Photocatalytic hydrogen(H_(2))evolution using covalent organic frameworks(COFs)is an attractive and promising avenue for exploration,but one of its big challenges is low photo-induced charge separation.In this study,w...Photocatalytic hydrogen(H_(2))evolution using covalent organic frameworks(COFs)is an attractive and promising avenue for exploration,but one of its big challenges is low photo-induced charge separation.In this study,we present a straightforward and facile dipole polarization engineering strategy to enhance charge separation efficiency,achieved through atomic modulation(O,S,and Se)of the COF monomer.Our findings demonstrate that incorporating atoms with varying electronegativities into the COF matrix significantly influences the local dipole moment,thereby affecting charge separation efficiency and photostability,which in turn affects the rates of photocatalytic H_(2) evolution.As a result,the newly developed TMT-BO-COF,which contains highly electronegative O atoms,exhibits the lowest exciton binding energy,the highest efficiency in charge separation and transportation,and the longest lifetime of the active charges.This leads to an impressive average H_(2) production rate of 23.7 mmol g^(−1) h^(−1),which is 2.5 and 24.5 times higher than that of TMT-BS-COF(containing S atoms)and TMT-BSe-COF(containing Se atoms),respectively.A novel photocatalytic hydrogen evolution mechanism based on proton-coupled electron transfer on N in the structure of triazine rings in vinylene-linked COFs is proposed by theoretical calculations.Our findings provide new insights into the design of highly photoactive organic framework materials for H_(2) evolution and beyond.展开更多
2D-layered graphitic carbon nitride(g-C_(3)N_(4))is regarded as a great prospect as a photocatalyst for H_(2)generation.However,g-C_(3)N_(4)’s photocatalytic hydrogen evolution(HER)activity is significantly restricte...2D-layered graphitic carbon nitride(g-C_(3)N_(4))is regarded as a great prospect as a photocatalyst for H_(2)generation.However,g-C_(3)N_(4)’s photocatalytic hydrogen evolution(HER)activity is significantly restricted by the recombination of photocarriers.We find that cobalt sulfide(CoS_(2))as a cocatalyst can promote g-C_(3)N_(4)nanosheets(NSs)to realize very efficient photocatalytic H_(2)generation.The prepared CoS_(2)/g-C_(3)N_(4)hybrids display highly boosted photocatalytic H_(2)generation performance and outstanding cycle stability.The optimized 7%-CoS_(2)/g-C_(3)N_(4)hybrids show a much improved photocatalytic H_(2)generation rate of 36.2μmol-1h-1,which is about 180 times as much as bare g-C_(3)N_(4)(0.2μmol-1h-1).In addition,the apparent quantum efficiency(AQE)of all the samples was computed under light atλ=370 nm,in which the AQE of 7%-CoS_(2)/g-C_(3)N_(4)hybrids is up to 5.72%.The experimental data and the DFT calculation suggest that the CoS_(2)/g-C_(3)N_(4)hybrid’s excellent HER activity is attributable to the lower overpotential and the smaller Co-H bond activation energy for HER.Accordingly,the CoS_(2)cocatalyst loading effectively boosts the photocatalytic performance of g-C_(3)N_(4)for H_(2)evolution.The project promotes fast development of high-efficiency photocatalysts and low-cost for photocatalytic H_(2)generation.展开更多
Graphitic carbon nitride(g-C3N4)-based photocatalysts have shown great potential in the splitting of water.However,the intrinsic drawbacks of g-C3N4,such as low surface area,poor diffusion,and charge separation effici...Graphitic carbon nitride(g-C3N4)-based photocatalysts have shown great potential in the splitting of water.However,the intrinsic drawbacks of g-C3N4,such as low surface area,poor diffusion,and charge separation efficiency,remain as the bottleneck to achieve highly efficient hydrogen evolution.Here,a hollow oxygen-incorporated g-C3N4 nanosheet(OCN)with an improved surface area of 148.5 m2 g^−1 is fabricated by the multiple thermal treatments under the N2/O2 atmosphere,wherein the C–O bonds are formed through two ways of physical adsorption and doping.The physical characterization and theoretical calculation indicate that the O-adsorption can promote the generation of defects,leading to the formation of hollow morphology,while the O-doping results in reduced band gap of g-C3N4.The optimized OCN shows an excellent photocatalytic hydrogen evolution activity of 3519.6μmol g^−1 h^−1 for~20 h,which is over four times higher than that of g-C3N4(850.1μmol g^−1 h^−1)and outperforms most of the reported g-C3N4 catalysts.展开更多
The rational design of photochemical molecular device(PMD)and its hybrid system has great potential in improving the activity of photocatalytic hydrogen production.A series of Pd6L3 type metal-organic cages,denoted as...The rational design of photochemical molecular device(PMD)and its hybrid system has great potential in improving the activity of photocatalytic hydrogen production.A series of Pd6L3 type metal-organic cages,denoted as MOC-Py-M(M=H,Cu,and Zn),are designed for PMDs by combining metalloporphyrin-based ligands with catalytically active Pd^(2+)centers.These metal-organic cages(MOCs)are first successfully hybridized with graphitic carbon nitride(g-C_(3)N_(4))to form direct Z-scheme heterogeneous MOC-Py-M/g-C_(3)N_(4)(M=H,Cu,and Zn)photocatalysts via π-πinteractions.Benefiting from its better light absorption ability,the MOC-Py-Zn/g-C_(3)N_(4) catalyst exhibits high H_(2) production activity under visible light(10348μmol g^(-1) h^(-1)),far superior to MOC-Py-H/g-C_(3)N_(4) and MOC-Py-Cu/g-C_(3)N_(4).Moreover,the MOC-Py-Zn/g-C_(3)N_(4) system obtains an enhanced turn over number(TON)value of 32616 within 100 h,outperforming the homogenous MOC-Py-Zn(TON of 507 within 100 h),which is one of the highest photochemical hybrid systems based on MOC for visible-light-driven hydrogen generation.This confirms the direct Z-scheme heterostructure can promote effective charge transfer,expand the visible light absorption region,and protect the cages from decomposition in MOC-Py-Zn/g-C_(3)N_(4).This work presents a creative example that direct Z-scheme PMD-based systems for effective and persistent hydrogen generation from water under visible light are obtained by heterogenization approach using homogeneous porphyrin-based MOCs and g-C_(3)N_(4) semiconductors.展开更多
Graphdiyne(GDY,g-C_(n)H_(2n-2)),a novel two-dimensional carbon hybrid material,has attracted significant attention owing to its unique and excellent properties.As a new type of carbon material,GDY has a layered struct...Graphdiyne(GDY,g-C_(n)H_(2n-2)),a novel two-dimensional carbon hybrid material,has attracted significant attention owing to its unique and excellent properties.As a new type of carbon material,GDY has a layered structure and can be used in the field of photocatalytic water splitting.Therefore,herein,new progress in the preparation of graphene using Cu I powder as a catalytic material and the combination of a facile hydrothermal method to prepare a new composite material,Co_(9)S_(8)-GDY-Cu I,is reported.The hydrogen production activity of Co9S8-GDY-Cu I in the sensitization system reached 1411.82μmol g^(-1) h^(-1),which is 10.29 times that of pure GDY.A series of characterization techniques were used to provide evidence for the successful preparation of the material and its superior photocatalytic activity.Raman spectroscopy showed that the material contains acetylenic bonds,and the X-ray photoelectron spectroscopy carbon fitting peaks indicated the presence of C-C(sp^(2))and C-C(sp),further demonstrating that GDY was successfully prepared.A possible reaction mechanism was proposed by making use of UV-visible diffuse reflectance and Mott-Schottky analyses.The results showed that a double S-scheme heterojunction was constructed between the samples,which effectively accelerated the separation and transfer of electrons.In addition,the introduction of Co9S8 nanoparticles greatly improved the visible light absorption capacity of Co_(9)S_(8)-GDY-Cu I.Photoluminescence spectroscopy and related electrochemical characterization further proved that recombination of the electron-hole pairs in the composite material was effectively suppressed.展开更多
