This work would provide further insights into the rational fabrication of composites for organic contaminant removal.
文摘(La, N) co-doped TiO2 photocatalysts were synthesized using TiC14 sol-gel autoignidng synthesis (SAS) starting from a complex compound system of TiCl4-La(NO3)3-citric acid-NH4NO3-NHyH2O, in which the (La, N) co-doped process was accompushed in the formation of TiO2 nanocrystals. The prepared samples were characterized by using X-ray diffraction (XRD), X-ray photoemission spectroscopy (XPS) and UV-vis diffuse reflectance spectra. The results indicated that nitrogen and lanthanum were incorporated into the lattice and interstices of titania nanocrystals, which resulted in narrowing the band gap and promoting the separation of photoexcited hole-electron pairs, respectively, and showing expected red-shifts and enhanced photocatalytic activity under visible light. The mechanism on nitrogen doping and enhancement in photocatalyfic activity of (La, N) co-doped titania by SAS was discussed in detail.
基金the National Natural Science Foundation of China(No.21176168)the International Science and Technology Cooperation Program of Shanxi Province,China(No.2012081017)the Science and Technology Project of Taiyuan(No.20120164016)
文摘BiOClxBr1-x catalysts were synthesized through an alcoholysis method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and diffuse reflectance spectroscopy (DRS). The as-prepared photocatalysts were found to be tetragonal crystal structure and lamellar plate morphology. Their band gaps were between 3.44 and 2.83 eV. The effect of light response on the photocatalytic activity of BiOClxBrl-x was investigated by degradation of Rhodamine B (RhB). Complete removal of RhB from water was realized under simulated sunlight irradiation for 50 min with BiOC10.5Br0.5. Mechanism studies showed that photo- generated holes and superoxide anion radicals played important roles in RhB photodegradation. The results of chemical oxygen demand (COD) confirmed RhB mineralization. The effect of light response on the activity of BiOClxBr1-x was further investigated under monochromatic light irradiation, and BiOCl0.5Br0.5 catalyst exhibited the highest activity. Furthermore, BiOC10.5Br0.5 exhibited high stability, suggesting its practical application for the removal of RhB pollutant from water.
基金Project(51261015)supported by the National Natural Science Foundation of ChinaProject(1308RJZA238)supported by the Natural Science Foundation of Gansu Province,China
文摘Pure ZnS and Ni^2+-doped ZnS nanorods (Zn1-xNixS, x=0, 0.01, 0.03, 0.05 and 0.07, mole fraction,%) were synthesized by hydrothermal method. The effects of Ni2+ doping on the phase-structure, morphology, elemental composition and optical properties of the samples were investigated by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), X-ray energy dispersive spectrometry (EDS) and ultraviolet–visible spectroscopy (UV-Vis), respectively. The photocatalytic activity of Zn1-xNixS nanorods was evaluated by the photodegradation of organic dyes Rhodamine B (RhB) in aqueous solution under UV light irradiation. The results show that all samples exhibit wurtzite structure with good crystallization. The morphologies are one-dimensional nanorods with good dispersion, and the distortion of the lattice constant occurs. The band gap of Zn1-xNixS samples is smaller than that of pure ZnS, thus red shift occurs. Ni^2+-doped ZnS nanocrystals can enhance photocatalytic activities for the photodegradation of RhB. Especially, Zn0.97Ni0.03S sample exhibits better photocatalytic performance and photocatalytic stability for the decomposition of RhB.