Nano-sized ZnO catalysts were prepared by a direct precipitation method under the optimal conditions (cal-cination of precursors at 550?C for 120 min). The as-synthesized ZnO catalysts were characterized by X-ray diff...Nano-sized ZnO catalysts were prepared by a direct precipitation method under the optimal conditions (cal-cination of precursors at 550?C for 120 min). The as-synthesized ZnO catalysts were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and UV-Vis spectroscopy. The photocatalytic prop-erties of ZnO nanoparticles were investigated via methyl orange (MO) as a model organic compound under UV light irradiation. The influence of operating parameters on MO degradation including the amount of ZnO catalysts, pH value of solutions, and the photodegradation temperature was thoroughly examined. In addition, the kinetic process of photocatalytic degradation of MO using nano-sized ZnO catalyst was also examined, and the degradation of MO follow the first order kinetics.展开更多
Silicotungstic acid and phosphotungstic acid were prepared and characterized by Fourier Transform Infrared Spectroscopy (FTIR) and X-ray diffraction (XRD). The results showed that the prepared catalysts possess classi...Silicotungstic acid and phosphotungstic acid were prepared and characterized by Fourier Transform Infrared Spectroscopy (FTIR) and X-ray diffraction (XRD). The results showed that the prepared catalysts possess classical Keggin structure. The factors on the degradation of methyl orange, such as the kind of catalyst, the amount of catalyst, the original concentration of dye and illumination time were investigated under metal halide lamp. The degradation of methyl orange is up to 93.6% with phosphotungstic acid at the best reaction conditions at 8.89 g/L concentration of phosphotungstic acid, 5.56 mg/L concentration of methyl orange and 80 min illumination time.展开更多
BiOI-sensitized titanium dioxide (TiO2) photocatalysts were prepared by a deposition method at room temperature and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and Brunauer–Emmett–Teller su...BiOI-sensitized titanium dioxide (TiO2) photocatalysts were prepared by a deposition method at room temperature and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and Brunauer–Emmett–Teller surface area measurements. The photocatalytic activities of the catalysts were evaluated for the degradation of methyl orange (MO) solution under UV and visible light irradiation. The effects of catalyst amount, initial pH value, initial concentration of MO, as well as KI amount were investigated. The repeatability of photocatalytic activity of the 1.7% BiOI/TiO2 catalyst was also tested. It is shown that BiOI sensitization enhances the photocatalytic activities of TiO2. With BiOI content increasing, the photocatalytic activities of BiOI/TiO2 under UV and visible light irradiation first increase, reaching a maximum around BiOI content of 1.7%, and then decrease with further increasing BiOI content. The 1.7% BiOI/TiO2 catalyst obviously exhibits much higher visible light photocatalytic activity than P25, and its UV light photocatalytic activity is slightly higher than that of P25. Under the conditions of a catalytic dose of 1.5 g.L-1, initial pH of 3.0, initial MO concentration of 20 mg.L-1, UV power of 300 W, and air flow rate of 0.8 L.min-1, complete degradatio is achieved within 60 min. The repeatability of photocatalytic activity of the 1.7% BiOI/TiO2 catalyst is highly reliable.展开更多
Nanostructured zinc and zinc oxide films were prepared by magnetron sputtering processes and succeeded air annealing treatments. Comparison of reductive degradation rate of methyl orange (MO) by zinc films and photo...Nanostructured zinc and zinc oxide films were prepared by magnetron sputtering processes and succeeded air annealing treatments. Comparison of reductive degradation rate of methyl orange (MO) by zinc films and photocatalytic degradation rate of MO by zinc oxide films was carried out. Both reductive degradation and photocatalytic degradation process of MO by zinc and zinc oxide films can be described by first order kinetic model. It was found that although MO liquid was most quickly decolorized by metallic zinc films, the mineraliza- tion of MO was not thorough. Observation of extra ultraviolet absorption peaks indicated the formation of aromatic intermediates. On the other hand, although the photocatalytic degradation rate of MO liquid by ZnO films was only as about 1/4 large as the reductive degradation rate by zinc films, no signs of aromatic intermediates were found. Moreover, it was found that partially oxidized zinc oxide film showed higher photocatalytic efficiency than the totally oxidized ZnO films. Synergy effect between zinc and zinc oxide phase in the partially oxidized films was considered to be responsible for the higher photocatalytic efficiency.展开更多
Pure WOand Yb:WOthin films have been synthesized by spray pyrolysis technique. Effect of Yb doping concentration on photoelectrochemical, structural, morphological and optical properties of thin films are studied. X-r...Pure WOand Yb:WOthin films have been synthesized by spray pyrolysis technique. Effect of Yb doping concentration on photoelectrochemical, structural, morphological and optical properties of thin films are studied. X-ray diffraction analysis shows that all thin films are polycrystalline nature and exhibit monoclinic crystal structure. The 3 at% Yb:WOfilm shows superior photoelectrochemical(PEC) performance than that of pure WOfilm and it shows maximum photocurrent density(Iph= 1090 μA/cm) having onset potentials around +0.3 V/SCE in 0.01 M HClO. The photoelectrocatalytic process is more effective than that of the photocatalytic process for degradation of methyl orange(MO) dye. Yb doping in WOphotocatalyst is greatly effective to degrade MO dye. The enhancement in photoelectrocatalytic activity is mainly due to the suppressing the recombination rate of photogenerated electron-hole pairs. The mineralization of MO dye in aqueous solution is studied by measuring chemical oxygen demand(COD) values.展开更多