Hydrogen energy is a powerful and efficient energy resource,which can be produced by photocatalytic water split-ting.Among the photocatalysis,multinary copper-based chalcogenide semiconductor nanocrystals exhibit grea...Hydrogen energy is a powerful and efficient energy resource,which can be produced by photocatalytic water split-ting.Among the photocatalysis,multinary copper-based chalcogenide semiconductor nanocrystals exhibit great potential due to their tunable crystal structures,adjustable optical band gap,eco-friendly,and abundant resources.In this paper,Cu-Zn-Sn-S(CZTS)nanocrystals with different Cu content have been synthesized by using the one-pot method.By regulating the surface ligands,the reaction temperature,and the Cu content,kesterite and hexagonal wurtzite CZTS nanocrystals were obtained.The critical factors for the controllable transition between two phases were discussed.Subsequently,a series of quatern-ary CZTS nanocrystals with different Cu content were used for photocatalytic hydrogen evolution.And their band gap,energy level structure,and charge transfer ability were compared comprehensively.As a result,the pure hexagonal wurtzite CZTS nano-crystals have exhibited an improved photocatalytic hydrogen evolution activity.展开更多
In this study,Ni_(2)P-Cd_(0.9)Zn_(0.1)S(NPCZS)composites were synthesized by coupling tetrapod bundle Cd_(0.9)Zn_(0.1)S(CZS)and coralline-like Ni_(2)P(NP)via a simple calcination method.CZS shows outstanding activity ...In this study,Ni_(2)P-Cd_(0.9)Zn_(0.1)S(NPCZS)composites were synthesized by coupling tetrapod bundle Cd_(0.9)Zn_(0.1)S(CZS)and coralline-like Ni_(2)P(NP)via a simple calcination method.CZS shows outstanding activity in photocatalytic hydrogen evolution(1.31 mmol h^(‒1)),owing to its unique morphology and heterophase homojunctions(ZB/WZ),which accelerate the separation and transfer of photogenerated charges.After coupling with NP,the photoactivity of NPCZS was enhanced,and the maximum hydrogen evolution rate of 1.88 mmol h^(‒1)was reached at a NP content of 12 wt%,which was 1.43 times higher than that of pure CZS.The experimental results of the photocatalytic activity,viz.photoluminescence spectra,surface photovoltage spectra,and electrochemical test showed that the enhanced photoactivity of NPCZS should be attributed to the synergistic effects of the novel tetrapod-bundle morphology,heterophase homojunctions,and decoration of the NP co-catalyst.Moreover,the as-prepared NPCZS composites exhibited excellent photostability and recyclability.Herein,we propose a possible mechanism for the enhanced photocatalytic activity.展开更多
Structure manipulation of photocatalysts at an atomic scale is a promising way to improve its photocatalytic performance.Herein,we realize the anchoring of single Ni atoms on the ZnIn_(2)S_(4) nanosheets with rich sul...Structure manipulation of photocatalysts at an atomic scale is a promising way to improve its photocatalytic performance.Herein,we realize the anchoring of single Ni atoms on the ZnIn_(2)S_(4) nanosheets with rich sulfur vacancies.Experimental results demonstrate that single Ni atoms induce the formation of NiO-M(Zn/In) atomic interface,which can efficiently promote the carriers separation and prolong the carrier life time.In addition,in situ electron spin resonance spectroscopy(ESR) confirms that the single Ni atoms act as an electron trapping center for protons reduction.As a result,the single Ni atoms decorated ZnIn_(2)S_(4) nanosheets with rich sulfur vacancies(Ni/ZnIn_(2)S_(4)-RVs) shows a hydrogen evolution rate up to 89.4 μmol h^(-1), almost 5.7 and 2.3 times higher compared to that of ZnIn_(2)S_(4) nanosheets with poor sulfur vacancies and rich sulfur vacancies(denoted as ZnIn_(2)S_(4)-PVs and ZnIn_(2)S_(4)-RVs).This work opens up a new perspective manipulating the single-atom cocatalyst and sulfur vacancy on sulfide supports for improving photocatalytic hydrogen evolution.展开更多
Regulating interlayer distance is a crucial factor in the development of two‐dimensional(2D)nanomaterials.A 2D metal‐free photocatalyst,such as graphitic carbon nitride(g‐C3N4),exhibits morphology‐and microstruct...Regulating interlayer distance is a crucial factor in the development of two‐dimensional(2D)nanomaterials.A 2D metal‐free photocatalyst,such as graphitic carbon nitride(g‐C3N4),exhibits morphology‐and microstructure‐dependent photocatalytic activity.Herein,we report a straightforward and facile route for the preparation of unique lamellar g‐C3N4,by co‐firing melamine and ammonium chloride via microwave‐assisted heating.Through the decomposition of NH4Cl,the evaporation of NH3 gas can effectively overcome van der Waals forces,expanding the interlayer distance of g‐C3N4,thereby creating a lamellar structure consisting of nanosheets.Compared with bulk g‐C3N4,the NH3‐derived lamellar g‐C3N4 exhibits a larger specific surface area and enhanced optical absorption capability,which increase photocatalytic hydrogen production because of the highly active structure,excellent utilization efficiency of photon energy,and low recombination efficiency of photogenerated charge carriers.This study provides a simple strategy for the regulation of the g‐C3N4 microstructure toward highly efficient photocatalytic applications.展开更多
MoS2/ZnIn2S4composites with MoS2anchored on the surface of ZnIn2S4microspheres were synthesized by a two‐step hydrothermal process.The obtained samples were characterized by X‐ray diffraction,field emission scanning...MoS2/ZnIn2S4composites with MoS2anchored on the surface of ZnIn2S4microspheres were synthesized by a two‐step hydrothermal process.The obtained samples were characterized by X‐ray diffraction,field emission scanning electron microscopy,energy dispersive X‐ray spectroscopy,high‐resolution transmission electron microscopy,X‐ray photoelectron spectroscopy,Raman spectroscopy,ultraviolet–visible diffuse reflectance absorption spectroscopy,nitrogen adsorption–desorption measurements,photoluminescence spectroscopy,and photoelectrochemical tests.The influence of the loading of MoS2on the photocatalytic H2evolution activity was investigated using lactic acid as a sacrificial reagent.A H2evolution rate of343μmol/h was achieved under visible light irradiation over the1wt%MoS2/ZnIn2S4composite,corresponding to an apparent quantum efficiency of about3.85%at420nm monochromatic light.The marked improvement of the photocatalytic H2evolution activity compared with ZnIn2S4can be ascribed to efficient transfer and separation of photogenerated charge carriers and facilitation of the photocatalytic H2evolution reaction at the MoS2active sites.展开更多
Photocatalytic hydrogen evolution is one of the most promising ways to solve environmental problems and produce a sustainable energy source.To date,different types of photocatalysts have been developed and widely used...Photocatalytic hydrogen evolution is one of the most promising ways to solve environmental problems and produce a sustainable energy source.To date,different types of photocatalysts have been developed and widely used in photocatalytic hydrogen evolution.Recently,multinary copper chalcogenides have attracted much attention and exhibited potential applications in photocatalytic hydrogen evolution due to their composition-tunable band gaps,diverse structures and environmental-benign characteristics.In this review,some progress on the synthesis and photocatalytic hydrogen evolution of multinary copper chalcogenide nanocrystals(NCs)was summarized.In particular,considerable attention was paid to the rational design and dimensional or structural regulation of multinary copper chalcogenide NCs.Importantly,the photocatalytic hydrogen evolution of multinary copper chalcogenide NCs were reviewed from the aspects of energy level structures,crystal facets,morphology as well as composition.Finally,the current challenges and future perspectives of copper chalcogenide were proposed.展开更多