The nanometer and ordinary anatase titanium dioxide(TiO_2) powders were adopted as the sonocatalysts for the degradation of methyl orange used as a model compound for the first time. It was found that the sonocatalyti...The nanometer and ordinary anatase titanium dioxide(TiO_2) powders were adopted as the sonocatalysts for the degradation of methyl orange used as a model compound for the first time. It was found that the sonocatalytic degradation effect of methyl orange in the presence of TiO_2 powder were much better than that without TiO_2, but the sonocatalytic activity of the nanometer anatase TiO_2 particle was obviously higher than that of ordinary anatase TiO_2 particle. Although there are many factors influencing sonocatalytic degradation of methyl orange, the experimental results showed that the best degradation ratio of methyl orange could be obtained when the experimental conditions were: initial concentration 15 mg/L, nanometer anatase TiO_2 adding amount 750 mg/L, ultrasonic frequency 40 kHz, output power 50 W, pH = 3.0 and temperature 40℃ within 150 min. In addition, the catalytic activity of reused nanometer anatase TiO_2 catalyst was also studied and found to decline gradually comparing with initial nanometer anatase TiO_2 catalyst. All experiments indicated that the method of the sonocatalytic degradation of organic pollutants in the presence of TiO_2 powder was an advisable choice for non- or low-transparent organic wastewaters.展开更多
ZnO/TiO_(2)composites were synthesized by using the solvothermal method and ultrasonic precipitation followed by heat treatment in order to investigate their photocatalytic degradation of methyl orange(MO)in aqueous s...ZnO/TiO_(2)composites were synthesized by using the solvothermal method and ultrasonic precipitation followed by heat treatment in order to investigate their photocatalytic degradation of methyl orange(MO)in aqueous suspension under UV irradiation.The composition and surface structure of the catalyst were characterized by X-ray diffraction(XRD),field emission scanning electron microscope(FE-SEM),and transmission electron microscopy(TEM).The degradation efficiencies of MO at various pH values were obtained.The highest degradation efficiencies were obtained before 30 min and after 60 min at pH 11.0 and pH 2.0,respectively.A sample analysis was conducted using liquid chromatography coupled with electrospray ionization ion-trap mass spectrometry.Six intermediates were found during the photocatalytic degradation process of quinonoid MO.The degradation pathway of quinonoid MO was also proposed.展开更多
The degradation of methyl orange in a neutral phosphate buffer solution was investigated by means of contact glow discharge electrolysis (CGDE). The methyl oranges were degraded and eventually decomposed into inorga...The degradation of methyl orange in a neutral phosphate buffer solution was investigated by means of contact glow discharge electrolysis (CGDE). The methyl oranges were degraded and eventually decomposed into inorganic carbon when CGDE was conducted under the applied DC voltage of 480 V and current of ca. 80 mA. As the intermediate products, some phenolic compounds were detected as well as carboxylic acids. Experimental results showed that the oxidation process followed the first-order reaction law. Based on the analysis of the ultraviolet (UV) spectra of the solution and the intermediate products from High Pressure Liquid Chromatography-Mass Spectrum (HPLC-MS), the reaction pathway was proposed. The attack of hydroxyl radicals was considered to be a key step to start the whole oxidation process.展开更多
( CdS/ TiO2 )/ MCM-41 loaded nanometer photocatalyst was prepared by the sol-gel method and dipping process, the photocatalytic degradation of methyl thionine chloride in water was investigated by using the photocat...( CdS/ TiO2 )/ MCM-41 loaded nanometer photocatalyst was prepared by the sol-gel method and dipping process, the photocatalytic degradation of methyl thionine chloride in water was investigated by using the photocatalyst. The experimental results show that the optimum concentration of CdS over TiO2 was 3% ( molar ratio ), the photocatalytic activity was enhanced when making TiO2 the anatase ptase with a rise of the roasting temperature, and the carrier, mesoporous molecular sieve MCM-41, was beneficial to improving the photocatalytic activity of TiO2 for photocatalytic degradation of methyl thionine chloride. The morphology and the crystalline phase of the photocatalyst were discussed by means of XRD and SEM techniques, and the reaction mechanism of catalytic properties was also discussed.展开更多
Various affecting factors and degradation mechanism were studied on ultrasonic degradation of methyl orange adopting Y2O3 doping anatase TiO2 catalyst prepared in laboratory.In the experiment, the UV-VIS spectrophotom...Various affecting factors and degradation mechanism were studied on ultrasonic degradation of methyl orange adopting Y2O3 doping anatase TiO2 catalyst prepared in laboratory.In the experiment, the UV-VIS spectrophotometer was used to follow and inspect the degradation process of methyl orange.The results indicate that the ultrasonic degradation ratios of methyl orange in the presence of anatase TiO2 catalyst are much better than those without catalyst.Moreover, the catalytic performance of Y2O3 doping anatase TiO2 catalyst is obviously higher than that of anatase TiO2 catalyst without doping.The optimal conditions were adopted in this work and the degradation and COD elimination ratio of methyl orange got to98% and 99.0% in 90 min, respectively.展开更多
Complex nanometer particles WO3/TiO2 were prepared using a sol-gel process and characterized using XRD spectra. The photocatalytic activity of TiO2 can be increased by doping W^6+ with TiO2 because the doped W^6+ th...Complex nanometer particles WO3/TiO2 were prepared using a sol-gel process and characterized using XRD spectra. The photocatalytic activity of TiO2 can be increased by doping W^6+ with TiO2 because the doped W^6+ that entered into the crystal lattices of TiO2 led to the formation of defects in the crystal lattices of TiO2 and thereby improved the photocatalytic activity of TiO2.When WO3 doped in TiO2 exceeded 3%, the excess W^6+ did not enter into the crystal lattices of TiO2 but were uniformly dispersed in TiO2 or they covered the surface of TiO2, which reduced the effective illumination area of TiO2 and thereby lowered the photocatalytic activity of TiOE.The relationship among the composition of the catalyst, the amount of photocatalyst, the illumination time, and the decolorizing rate of methyl orange (MO) were discussed. The results show that the decolorizing rate of MO can reach 82.3% using WO3/TiO2 as the photocatalyst, with the composition of WO3/TiO2 -3:97, the mass of catalyst = 0.400 g, the initial concentration of MO = 20 mg/L, pH = 6.5, and the illumina- tion time = 7 h.展开更多
H3PW12O40/TiO2 nanometer photocatalyst was prepared by one step hydrothermal synthesis from H3PW12O40·nH20 and Ti(OBu)4, simultaneously realizing the load and modification of H3PW12O40. The catalyst was charact...H3PW12O40/TiO2 nanometer photocatalyst was prepared by one step hydrothermal synthesis from H3PW12O40·nH20 and Ti(OBu)4, simultaneously realizing the load and modification of H3PW12O40. The catalyst was characterized by Fourier transform infrared spectroscopy(FTIR), powder X-ray diffraction(XRD), nitrogen adsorp- tion-desorption analysis and scanning electron microscopy(SEM). The results show that the catalyst is Keggin struc- ture and crystallized in anatase structure, the diameter and specific area of the prepared catalyst are 3.8 nm and 177.9 m^2/g, respectively, and its dispersity is better. The photocatalytic properties were compared for TiO2H3PW12O40/TiO2 prepared by impregnation and H3PW12O40/TiO2 prepared by hydrothermal method with methyl orange as a probe. The effects of H3PW12O40 loadings, crystallization method, initial pH and concentration of dye solution on the degradation of methyl orange were investigated.展开更多
TiO2 nano-particles were synthesized by sol-gel technique and characterized by X-ray diffractometer(XRD)and transmission electron microscope(TEM).Their photo-catalytic activities for formaldehyde(FA)and methyl orange(...TiO2 nano-particles were synthesized by sol-gel technique and characterized by X-ray diffractometer(XRD)and transmission electron microscope(TEM).Their photo-catalytic activities for formaldehyde(FA)and methyl orange(MO)degradation were tested using degradation rate(η)as an evaluation index.Based on the orthogonal test results,the optimal condition for TiO_(2) preparation was obtained.Results showed that particle sizes were in the range of 10–40 nm,and that prepared TiO_(2) had better photocatalytic activity than P25.A simplified model was developed to evaluate the apparent quantum efficiency(Φapp)of this photocatalytic reaction system.展开更多
Monoclinic BiVO4 with multiple morphologies and/or porous structures were fabricated using the hydrothermal strategy. The materials were characterized by means of the XRD, Raman, TGA/DSC, SEM, XPS, and UV-Vis techniqu...Monoclinic BiVO4 with multiple morphologies and/or porous structures were fabricated using the hydrothermal strategy. The materials were characterized by means of the XRD, Raman, TGA/DSC, SEM, XPS, and UV-Vis techniques. The photocatalytic activities of the BiVO4 materials were evaluated for the degradation of Methyl Orange under visible-light irradiation. It is observed that pH value and surfactant exerted a great effect on the morphology and pore structure of the BiVO4 product. Spherical BiVO4 with porous structures, flower-cluster-like BiVO4, and flower-bundle-like BiVO4 were generated hydrothermally at 100°C with poly(vinyl pyrrolidone) (PVP) and urea (pH = 2) and at 160°C with NaHCO3 (pH = 7 and 8), respectively. The PVP-derived BiVO4 showed much higher surface areas (5.0-8.4 m2/g) and narrower bandgap energies (2.45-2.49 eV). The best photocatalytic performance of the spherical BiVO4 material with a surface area of 8.4 m2/g was associated with its higher surface area, narrower bandgap energy, higher surface oxygen vacancy density, and unique porous architecture.展开更多
TiO2/graphene composite photocatalysts have been prepared by a simple liquid phase deposition method using titanium tetrafluoride and electron beam (EB) irradiation-pretreated graphene as the raw materials. The prod...TiO2/graphene composite photocatalysts have been prepared by a simple liquid phase deposition method using titanium tetrafluoride and electron beam (EB) irradiation-pretreated graphene as the raw materials. The products were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. The effects of varying the synthesis parameters such as graphene content, concentration of titanium tetrafluoride solution and irradiation dose were investigated. It was found that the preparation conditions had a significant effect on the structure and properties of the final products. The irradiated graphene was covered with petal-like anatase TiO2 nanoparticles, which were more uniform and smaller in size than those in products synthesized without EB irradiation-pretreated graphene. The photocatalytic activities of the products were evaluated using the photocatalytic degradation of methyl orange as a probe reaction. The results showed that the products synthesized using EB irradiation-pretreated graphene exhibited higher photocatalytic activities than those using graphene without EB irradiation pretreatment.展开更多