Solar-powered photocatalytic hydrogen production from water using semiconductors provides an eco-friendly and promising approach for converting solar energy into hydrogen fuel.Bulk semiconductors generally suffer from...Solar-powered photocatalytic hydrogen production from water using semiconductors provides an eco-friendly and promising approach for converting solar energy into hydrogen fuel.Bulk semiconductors generally suffer from certain limitations,such as poor visible-light utilization,rapid recombination of charge carriers,and low catalytic capability.The key challenge is to develop visible-light-driven heterojunction photocatalysts that are stable and highly active during the water splitting process.Here,we demonstrate the integration of one-dimensional(1D)Cd S nanorods with two-dimensional(2D)1 T-phase dominated WS_(2) nanosheets for constructing mixed-dimensional heterojunctions for the photocatalytic hydrogen evolution reaction(HER).The resulting 1D CdS/2D WS_(2) nanoheterojunction exhibited an ultrahigh hydrogen-evolution activity of~70 mmol·g^(-1)·h^(-1) that was visible to the naked eye,as well as long-term stability under visible light illumination.The results reveal that the synergy of hybrid nanoarchitectures and intimate interfacial contact between the 1D Cd S nanorods and 1T-phase dominated 2D WS_(2) nanosheets facilitates charge carrier transport,which is beneficial for achieving superior hydrogen evolution.展开更多
Silver‐modified semiconductor photocatalysts typically exhibit enhanced photocatalytic activitytoward the degradation of organic substances.In comparison,their hydrogen‐evolution rates arerelatively low owing to poo...Silver‐modified semiconductor photocatalysts typically exhibit enhanced photocatalytic activitytoward the degradation of organic substances.In comparison,their hydrogen‐evolution rates arerelatively low owing to poor interfacial catalytic reactions to producing hydrogen.In the presentstudy,thiocyanate anions(SCN–)as interfacial catalytic active sites were selectively adsorbed ontothe Ag surface of g‐C3N4/Ag photocatalyst to promote interfacial H2‐evolution reactions.The thiocyanate‐modified g‐C3N4/Ag(g‐C3N4/Ag‐SCN)photocatalysts were synthesized via photodepositionof metallic Ag on g‐C3N4and subsequent selective adsorption of SCN– ions on the Ag surface by animpregnation method.The resulting g‐C3N4/Ag‐SCN photocatalysts exhibited considerably higherphotocatalytic H2‐evolution activity than the g‐C3N4,g‐C3N4/Ag,and g‐C3N4/SCN photocatalysts.Furthermore,the g‐C3N4/Ag‐SCN photocatalyst displayed the highest H2‐evolution rate(3.9μmolh?1)when the concentration of the SCN– ions was adjusted to0.3mmol L?1.The H2‐evolution rateobtained was higher than those of g‐C3N4(0.15μmol h?1)and g‐C3N4/Ag(0.71μmol h?1).Consideringthe enhanced performance of g‐C3N4/Ag upon minimal addition of SCN– ions,a synergistic effectof metallic Ag and SCN– ions is proposed―the Ag nanoparticles act as an effective electron‐transfermediator for the steady capture and rapid transportation of photogenerated electrons,while theadsorbed SCN– ions serve as an interfacial active site to effectively absorb protons from solution andpromote rapid interfacial H2‐evolution reactions.Considering the present facile synthesis and itshigh efficacy,the present work may provide new insights into preparing high‐performance photocatalytic materials展开更多
Surface modification by metal ion has been considered a promising strategy to enhance the photocatalytic activity by extending optical response and improving charge separation and transportation.Here,univalent copper ...Surface modification by metal ion has been considered a promising strategy to enhance the photocatalytic activity by extending optical response and improving charge separation and transportation.Here,univalent copper species were modified on ZnIn_(2)S_(4)photocatalyst via an in-situ photodeposition method,exhibiting a much higher H2evolution rate of 41.10±3.43 mmol g^(-1)h^(-1)and an impressive apparent quantum efficiency(AQE)of 20.81%at 420±15 nm.Our characterizations indicate that the surface modification by copper species can broaden light utilization as well as promote charge separation and transportation.Besides,the density functional theory(DFT)results further exhibit that the energy levels(LUMO and HOMO)for copper-surface modified ZnIn_(2)S_(4)present spatial separation,locating on the Zn-S and In-S layers,respectively,which can suppress the recombination of electron and hole and thus achieves higher photocatalytic H2evolution efficiency.展开更多
The active sites of monodisperse transition metal Ni-clusters were anchored on carbon nitride(CN)by an in situ photoreduction deposition method to promote the efficient separation of photogenerated charges and achieve...The active sites of monodisperse transition metal Ni-clusters were anchored on carbon nitride(CN)by an in situ photoreduction deposition method to promote the efficient separation of photogenerated charges and achieve high-efficiency photocatalytic activity for hydrogen evolution.The Ni-cluster/CN exhibited a photocatalytic hydrogen production rate of 16.5 mmol·h^(-1)·g^(-1) and a total turnover frequency(TOF(H_(2)))value of 461.14 h^(-1).X-ray absorption spectroscopy based on synchrotron radiation indicated that CN had two reaction centers to form stable interface interactions with monodispersed Ni-clusters,in which carbon can act as an electron acceptor,while nitrogen can act as an electron donor.Meanwhile,the hybrid electronic structure of the Ni-cluster/CN system was constructed,which was favorable for photocatalytic activity for hydrogen production.An in-depth understanding of the interfacial interaction between CN and Ni-clusters will have important reference significance on the mechanistic study of development based on the cocatalyst.展开更多
Improving the catalytic activity of non-noble metal single atom catalysts(SACs)has attracted considerable attention in materials science.Although optimizing the local electronic structure of single atom can greatly im...Improving the catalytic activity of non-noble metal single atom catalysts(SACs)has attracted considerable attention in materials science.Although optimizing the local electronic structure of single atom can greatly improve their catalytic activity,it often involves in-plane modulation and requires high temperatures.Herein,we report a novel strategy to manipulate the local electronic structure of SACs via the modulation of axial Co-S bond anchored onto graphitic carbon nitride(C_(3)N_(4))at room temperature(RT).Each Co atom is bonded to four N atoms and one S atom(Co-(N,S)/C_(3)N_(4)).Owing to the greater electronegativity of S in the Co-S bond,the local electronic structure of the Co atoms is available to be controlled at a relatively moderate level.Consequently,when employed for the photocatalytic hydrogen evolution reaction,the adsorption energy of intermediate hydrogen(H*)on the Co atoms is remarkably low.In the presence of the Co-(N,S)/C_(3)N_(4)SACs,the hydrogen evolution rates reach up to 10 mmol/(g·h),which is nearly 10 and 2.5 times greater than the rates in the presence of previously reported transition metal/C_(3)N_(4)and noble platinum nanoparticles(PtNPs)/C_(3)N_(4)catalysts,respectively.Attributed to the tailorable axial Co-S bond in the SAC,the local electronic structure of the Co atoms can be further optimized for other photocatalytic reactions.This axial coordination engineering strategy is universal in catalyst designing and can be used for a variety of photocatalytic applications.展开更多