We report layer-by-layer (LbL) assembly of TiO2 and H4SiW12O40 (SiW12) multilayer film on silicon wafers and glass slides for photocatalytic degradation of methyl orange (MO). The photocatalytic efficiency of th...We report layer-by-layer (LbL) assembly of TiO2 and H4SiW12O40 (SiW12) multilayer film on silicon wafers and glass slides for photocatalytic degradation of methyl orange (MO). The photocatalytic efficiency of the obtained multilayer film increases along with the decrease of pH and salt concentration of the incubation solution. The results show that MO can be almost re- moved in pH 2.0 solution without salt addition in the first 60 min incubation when MO concentration is lower than 15 mg/L. Different salts show an apparent inhibitory effect on photocatalytic degradation of MO with the order of ZnC12〉KCI〉 NaC1〉LiCI. The TiO2/SiW12 multilayer film maintains photocatalytic activity even after five degradation cycles. The reaction of MO photodegradation accords with an apparent first-order dynamics.展开更多
A series of carbon nanotubes/TiO2 nanotubes (CNTs/TNTs) composite photocatalysts were successfully prepared by incorporation of CNTs in HNO3 washing process. These photocatalysts were characterized by XRD, N2 physic...A series of carbon nanotubes/TiO2 nanotubes (CNTs/TNTs) composite photocatalysts were successfully prepared by incorporation of CNTs in HNO3 washing process. These photocatalysts were characterized by XRD, N2 physical adsorption, UV-vis diffuse reflectance spectroscopy, TEM and Raman spectroscopy, respectively, and their photocatalytic activities were tested by using methyl orange (MO) as a model compound. Also, the effects of amount of CNTs incorporated, calcination temperature and amount of catalyst on the photocatalytic activity of the composite photocatalyst were systematically investigated. The results show that the CNTs/TNTs composite exhibits much higher photocatalytic activity than that of the TNTs or CNTs alone.展开更多
A graphite carbon nitride(g-C3N4)modified Bi4O5I2 composite was successfully prepared insitu via the thermal treatment of a g-C3N4/Bi OI precursor at 400°C for 3 hr.The as-prepared g-C3N4/Bi4O5I2 showed high phot...A graphite carbon nitride(g-C3N4)modified Bi4O5I2 composite was successfully prepared insitu via the thermal treatment of a g-C3N4/Bi OI precursor at 400°C for 3 hr.The as-prepared g-C3N4/Bi4O5I2 showed high photocatalytic performance in Methyl Orange(MO)degradation under visible light.The best sample presented a degradation rate of 0.164 min^-1,which is 3.2 and 82 times as high as that of Bi4O5I2 and g-C3N4,respectively.The g-C3N4/Bi4O5I2 was characterized by X-ray powder diffractometer(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),Raman,X-ray photoelectron spectroscopy(XPS),ultraviolet-visible diffuse reflectance spectra(DRS),electrochemical impedance spectroscopy(EIS)and transient photocurrent response in order to explain the enhanced photoactivity.Results indicated that the decoration with a small amount of g-C3N4 influenced the specific surface area only slightly.Nevertheless,the capability for absorbing visible light was improved measurably,which was beneficial to the MO degradation.On top of that,a strong interaction between g-C3N4 and Bi4O5I2 was detected.This interplay promoted the formation of a favorable heterojunction structure and thereby enhanced the charge separation.Thus,the g-C3N4/Bi4O5I2 composite presented greater charge separation efficiency and much better photocatalytic performance than Bi4O5I2.Additionally,g-C3N4/Bi4O5I2 also presented high stability.·O2^- and holes were verified to be the main reactive species.展开更多
In this study, the degradation efficiencies of zero-valent iron (ZVI) powders with different structures and components wereevaluated for methyl orange (MO). The results show that the structure is an essential fact...In this study, the degradation efficiencies of zero-valent iron (ZVI) powders with different structures and components wereevaluated for methyl orange (MO). The results show that the structure is an essential factor that affects degradation, andadded non-metallic elements help optimize the structure. The amorphous and balled-milled crystalline Fe7oSiloB2o hascomparative degradation efficiencies to MO with tl/2 values of 6.9 and 7.0 min, respectively. Increasing the boron contentcan create a favorable structure and promote degradation. The ball-milled crystalline Fe70B30 and Fe43.64B56.36 powdershave relatively short tl/2 values of 5.2 and 3.3 rain, respectively. The excellent properties are mainly attributed to theirheterogeneous structure with boron-doped active sites in ZVI. Composition segregation in the nanoscale range in anamorphous FeSiB alloy and small boron particles in the microscale range embedded in large iron particles prepared by ball-milling, both constitute effective galvanic cells that promote iron electron loss and therefore decompose organic chemicals.These findings may provide a new, highly efficient, low-cost commercial method for azo dye wastewater treatment usingZVI.展开更多
文摘Nano-sized ZnO catalysts were prepared by a direct precipitation method under the optimal conditions (cal-cination of precursors at 550?C for 120 min). The as-synthesized ZnO catalysts were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and UV-Vis spectroscopy. The photocatalytic prop-erties of ZnO nanoparticles were investigated via methyl orange (MO) as a model organic compound under UV light irradiation. The influence of operating parameters on MO degradation including the amount of ZnO catalysts, pH value of solutions, and the photodegradation temperature was thoroughly examined. In addition, the kinetic process of photocatalytic degradation of MO using nano-sized ZnO catalyst was also examined, and the degradation of MO follow the first order kinetics.