Integrating hierarchical plasmonic cavities into photocatalysis offers a promising avenue for expanding the light utilization range to cover the entire solar spectrum. However, fabricating these nanostructures with se...Integrating hierarchical plasmonic cavities into photocatalysis offers a promising avenue for expanding the light utilization range to cover the entire solar spectrum. However, fabricating these nanostructures with seamless size transitions for a wide plasmon resonant range remains technically challenging, requiring precise nanofabrication control and often relying on expensive and laborious techniques like e-beam lithography and reactive ion etching. Herein, a one-step forming strategy was explored to fabricate simple yet hierarchical plasmonic cavities featuring the surface nanodome array-integrated plasmonic Fabry–Pérot cavity through a facile large-area nanoimprinting method. This design leverages a uniform feature size and periodic arrangement to broaden the light utilization range of TiO_(2) across the entire solar spectrum (200–2500 nm). It consists of an upper nanodome array cavity with vertically continuous graded sizes for broadband absorption (200–1500 nm), coupled with a bottom plate cavity that enlarges the overall cavity size to extend the range to 2500 nm. Remarkably, simply adjusting the thickness of the plate cavity can tune the resonant position, eliminating the need for expensive mold modifications. When combined with TiO_(2), this hierarchical plasmonic cavity significantly enhances the photocatalytic hydrogen evolution rate to 36.3 µmol/h, achieving a remarkable 9.8-fold increase compared to pure TiO_(2) under full-spectrum illumination. This approach offers a convenient and inexpensive alternative to sophisticated nanofabrication techniques for large-area hierarchical plasmonic cavities with broadband plasmon resonance to enhance the photocatalytic hydrogen evolution.展开更多
The use of single-atom cocatalysts plays a crucial role in enhancing artificial photocatalysis,where the precise construction of stable and efficient single-atom configuration is essential but remains challenging.Here...The use of single-atom cocatalysts plays a crucial role in enhancing artificial photocatalysis,where the precise construction of stable and efficient single-atom configuration is essential but remains challenging.Here,we report a simple one-step hydrothermal method for preparing single-atomic Mo modified ZnIn_(2)S_(4)(Mo-ZIS)nanosheets as a highly active photocatalytic hydrogen evolution(PHE)photocatalyst.The Mo substituting for portion of In atoms in ZIS nanosheets induces the spatial charge redistribution,which not only promotes the separation of photogenerated charge carriers but also optimizes the Gibbs free energy of adsorbing H*on S atoms at basal planes.As a result,Mo-ZIS exhibits an impressive PHE rate as high as 6.71 mmol·g^(−1)·h^(−1),over 10 times that of the pristine ZIS,with an apparent quantum efficiency(AQE)up to 38.8%at 420 nm.This study gains insights into the coordination configuration and electronic modulation resulting from single-atomic decoration,providing mechanistic cognitions for the development of advanced photocatalysts via non-precious metal atomic modification.展开更多
Rational design of photocatalyst to maximize the use of sunlight is one of the issues to be solved in photocatalysis technology.In this study,the CuFe_(2)O_(4)@C/Cd_(0.9)Zn_(0.1)S(CFO@C/CZS)S-scheme photocatalyst with...Rational design of photocatalyst to maximize the use of sunlight is one of the issues to be solved in photocatalysis technology.In this study,the CuFe_(2)O_(4)@C/Cd_(0.9)Zn_(0.1)S(CFO@C/CZS)S-scheme photocatalyst with photothermal effect was synthesized by ultrasonic self-assembly combined with calcination.The dark CFO@C absorbed visible light and partly converted into heat to promote the hydrogen evolution reaction.The presence of heterojunctions inhibited the photogenerated electron-hole recombination.The graphite-carbon layer provided a stable channel for electron transfer,and the presence of magnetic CFO made recycle easier.Under the action of photothermal assistance and heterojunction,the hydrogen evolution rate of the optimal CFO@C/CZS was 80.79 mmol g^(-1) h^(-1),which was 2.55 times and 260.61 times of that of pure CZS and CFO@C,respectively.Notably,the composite samples also exhibit excellent stability and a wide range of environmental adaptability.Through experimental tests and first-principles simulation calculation methods,the plausible mechanism of photoactivity enhancement was proposed.This work provided a feasible strategy of photothermal assistance for the development of heterojunction photocatalysts with distinctive hydrogen evolution.展开更多
The number of photogenerated carriers involved in the photocatalytic reaction is one of the main factors influencing the photocatalytic activity,and constructing S-scheme heterojunctions can significantly en-hance the...The number of photogenerated carriers involved in the photocatalytic reaction is one of the main factors influencing the photocatalytic activity,and constructing S-scheme heterojunctions can significantly en-hance the migration of photogenerated carriers,which is regarded as an effective method.In this study,Au nanoparticles(NPs)-supported crystallized heptazine/triazine-based carbon nitride(AHTCN)S-scheme heterojunction photocatalysts are successfully prepared by photoreduction methods.Except for the Au NPs function as an electron mediator,the experiment results and DFT calculations demonstrate that the Fermi energy level of crystallized heptazine/triazine-based heterojunction(HTCN)is pulled down after anchoring Au NPs,and thus the electron transfer path of HTCN changed from Type II-scheme to S-scheme.Owing to S-scheme heterojunction,the optimal AHTCN-2(2 wt.%Au loaded)exhibits the best photocat-alytic hydrogen evolution with a production rate of 715.2μmol h^(−1)g^(−1),which significantly outperforms that of the HTCN.This work delivers a new strategy for the construction of S-scheme heterojunctions.展开更多
文摘Photocatalytic hydrogen(H_(2))evolution using covalent organic frameworks(COFs)is an attractive and promising avenue for exploration,but one of its big challenges is low photo-induced charge separation.In this study,we present a straightforward and facile dipole polarization engineering strategy to enhance charge separation efficiency,achieved through atomic modulation(O,S,and Se)of the COF monomer.Our findings demonstrate that incorporating atoms with varying electronegativities into the COF matrix significantly influences the local dipole moment,thereby affecting charge separation efficiency and photostability,which in turn affects the rates of photocatalytic H_(2) evolution.As a result,the newly developed TMT-BO-COF,which contains highly electronegative O atoms,exhibits the lowest exciton binding energy,the highest efficiency in charge separation and transportation,and the longest lifetime of the active charges.This leads to an impressive average H_(2) production rate of 23.7 mmol g^(−1) h^(−1),which is 2.5 and 24.5 times higher than that of TMT-BS-COF(containing S atoms)and TMT-BSe-COF(containing Se atoms),respectively.A novel photocatalytic hydrogen evolution mechanism based on proton-coupled electron transfer on N in the structure of triazine rings in vinylene-linked COFs is proposed by theoretical calculations.Our findings provide new insights into the design of highly photoactive organic framework materials for H_(2) evolution and beyond.