文摘Silicotungstic acid and phosphotungstic acid were prepared and characterized by Fourier Transform Infrared Spectroscopy (FTIR) and X-ray diffraction (XRD). The results showed that the prepared catalysts possess classical Keggin structure. The factors on the degradation of methyl orange, such as the kind of catalyst, the amount of catalyst, the original concentration of dye and illumination time were investigated under metal halide lamp. The degradation of methyl orange is up to 93.6% with phosphotungstic acid at the best reaction conditions at 8.89 g/L concentration of phosphotungstic acid, 5.56 mg/L concentration of methyl orange and 80 min illumination time.
基金financially supported by the National Natural Science Foundation of China(No.21171091)the Natural Science Foundation of Higher Education Institutions in Anhui Province(Nos.KJ2012A217,KJ2012B135,and KJ2012B136)
文摘BiOI-sensitized titanium dioxide (TiO2) photocatalysts were prepared by a deposition method at room temperature and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and Brunauer–Emmett–Teller surface area measurements. The photocatalytic activities of the catalysts were evaluated for the degradation of methyl orange (MO) solution under UV and visible light irradiation. The effects of catalyst amount, initial pH value, initial concentration of MO, as well as KI amount were investigated. The repeatability of photocatalytic activity of the 1.7% BiOI/TiO2 catalyst was also tested. It is shown that BiOI sensitization enhances the photocatalytic activities of TiO2. With BiOI content increasing, the photocatalytic activities of BiOI/TiO2 under UV and visible light irradiation first increase, reaching a maximum around BiOI content of 1.7%, and then decrease with further increasing BiOI content. The 1.7% BiOI/TiO2 catalyst obviously exhibits much higher visible light photocatalytic activity than P25, and its UV light photocatalytic activity is slightly higher than that of P25. Under the conditions of a catalytic dose of 1.5 g.L-1, initial pH of 3.0, initial MO concentration of 20 mg.L-1, UV power of 300 W, and air flow rate of 0.8 L.min-1, complete degradatio is achieved within 60 min. The repeatability of photocatalytic activity of the 1.7% BiOI/TiO2 catalyst is highly reliable.
文摘Nanostructured zinc and zinc oxide films were prepared by magnetron sputtering processes and succeeded air annealing treatments. Comparison of reductive degradation rate of methyl orange (MO) by zinc films and photocatalytic degradation rate of MO by zinc oxide films was carried out. Both reductive degradation and photocatalytic degradation process of MO by zinc and zinc oxide films can be described by first order kinetic model. It was found that although MO liquid was most quickly decolorized by metallic zinc films, the mineraliza- tion of MO was not thorough. Observation of extra ultraviolet absorption peaks indicated the formation of aromatic intermediates. On the other hand, although the photocatalytic degradation rate of MO liquid by ZnO films was only as about 1/4 large as the reductive degradation rate by zinc films, no signs of aromatic intermediates were found. Moreover, it was found that partially oxidized zinc oxide film showed higher photocatalytic efficiency than the totally oxidized ZnO films. Synergy effect between zinc and zinc oxide phase in the partially oxidized films was considered to be responsible for the higher photocatalytic efficiency.
基金University Grants Commission(UGC),New Delhi,for the financial support through the project No.‘‘41-869/2012(SR)’’
文摘Pure WOand Yb:WOthin films have been synthesized by spray pyrolysis technique. Effect of Yb doping concentration on photoelectrochemical, structural, morphological and optical properties of thin films are studied. X-ray diffraction analysis shows that all thin films are polycrystalline nature and exhibit monoclinic crystal structure. The 3 at% Yb:WOfilm shows superior photoelectrochemical(PEC) performance than that of pure WOfilm and it shows maximum photocurrent density(Iph= 1090 μA/cm) having onset potentials around +0.3 V/SCE in 0.01 M HClO. The photoelectrocatalytic process is more effective than that of the photocatalytic process for degradation of methyl orange(MO) dye. Yb doping in WOphotocatalyst is greatly effective to degrade MO dye. The enhancement in photoelectrocatalytic activity is mainly due to the suppressing the recombination rate of photogenerated electron-hole pairs. The mineralization of MO dye in aqueous solution is studied by measuring chemical oxygen demand(COD) values.