基金funding from the National Natural Science Foundation of China(No.51872173 and 51772176)Taishan Scholar Foundation of Shandong Province(No.tsqn201812068 and tspd20161006)+2 种基金Youth Innovation Technology Project of Higher School in Shandong Province(No.2019KJA013)Science and Technology Special Project of Qingdao City(No.20-3-4-3-nsh)the Opening Fund of State Key Laboratory of Heavy Oil Processing(No.SKLOP202002006)。
文摘2D-layered graphitic carbon nitride(g-C_(3)N_(4))is regarded as a great prospect as a photocatalyst for H_(2)generation.However,g-C_(3)N_(4)’s photocatalytic hydrogen evolution(HER)activity is significantly restricted by the recombination of photocarriers.We find that cobalt sulfide(CoS_(2))as a cocatalyst can promote g-C_(3)N_(4)nanosheets(NSs)to realize very efficient photocatalytic H_(2)generation.The prepared CoS_(2)/g-C_(3)N_(4)hybrids display highly boosted photocatalytic H_(2)generation performance and outstanding cycle stability.The optimized 7%-CoS_(2)/g-C_(3)N_(4)hybrids show a much improved photocatalytic H_(2)generation rate of 36.2μmol-1h-1,which is about 180 times as much as bare g-C_(3)N_(4)(0.2μmol-1h-1).In addition,the apparent quantum efficiency(AQE)of all the samples was computed under light atλ=370 nm,in which the AQE of 7%-CoS_(2)/g-C_(3)N_(4)hybrids is up to 5.72%.The experimental data and the DFT calculation suggest that the CoS_(2)/g-C_(3)N_(4)hybrid’s excellent HER activity is attributable to the lower overpotential and the smaller Co-H bond activation energy for HER.Accordingly,the CoS_(2)cocatalyst loading effectively boosts the photocatalytic performance of g-C_(3)N_(4)for H_(2)evolution.The project promotes fast development of high-efficiency photocatalysts and low-cost for photocatalytic H_(2)generation.
基金This work was supported by the National Science Foundation of China(51772152,51702129,51572114,51972150,21908110,and 51902161)Fundamental Research Funds for the Central Universities(30919011269,30919011110,and 1191030558)+3 种基金Y.W.thanks the Key University Science Research Project of Jiangsu province(16KJB430009)Y.Z.thanks for the support from the Postdoctoral Science Foundation(2018M630527)China Scholarship Council(201708320150)J.S.thanks the Natural Science Foundation of Jiangsu Province(BK20190479,1192261031693).
文摘Graphitic carbon nitride(g-C3N4)-based photocatalysts have shown great potential in the splitting of water.However,the intrinsic drawbacks of g-C3N4,such as low surface area,poor diffusion,and charge separation efficiency,remain as the bottleneck to achieve highly efficient hydrogen evolution.Here,a hollow oxygen-incorporated g-C3N4 nanosheet(OCN)with an improved surface area of 148.5 m2 g^−1 is fabricated by the multiple thermal treatments under the N2/O2 atmosphere,wherein the C–O bonds are formed through two ways of physical adsorption and doping.The physical characterization and theoretical calculation indicate that the O-adsorption can promote the generation of defects,leading to the formation of hollow morphology,while the O-doping results in reduced band gap of g-C3N4.The optimized OCN shows an excellent photocatalytic hydrogen evolution activity of 3519.6μmol g^−1 h^−1 for~20 h,which is over four times higher than that of g-C3N4(850.1μmol g^−1 h^−1)and outperforms most of the reported g-C3N4 catalysts.
文摘The rational design of photochemical molecular device(PMD)and its hybrid system has great potential in improving the activity of photocatalytic hydrogen production.A series of Pd6L3 type metal-organic cages,denoted as MOC-Py-M(M=H,Cu,and Zn),are designed for PMDs by combining metalloporphyrin-based ligands with catalytically active Pd^(2+)centers.These metal-organic cages(MOCs)are first successfully hybridized with graphitic carbon nitride(g-C_(3)N_(4))to form direct Z-scheme heterogeneous MOC-Py-M/g-C_(3)N_(4)(M=H,Cu,and Zn)photocatalysts via π-πinteractions.Benefiting from its better light absorption ability,the MOC-Py-Zn/g-C_(3)N_(4) catalyst exhibits high H_(2) production activity under visible light(10348μmol g^(-1) h^(-1)),far superior to MOC-Py-H/g-C_(3)N_(4) and MOC-Py-Cu/g-C_(3)N_(4).Moreover,the MOC-Py-Zn/g-C_(3)N_(4) system obtains an enhanced turn over number(TON)value of 32616 within 100 h,outperforming the homogenous MOC-Py-Zn(TON of 507 within 100 h),which is one of the highest photochemical hybrid systems based on MOC for visible-light-driven hydrogen generation.This confirms the direct Z-scheme heterostructure can promote effective charge transfer,expand the visible light absorption region,and protect the cages from decomposition in MOC-Py-Zn/g-C_(3)N_(4).This work presents a creative example that direct Z-scheme PMD-based systems for effective and persistent hydrogen generation from water under visible light are obtained by heterogenization approach using homogeneous porphyrin-based MOCs and g-C_(3)N_(4) semiconductors.
文摘Graphdiyne(GDY,g-C_(n)H_(2n-2)),a novel two-dimensional carbon hybrid material,has attracted significant attention owing to its unique and excellent properties.As a new type of carbon material,GDY has a layered structure and can be used in the field of photocatalytic water splitting.Therefore,herein,new progress in the preparation of graphene using Cu I powder as a catalytic material and the combination of a facile hydrothermal method to prepare a new composite material,Co_(9)S_(8)-GDY-Cu I,is reported.The hydrogen production activity of Co9S8-GDY-Cu I in the sensitization system reached 1411.82μmol g^(-1) h^(-1),which is 10.29 times that of pure GDY.A series of characterization techniques were used to provide evidence for the successful preparation of the material and its superior photocatalytic activity.Raman spectroscopy showed that the material contains acetylenic bonds,and the X-ray photoelectron spectroscopy carbon fitting peaks indicated the presence of C-C(sp^(2))and C-C(sp),further demonstrating that GDY was successfully prepared.A possible reaction mechanism was proposed by making use of UV-visible diffuse reflectance and Mott-Schottky analyses.The results showed that a double S-scheme heterojunction was constructed between the samples,which effectively accelerated the separation and transfer of electrons.In addition,the introduction of Co9S8 nanoparticles greatly improved the visible light absorption capacity of Co_(9)S_(8)-GDY-Cu I.Photoluminescence spectroscopy and related electrochemical characterization further proved that recombination of the electron-hole pairs in the composite material was effectively suppressed.
基金the National Natural Science Foundation of China(Nos.61974009,62075005,and 62105019).
文摘Hydrogen energy is a powerful and efficient energy resource,which can be produced by photocatalytic water split-ting.Among the photocatalysis,multinary copper-based chalcogenide semiconductor nanocrystals exhibit great potential due to their tunable crystal structures,adjustable optical band gap,eco-friendly,and abundant resources.In this paper,Cu-Zn-Sn-S(CZTS)nanocrystals with different Cu content have been synthesized by using the one-pot method.By regulating the surface ligands,the reaction temperature,and the Cu content,kesterite and hexagonal wurtzite CZTS nanocrystals were obtained.The critical factors for the controllable transition between two phases were discussed.Subsequently,a series of quatern-ary CZTS nanocrystals with different Cu content were used for photocatalytic hydrogen evolution.And their band gap,energy level structure,and charge transfer ability were compared comprehensively.As a result,the pure hexagonal wurtzite CZTS nano-crystals have exhibited an improved photocatalytic hydrogen evolution activity.
文摘In this study,Ni_(2)P-Cd_(0.9)Zn_(0.1)S(NPCZS)composites were synthesized by coupling tetrapod bundle Cd_(0.9)Zn_(0.1)S(CZS)and coralline-like Ni_(2)P(NP)via a simple calcination method.CZS shows outstanding activity in photocatalytic hydrogen evolution(1.31 mmol h^(‒1)),owing to its unique morphology and heterophase homojunctions(ZB/WZ),which accelerate the separation and transfer of photogenerated charges.After coupling with NP,the photoactivity of NPCZS was enhanced,and the maximum hydrogen evolution rate of 1.88 mmol h^(‒1)was reached at a NP content of 12 wt%,which was 1.43 times higher than that of pure CZS.The experimental results of the photocatalytic activity,viz.photoluminescence spectra,surface photovoltage spectra,and electrochemical test showed that the enhanced photoactivity of NPCZS should be attributed to the synergistic effects of the novel tetrapod-bundle morphology,heterophase homojunctions,and decoration of the NP co-catalyst.Moreover,the as-prepared NPCZS composites exhibited excellent photostability and recyclability.Herein,we propose a possible mechanism for the enhanced photocatalytic activity.
基金the support of the National Natural Science Foundation of China(51702087,21673066)the Project funded by the China Postdoctoral Science Foundation(2019M652516)。
文摘Structure manipulation of photocatalysts at an atomic scale is a promising way to improve its photocatalytic performance.Herein,we realize the anchoring of single Ni atoms on the ZnIn_(2)S_(4) nanosheets with rich sulfur vacancies.Experimental results demonstrate that single Ni atoms induce the formation of NiO-M(Zn/In) atomic interface,which can efficiently promote the carriers separation and prolong the carrier life time.In addition,in situ electron spin resonance spectroscopy(ESR) confirms that the single Ni atoms act as an electron trapping center for protons reduction.As a result,the single Ni atoms decorated ZnIn_(2)S_(4) nanosheets with rich sulfur vacancies(Ni/ZnIn_(2)S_(4)-RVs) shows a hydrogen evolution rate up to 89.4 μmol h^(-1), almost 5.7 and 2.3 times higher compared to that of ZnIn_(2)S_(4) nanosheets with poor sulfur vacancies and rich sulfur vacancies(denoted as ZnIn_(2)S_(4)-PVs and ZnIn_(2)S_(4)-RVs).This work opens up a new perspective manipulating the single-atom cocatalyst and sulfur vacancy on sulfide supports for improving photocatalytic hydrogen evolution.
文摘Regulating interlayer distance is a crucial factor in the development of two‐dimensional(2D)nanomaterials.A 2D metal‐free photocatalyst,such as graphitic carbon nitride(g‐C3N4),exhibits morphology‐and microstructure‐dependent photocatalytic activity.Herein,we report a straightforward and facile route for the preparation of unique lamellar g‐C3N4,by co‐firing melamine and ammonium chloride via microwave‐assisted heating.Through the decomposition of NH4Cl,the evaporation of NH3 gas can effectively overcome van der Waals forces,expanding the interlayer distance of g‐C3N4,thereby creating a lamellar structure consisting of nanosheets.Compared with bulk g‐C3N4,the NH3‐derived lamellar g‐C3N4 exhibits a larger specific surface area and enhanced optical absorption capability,which increase photocatalytic hydrogen production because of the highly active structure,excellent utilization efficiency of photon energy,and low recombination efficiency of photogenerated charge carriers.This study provides a simple strategy for the regulation of the g‐C3N4 microstructure toward highly efficient photocatalytic applications.
基金supported by the National Natural Science Foundation of China(51302200)~~
文摘MoS2/ZnIn2S4composites with MoS2anchored on the surface of ZnIn2S4microspheres were synthesized by a two‐step hydrothermal process.The obtained samples were characterized by X‐ray diffraction,field emission scanning electron microscopy,energy dispersive X‐ray spectroscopy,high‐resolution transmission electron microscopy,X‐ray photoelectron spectroscopy,Raman spectroscopy,ultraviolet–visible diffuse reflectance absorption spectroscopy,nitrogen adsorption–desorption measurements,photoluminescence spectroscopy,and photoelectrochemical tests.The influence of the loading of MoS2on the photocatalytic H2evolution activity was investigated using lactic acid as a sacrificial reagent.A H2evolution rate of343μmol/h was achieved under visible light irradiation over the1wt%MoS2/ZnIn2S4composite,corresponding to an apparent quantum efficiency of about3.85%at420nm monochromatic light.The marked improvement of the photocatalytic H2evolution activity compared with ZnIn2S4can be ascribed to efficient transfer and separation of photogenerated charge carriers and facilitation of the photocatalytic H2evolution reaction at the MoS2active sites.
基金the National Natural Science Foundation of China(Grant No.61974009)Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission(NERE201903).