基金Foundation item: The National Natural Science Foundation of China(No. 20371023)
文摘The nanometer and ordinary anatase titanium dioxide(TiO_2) powders were adopted as the sonocatalysts for the degradation of methyl orange used as a model compound for the first time. It was found that the sonocatalytic degradation effect of methyl orange in the presence of TiO_2 powder were much better than that without TiO_2, but the sonocatalytic activity of the nanometer anatase TiO_2 particle was obviously higher than that of ordinary anatase TiO_2 particle. Although there are many factors influencing sonocatalytic degradation of methyl orange, the experimental results showed that the best degradation ratio of methyl orange could be obtained when the experimental conditions were: initial concentration 15 mg/L, nanometer anatase TiO_2 adding amount 750 mg/L, ultrasonic frequency 40 kHz, output power 50 W, pH = 3.0 and temperature 40℃ within 150 min. In addition, the catalytic activity of reused nanometer anatase TiO_2 catalyst was also studied and found to decline gradually comparing with initial nanometer anatase TiO_2 catalyst. All experiments indicated that the method of the sonocatalytic degradation of organic pollutants in the presence of TiO_2 powder was an advisable choice for non- or low-transparent organic wastewaters.
基金the Doctoral Fund of Ministry of Education of China(Grant No.200800550011)the Chinese Academy for Environmental Planning(Grant No.2008AW01).
文摘ZnO/TiO_(2)composites were synthesized by using the solvothermal method and ultrasonic precipitation followed by heat treatment in order to investigate their photocatalytic degradation of methyl orange(MO)in aqueous suspension under UV irradiation.The composition and surface structure of the catalyst were characterized by X-ray diffraction(XRD),field emission scanning electron microscope(FE-SEM),and transmission electron microscopy(TEM).The degradation efficiencies of MO at various pH values were obtained.The highest degradation efficiencies were obtained before 30 min and after 60 min at pH 11.0 and pH 2.0,respectively.A sample analysis was conducted using liquid chromatography coupled with electrospray ionization ion-trap mass spectrometry.Six intermediates were found during the photocatalytic degradation process of quinonoid MO.The degradation pathway of quinonoid MO was also proposed.
基金the Doctoral Degree Science Research Foundation under the Ministry of Education,China(No.20050248015)
文摘The degradation of methyl orange in a neutral phosphate buffer solution was investigated by means of contact glow discharge electrolysis (CGDE). The methyl oranges were degraded and eventually decomposed into inorganic carbon when CGDE was conducted under the applied DC voltage of 480 V and current of ca. 80 mA. As the intermediate products, some phenolic compounds were detected as well as carboxylic acids. Experimental results showed that the oxidation process followed the first-order reaction law. Based on the analysis of the ultraviolet (UV) spectra of the solution and the intermediate products from High Pressure Liquid Chromatography-Mass Spectrum (HPLC-MS), the reaction pathway was proposed. The attack of hydroxyl radicals was considered to be a key step to start the whole oxidation process.
基金Funded by Special Fund of Education Department of ShaanxiProvince(No.03JK144)
文摘( CdS/ TiO2 )/ MCM-41 loaded nanometer photocatalyst was prepared by the sol-gel method and dipping process, the photocatalytic degradation of methyl thionine chloride in water was investigated by using the photocatalyst. The experimental results show that the optimum concentration of CdS over TiO2 was 3% ( molar ratio ), the photocatalytic activity was enhanced when making TiO2 the anatase ptase with a rise of the roasting temperature, and the carrier, mesoporous molecular sieve MCM-41, was beneficial to improving the photocatalytic activity of TiO2 for photocatalytic degradation of methyl thionine chloride. The morphology and the crystalline phase of the photocatalyst were discussed by means of XRD and SEM techniques, and the reaction mechanism of catalytic properties was also discussed.
基金Project supported by the National Natural Science Foundation of China(20371023 )
文摘Various affecting factors and degradation mechanism were studied on ultrasonic degradation of methyl orange adopting Y2O3 doping anatase TiO2 catalyst prepared in laboratory.In the experiment, the UV-VIS spectrophotometer was used to follow and inspect the degradation process of methyl orange.The results indicate that the ultrasonic degradation ratios of methyl orange in the presence of anatase TiO2 catalyst are much better than those without catalyst.Moreover, the catalytic performance of Y2O3 doping anatase TiO2 catalyst is obviously higher than that of anatase TiO2 catalyst without doping.The optimal conditions were adopted in this work and the degradation and COD elimination ratio of methyl orange got to98% and 99.0% in 90 min, respectively.
基金This work was financially supported by the Natural Science Foundation of Anhui Province, China (No. 050450301).