文摘Photocatalytic hydrogen evolution is one of the most promising ways to solve environmental problems and produce a sustainable energy source.To date,different types of photocatalysts have been developed and widely used in photocatalytic hydrogen evolution.Recently,multinary copper chalcogenides have attracted much attention and exhibited potential applications in photocatalytic hydrogen evolution due to their composition-tunable band gaps,diverse structures and environmental-benign characteristics.In this review,some progress on the synthesis and photocatalytic hydrogen evolution of multinary copper chalcogenide nanocrystals(NCs)was summarized.In particular,considerable attention was paid to the rational design and dimensional or structural regulation of multinary copper chalcogenide NCs.Importantly,the photocatalytic hydrogen evolution of multinary copper chalcogenide NCs were reviewed from the aspects of energy level structures,crystal facets,morphology as well as composition.Finally,the current challenges and future perspectives of copper chalcogenide were proposed.
文摘Solar-powered photocatalytic hydrogen production from water using semiconductors provides an eco-friendly and promising approach for converting solar energy into hydrogen fuel.Bulk semiconductors generally suffer from certain limitations,such as poor visible-light utilization,rapid recombination of charge carriers,and low catalytic capability.The key challenge is to develop visible-light-driven heterojunction photocatalysts that are stable and highly active during the water splitting process.Here,we demonstrate the integration of one-dimensional(1D)Cd S nanorods with two-dimensional(2D)1 T-phase dominated WS_(2) nanosheets for constructing mixed-dimensional heterojunctions for the photocatalytic hydrogen evolution reaction(HER).The resulting 1D CdS/2D WS_(2) nanoheterojunction exhibited an ultrahigh hydrogen-evolution activity of~70 mmol·g^(-1)·h^(-1) that was visible to the naked eye,as well as long-term stability under visible light illumination.The results reveal that the synergy of hybrid nanoarchitectures and intimate interfacial contact between the 1D Cd S nanorods and 1T-phase dominated 2D WS_(2) nanosheets facilitates charge carrier transport,which is beneficial for achieving superior hydrogen evolution.
基金supported by the National Natural Science Foundation of China(51472192,21477094,21771142)the Fundamental Research Funds for the Central Universities(WUT 2017IB002)~~
文摘Silver‐modified semiconductor photocatalysts typically exhibit enhanced photocatalytic activitytoward the degradation of organic substances.In comparison,their hydrogen‐evolution rates arerelatively low owing to poor interfacial catalytic reactions to producing hydrogen.In the presentstudy,thiocyanate anions(SCN–)as interfacial catalytic active sites were selectively adsorbed ontothe Ag surface of g‐C3N4/Ag photocatalyst to promote interfacial H2‐evolution reactions.The thiocyanate‐modified g‐C3N4/Ag(g‐C3N4/Ag‐SCN)photocatalysts were synthesized via photodepositionof metallic Ag on g‐C3N4and subsequent selective adsorption of SCN– ions on the Ag surface by animpregnation method.The resulting g‐C3N4/Ag‐SCN photocatalysts exhibited considerably higherphotocatalytic H2‐evolution activity than the g‐C3N4,g‐C3N4/Ag,and g‐C3N4/SCN photocatalysts.Furthermore,the g‐C3N4/Ag‐SCN photocatalyst displayed the highest H2‐evolution rate(3.9μmolh?1)when the concentration of the SCN– ions was adjusted to0.3mmol L?1.The H2‐evolution rateobtained was higher than those of g‐C3N4(0.15μmol h?1)and g‐C3N4/Ag(0.71μmol h?1).Consideringthe enhanced performance of g‐C3N4/Ag upon minimal addition of SCN– ions,a synergistic effectof metallic Ag and SCN– ions is proposed―the Ag nanoparticles act as an effective electron‐transfermediator for the steady capture and rapid transportation of photogenerated electrons,while theadsorbed SCN– ions serve as an interfacial active site to effectively absorb protons from solution andpromote rapid interfacial H2‐evolution reactions.Considering the present facile synthesis and itshigh efficacy,the present work may provide new insights into preparing high‐performance photocatalytic materials
基金financially supported by the National Natural Science Funds for Distinguished Young Scholars(51725201)the International(Regional)Cooperation and Exchange Projects of the National Natural Science Foundation of China(51920105003)+4 种基金the Innovation Program of Shanghai Municipal Education Commission(E00014)the Science and Technology Commission of Shanghai Municipality(21DZ1207101)the National Natural Science Foundation of China(21902048)the Shanghai Engineering Research Center of Hierarchical Nanomaterials(18DZ2252400)Additional support was provided by the Feringa Nobel Prize Scientist Joint Research Center。
文摘Surface modification by metal ion has been considered a promising strategy to enhance the photocatalytic activity by extending optical response and improving charge separation and transportation.Here,univalent copper species were modified on ZnIn_(2)S_(4)photocatalyst via an in-situ photodeposition method,exhibiting a much higher H2evolution rate of 41.10±3.43 mmol g^(-1)h^(-1)and an impressive apparent quantum efficiency(AQE)of 20.81%at 420±15 nm.Our characterizations indicate that the surface modification by copper species can broaden light utilization as well as promote charge separation and transportation.Besides,the density functional theory(DFT)results further exhibit that the energy levels(LUMO and HOMO)for copper-surface modified ZnIn_(2)S_(4)present spatial separation,locating on the Zn-S and In-S layers,respectively,which can suppress the recombination of electron and hole and thus achieves higher photocatalytic H2evolution efficiency.
文摘The active sites of monodisperse transition metal Ni-clusters were anchored on carbon nitride(CN)by an in situ photoreduction deposition method to promote the efficient separation of photogenerated charges and achieve high-efficiency photocatalytic activity for hydrogen evolution.The Ni-cluster/CN exhibited a photocatalytic hydrogen production rate of 16.5 mmol·h^(-1)·g^(-1) and a total turnover frequency(TOF(H_(2)))value of 461.14 h^(-1).X-ray absorption spectroscopy based on synchrotron radiation indicated that CN had two reaction centers to form stable interface interactions with monodispersed Ni-clusters,in which carbon can act as an electron acceptor,while nitrogen can act as an electron donor.Meanwhile,the hybrid electronic structure of the Ni-cluster/CN system was constructed,which was favorable for photocatalytic activity for hydrogen production.An in-depth understanding of the interfacial interaction between CN and Ni-clusters will have important reference significance on the mechanistic study of development based on the cocatalyst.
基金National Natural Science Foundation of China(No.22008251)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515010318)Shenzhen Science and Technology Program(No.JCYJ20220531095813031).
文摘Improving the catalytic activity of non-noble metal single atom catalysts(SACs)has attracted considerable attention in materials science.Although optimizing the local electronic structure of single atom can greatly improve their catalytic activity,it often involves in-plane modulation and requires high temperatures.Herein,we report a novel strategy to manipulate the local electronic structure of SACs via the modulation of axial Co-S bond anchored onto graphitic carbon nitride(C_(3)N_(4))at room temperature(RT).Each Co atom is bonded to four N atoms and one S atom(Co-(N,S)/C_(3)N_(4)).Owing to the greater electronegativity of S in the Co-S bond,the local electronic structure of the Co atoms is available to be controlled at a relatively moderate level.Consequently,when employed for the photocatalytic hydrogen evolution reaction,the adsorption energy of intermediate hydrogen(H*)on the Co atoms is remarkably low.In the presence of the Co-(N,S)/C_(3)N_(4)SACs,the hydrogen evolution rates reach up to 10 mmol/(g·h),which is nearly 10 and 2.5 times greater than the rates in the presence of previously reported transition metal/C_(3)N_(4)and noble platinum nanoparticles(PtNPs)/C_(3)N_(4)catalysts,respectively.Attributed to the tailorable axial Co-S bond in the SAC,the local electronic structure of the Co atoms can be further optimized for other photocatalytic reactions.This axial coordination engineering strategy is universal in catalyst designing and can be used for a variety of photocatalytic applications.
基金supported by the National Natural Science Foundation of China(No.52272082)the General Project of Natural Science Foundation of Universities and Colleges in Jiangsu Province(No.22KJB430026)The Priority Academic Program Development of the Jiangsu Higher Education Institutions(PAPD)is gratefully acknowledged.
文摘Integrating hierarchical plasmonic cavities into photocatalysis offers a promising avenue for expanding the light utilization range to cover the entire solar spectrum. However, fabricating these nanostructures with seamless size transitions for a wide plasmon resonant range remains technically challenging, requiring precise nanofabrication control and often relying on expensive and laborious techniques like e-beam lithography and reactive ion etching. Herein, a one-step forming strategy was explored to fabricate simple yet hierarchical plasmonic cavities featuring the surface nanodome array-integrated plasmonic Fabry–Pérot cavity through a facile large-area nanoimprinting method. This design leverages a uniform feature size and periodic arrangement to broaden the light utilization range of TiO_(2) across the entire solar spectrum (200–2500 nm). It consists of an upper nanodome array cavity with vertically continuous graded sizes for broadband absorption (200–1500 nm), coupled with a bottom plate cavity that enlarges the overall cavity size to extend the range to 2500 nm. Remarkably, simply adjusting the thickness of the plate cavity can tune the resonant position, eliminating the need for expensive mold modifications. When combined with TiO_(2), this hierarchical plasmonic cavity significantly enhances the photocatalytic hydrogen evolution rate to 36.3 µmol/h, achieving a remarkable 9.8-fold increase compared to pure TiO_(2) under full-spectrum illumination. This approach offers a convenient and inexpensive alternative to sophisticated nanofabrication techniques for large-area hierarchical plasmonic cavities with broadband plasmon resonance to enhance the photocatalytic hydrogen evolution.
基金financially supported by the National Natural Science Foundation of China(Nos.11974303 and 12074332)the Qinglan Project(No.337050073)of Jiangsu Province+2 种基金the High-End Talent Program(No.137080210)the Yangzhou University Interdisciplinary Research Project of Chemistry Discipline(No.yzuxk202014)the Innovative Science and Technology Platform Project of Cooperation between Yangzhou City and Yangzhou University(No.YZ2020263).
文摘The use of single-atom cocatalysts plays a crucial role in enhancing artificial photocatalysis,where the precise construction of stable and efficient single-atom configuration is essential but remains challenging.Here,we report a simple one-step hydrothermal method for preparing single-atomic Mo modified ZnIn_(2)S_(4)(Mo-ZIS)nanosheets as a highly active photocatalytic hydrogen evolution(PHE)photocatalyst.The Mo substituting for portion of In atoms in ZIS nanosheets induces the spatial charge redistribution,which not only promotes the separation of photogenerated charge carriers but also optimizes the Gibbs free energy of adsorbing H*on S atoms at basal planes.As a result,Mo-ZIS exhibits an impressive PHE rate as high as 6.71 mmol·g^(−1)·h^(−1),over 10 times that of the pristine ZIS,with an apparent quantum efficiency(AQE)up to 38.8%at 420 nm.This study gains insights into the coordination configuration and electronic modulation resulting from single-atomic decoration,providing mechanistic cognitions for the development of advanced photocatalysts via non-precious metal atomic modification.
基金supported by the Shandong Provincial Natural Science Foundation(ZR2022ME179,ZR2021QE086)the Shandong Provincial Key Research and Development Program(Public Welfare Science and Technology Research)(2019GGX103010)+2 种基金the Science and Technology Planning Project of Higher School in Shandong Province(J18KA243)the Liaocheng Key Research and Development Program(Policy guidance category)(2022YDSF90)the Liaocheng University High-level Talents&PhD Research Startup Foundation(318051619)。
文摘Rational design of photocatalyst to maximize the use of sunlight is one of the issues to be solved in photocatalysis technology.In this study,the CuFe_(2)O_(4)@C/Cd_(0.9)Zn_(0.1)S(CFO@C/CZS)S-scheme photocatalyst with photothermal effect was synthesized by ultrasonic self-assembly combined with calcination.The dark CFO@C absorbed visible light and partly converted into heat to promote the hydrogen evolution reaction.The presence of heterojunctions inhibited the photogenerated electron-hole recombination.The graphite-carbon layer provided a stable channel for electron transfer,and the presence of magnetic CFO made recycle easier.Under the action of photothermal assistance and heterojunction,the hydrogen evolution rate of the optimal CFO@C/CZS was 80.79 mmol g^(-1) h^(-1),which was 2.55 times and 260.61 times of that of pure CZS and CFO@C,respectively.Notably,the composite samples also exhibit excellent stability and a wide range of environmental adaptability.Through experimental tests and first-principles simulation calculation methods,the plausible mechanism of photoactivity enhancement was proposed.This work provided a feasible strategy of photothermal assistance for the development of heterojunction photocatalysts with distinctive hydrogen evolution.
基金This work was partially supported by the Jiangxi Province tech-nology innovation guidance project(grant no.20212BDH81036)Jiangxi Provincial Natural Science Foundation(20224BAB213016)+1 种基金the Science and Technology Project of the Education Department of Jiangxi Province(No.GJJ200457)the Jiangxi Province Grad-uate Student Innovation Special Fund Project(No.YC2022-S389).
文摘The number of photogenerated carriers involved in the photocatalytic reaction is one of the main factors influencing the photocatalytic activity,and constructing S-scheme heterojunctions can significantly en-hance the migration of photogenerated carriers,which is regarded as an effective method.In this study,Au nanoparticles(NPs)-supported crystallized heptazine/triazine-based carbon nitride(AHTCN)S-scheme heterojunction photocatalysts are successfully prepared by photoreduction methods.Except for the Au NPs function as an electron mediator,the experiment results and DFT calculations demonstrate that the Fermi energy level of crystallized heptazine/triazine-based heterojunction(HTCN)is pulled down after anchoring Au NPs,and thus the electron transfer path of HTCN changed from Type II-scheme to S-scheme.Owing to S-scheme heterojunction,the optimal AHTCN-2(2 wt.%Au loaded)exhibits the best photocat-alytic hydrogen evolution with a production rate of 715.2μmol h^(−1)g^(−1),which significantly outperforms that of the HTCN.This work delivers a new strategy for the construction of S-scheme heterojunctions.