文摘Complex nanometer particles WO3/TiO2 were prepared using a sol-gel process and characterized using XRD spectra. The photocatalytic activity of TiO2 can be increased by doping W^6+ with TiO2 because the doped W^6+ that entered into the crystal lattices of TiO2 led to the formation of defects in the crystal lattices of TiO2 and thereby improved the photocatalytic activity of TiO2.When WO3 doped in TiO2 exceeded 3%, the excess W^6+ did not enter into the crystal lattices of TiO2 but were uniformly dispersed in TiO2 or they covered the surface of TiO2, which reduced the effective illumination area of TiO2 and thereby lowered the photocatalytic activity of TiOE.The relationship among the composition of the catalyst, the amount of photocatalyst, the illumination time, and the decolorizing rate of methyl orange (MO) were discussed. The results show that the decolorizing rate of MO can reach 82.3% using WO3/TiO2 as the photocatalyst, with the composition of WO3/TiO2 -3:97, the mass of catalyst = 0.400 g, the initial concentration of MO = 20 mg/L, pH = 6.5, and the illumina- tion time = 7 h.
基金Supported by the Fund of Institution of Chemical Materials,China Academy of Engineering Physics
文摘H3PW12O40/TiO2 nanometer photocatalyst was prepared by one step hydrothermal synthesis from H3PW12O40·nH20 and Ti(OBu)4, simultaneously realizing the load and modification of H3PW12O40. The catalyst was characterized by Fourier transform infrared spectroscopy(FTIR), powder X-ray diffraction(XRD), nitrogen adsorp- tion-desorption analysis and scanning electron microscopy(SEM). The results show that the catalyst is Keggin struc- ture and crystallized in anatase structure, the diameter and specific area of the prepared catalyst are 3.8 nm and 177.9 m^2/g, respectively, and its dispersity is better. The photocatalytic properties were compared for TiO2H3PW12O40/TiO2 prepared by impregnation and H3PW12O40/TiO2 prepared by hydrothermal method with methyl orange as a probe. The effects of H3PW12O40 loadings, crystallization method, initial pH and concentration of dye solution on the degradation of methyl orange were investigated.
基金supported by the National Natural Science Foundation of China(Grant No.20176013).
文摘TiO2 nano-particles were synthesized by sol-gel technique and characterized by X-ray diffractometer(XRD)and transmission electron microscope(TEM).Their photo-catalytic activities for formaldehyde(FA)and methyl orange(MO)degradation were tested using degradation rate(η)as an evaluation index.Based on the orthogonal test results,the optimal condition for TiO_(2) preparation was obtained.Results showed that particle sizes were in the range of 10–40 nm,and that prepared TiO_(2) had better photocatalytic activity than P25.A simplified model was developed to evaluate the apparent quantum efficiency(Φapp)of this photocatalytic reaction system.
基金supported by the National Natural Science Foundation of China (No. 20973017, 21077007)the Creative Research Foundation of Beijing University of Technology (No. 00500054R4003, 005000543111501)+2 种基金the HiTech Research and Development Program (863)of China (No. 2009AA063201)the Funding Projectfor Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality (No. PHR200907105, PHR201007105,PHR201107104)the Hong Kong Baptist University (FRG2/09-10/023)
文摘Monoclinic BiVO4 with multiple morphologies and/or porous structures were fabricated using the hydrothermal strategy. The materials were characterized by means of the XRD, Raman, TGA/DSC, SEM, XPS, and UV-Vis techniques. The photocatalytic activities of the BiVO4 materials were evaluated for the degradation of Methyl Orange under visible-light irradiation. It is observed that pH value and surfactant exerted a great effect on the morphology and pore structure of the BiVO4 product. Spherical BiVO4 with porous structures, flower-cluster-like BiVO4, and flower-bundle-like BiVO4 were generated hydrothermally at 100°C with poly(vinyl pyrrolidone) (PVP) and urea (pH = 2) and at 160°C with NaHCO3 (pH = 7 and 8), respectively. The PVP-derived BiVO4 showed much higher surface areas (5.0-8.4 m2/g) and narrower bandgap energies (2.45-2.49 eV). The best photocatalytic performance of the spherical BiVO4 material with a surface area of 8.4 m2/g was associated with its higher surface area, narrower bandgap energy, higher surface oxygen vacancy density, and unique porous architecture.
基金The work was co-supported by the National Natural Science Foundation of China (No. 20871081), the Science and Technology Commission of Shanghai Municipality (Nos. 10QH1401000 and 10DZ0500100), the Research Funding of the State Key Laboratory of Chemical Engineering (ECUST), the Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry (ECNU), and Shanghai Leading Academic Disciplines (No. $30109).
文摘TiO2/graphene composite photocatalysts have been prepared by a simple liquid phase deposition method using titanium tetrafluoride and electron beam (EB) irradiation-pretreated graphene as the raw materials. The products were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. The effects of varying the synthesis parameters such as graphene content, concentration of titanium tetrafluoride solution and irradiation dose were investigated. It was found that the preparation conditions had a significant effect on the structure and properties of the final products. The irradiated graphene was covered with petal-like anatase TiO2 nanoparticles, which were more uniform and smaller in size than those in products synthesized without EB irradiation-pretreated graphene. The photocatalytic activities of the products were evaluated using the photocatalytic degradation of methyl orange as a probe reaction. The results showed that the products synthesized using EB irradiation-pretreated graphene exhibited higher photocatalytic activities than those using graphene without EB irradiation pretreatment.
基金financially supported by the National Natural Science Foundation of China (21033005)the National Basic Research Program of China (973 Program, 2009CB930103)Natural Science Foundation of Shandong Province (2009ZRB01876)
文摘We report layer-by-layer (LbL) assembly of TiO2 and H4SiW12O40 (SiW12) multilayer film on silicon wafers and glass slides for photocatalytic degradation of methyl orange (MO). The photocatalytic efficiency of the obtained multilayer film increases along with the decrease of pH and salt concentration of the incubation solution. The results show that MO can be almost re- moved in pH 2.0 solution without salt addition in the first 60 min incubation when MO concentration is lower than 15 mg/L. Different salts show an apparent inhibitory effect on photocatalytic degradation of MO with the order of ZnC12〉KCI〉 NaC1〉LiCI. The TiO2/SiW12 multilayer film maintains photocatalytic activity even after five degradation cycles. The reaction of MO photodegradation accords with an apparent first-order dynamics.
基金Financial supports from the Project Supported by the Natural Science Foundation of the Jiangsu Province Higher Education Institutions of China(09KJD150002)Project Supported by the Graduate Innovation Program Foundation of the Jiangsu Province Higher Education Institutions of China(CXLX_0570)
文摘A series of carbon nanotubes/TiO2 nanotubes (CNTs/TNTs) composite photocatalysts were successfully prepared by incorporation of CNTs in HNO3 washing process. These photocatalysts were characterized by XRD, N2 physical adsorption, UV-vis diffuse reflectance spectroscopy, TEM and Raman spectroscopy, respectively, and their photocatalytic activities were tested by using methyl orange (MO) as a model compound. Also, the effects of amount of CNTs incorporated, calcination temperature and amount of catalyst on the photocatalytic activity of the composite photocatalyst were systematically investigated. The results show that the CNTs/TNTs composite exhibits much higher photocatalytic activity than that of the TNTs or CNTs alone.
基金financially supported by National Undergraduate Training Program for Innovation and Entrepreneurship(Nos.201810345012 and 201810345051)
文摘A graphite carbon nitride(g-C3N4)modified Bi4O5I2 composite was successfully prepared insitu via the thermal treatment of a g-C3N4/Bi OI precursor at 400°C for 3 hr.The as-prepared g-C3N4/Bi4O5I2 showed high photocatalytic performance in Methyl Orange(MO)degradation under visible light.The best sample presented a degradation rate of 0.164 min^-1,which is 3.2 and 82 times as high as that of Bi4O5I2 and g-C3N4,respectively.The g-C3N4/Bi4O5I2 was characterized by X-ray powder diffractometer(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),Raman,X-ray photoelectron spectroscopy(XPS),ultraviolet-visible diffuse reflectance spectra(DRS),electrochemical impedance spectroscopy(EIS)and transient photocurrent response in order to explain the enhanced photoactivity.Results indicated that the decoration with a small amount of g-C3N4 influenced the specific surface area only slightly.Nevertheless,the capability for absorbing visible light was improved measurably,which was beneficial to the MO degradation.On top of that,a strong interaction between g-C3N4 and Bi4O5I2 was detected.This interplay promoted the formation of a favorable heterojunction structure and thereby enhanced the charge separation.Thus,the g-C3N4/Bi4O5I2 composite presented greater charge separation efficiency and much better photocatalytic performance than Bi4O5I2.Additionally,g-C3N4/Bi4O5I2 also presented high stability.·O2^- and holes were verified to be the main reactive species.
基金supported by the Program of Introducing Innovative Research Team in Dongguan under Contract Number 2014607109Shenzhen Science and Technology Research Grants under Contract Numbers JCYJ20160422104921235,JCYJ20160422143659258 and JCYJ20160422144751573
文摘In this study, the degradation efficiencies of zero-valent iron (ZVI) powders with different structures and components wereevaluated for methyl orange (MO). The results show that the structure is an essential factor that affects degradation, andadded non-metallic elements help optimize the structure. The amorphous and balled-milled crystalline Fe7oSiloB2o hascomparative degradation efficiencies to MO with tl/2 values of 6.9 and 7.0 min, respectively. Increasing the boron contentcan create a favorable structure and promote degradation. The ball-milled crystalline Fe70B30 and Fe43.64B56.36 powdershave relatively short tl/2 values of 5.2 and 3.3 rain, respectively. The excellent properties are mainly attributed to theirheterogeneous structure with boron-doped active sites in ZVI. Composition segregation in the nanoscale range in anamorphous FeSiB alloy and small boron particles in the microscale range embedded in large iron particles prepared by ball-milling, both constitute effective galvanic cells that promote iron electron loss and therefore decompose organic chemicals.These findings may provide a new, highly efficient, low-cost commercial method for azo dye wastewater treatment usingZVI.