Using Ti powder as reagent, TiO 2 nanoneedle/nanoribbon spheres were prepared via hydrothermal method in NaOH solution. The samples were characterized by field emission scanning electron microscopy (FESEM), transmis...Using Ti powder as reagent, TiO 2 nanoneedle/nanoribbon spheres were prepared via hydrothermal method in NaOH solution. The samples were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) with selected area electron diffraction (SAED), X-ray diffraction (XRD), and UV-visible light absorption spectrum. The results indicate that the growth orientations of the crystals are influenced by the hydrothermal temperature and NaOH concentration. The diameter of the nanoneedle spheres and nanoribbon spheres (40 50 μm) are almost the same as that of Ti powders. TiO 2 nanoneedle/nanoribbon sphere powders are anatase after heat treatment at 450 °C for 1 h. Furthermore, methyl orange was used as a target molecule to estimate the photocatalytic activity of the specimens. Under the same testing conditions, the photocatalytic activities of the products decrease in the following order: TiO 2 nanoneedle sphere, TiO 2 nanoribbon sphere and P25.展开更多
In this work, BiV04 powders were synthesized by a sol-gel method, and the BiV04 gels with different calcination temperature were investigated by X-ray diffraction (XRD). Absorption range and band gap energy, which a...In this work, BiV04 powders were synthesized by a sol-gel method, and the BiV04 gels with different calcination temperature were investigated by X-ray diffraction (XRD). Absorption range and band gap energy, which are respon- sible for the observed photocatalyst behavior, were investigated by UV/vis diffuse reflectance spectroscopy (DRS) for pure and silver oxide loaded BiV04. Pbotocatalytic properties of the prepared samples were examined by studying the degradation of the methyl orange. When using NaCI02 as an electron acceptor, the possible photocatalytic mech- anism has been discussed by photocatalytic reactions. With the help of electron acceptor, the results show clearly that the BiV04 loaded silver oxide exhibited superior photocatalytic activity in simulated dye wastewater treatment.展开更多
A new 3D coordination polymer, [Cd2(L)(bpb)2]n(1, H4L = 1,4-di(2,6-dimethyl-3,5-dicarboxypyridyl) benzene, bpb = 1,4-bis(4-pyridyl) benzene, has been hydrothermally synthesized and characterized by single-cry...A new 3D coordination polymer, [Cd2(L)(bpb)2]n(1, H4L = 1,4-di(2,6-dimethyl-3,5-dicarboxypyridyl) benzene, bpb = 1,4-bis(4-pyridyl) benzene, has been hydrothermally synthesized and characterized by single-crystal X-ray diffraction analysis, elemental analysis, TGA, IR spectroscopy and UV-Vis spectrum. Complex 1 crystallizes in orthorhombic, space group C2221, with a = 10.9393(12), b = 20.900(3), c = 20.027(2) A, β = 90°, V = 4578.9(9) A^3, Dc = 41.668 Mg/cm^3, Mr = 1149.74, F(000) = 2312.0, μ = 0.996 mm^(–1), Z = 4, the final R = 0.0316 and wR = 0.0786 for 4271 observed reflections with I 〉 2σ(I). Structural analysis shows that 1 possesses a 3D network based on the 2D layer bridged by L^4-ligands, while the 2D layers are composed of the adjacent 1D chains joined by L^4-ligand. The photoluminescent investigation indicates that one broad emission band with the maximum of 445 nm can be observed in 1. Moreover, compound 1 has high photocatalytic degradation effects on methylene blue under UV irradiation.展开更多
Undoped and doped cadmuim titanium oxide thin films at different percentage (1, 3, 4, and 5)% were fabricated by spray pyrolysis by using a solution of titanium tetrachloride and ethyl alcohol. The films have been d...Undoped and doped cadmuim titanium oxide thin films at different percentage (1, 3, 4, and 5)% were fabricated by spray pyrolysis by using a solution of titanium tetrachloride and ethyl alcohol. The films have been deposited on heated quartz substrates at 623 K. After annealing for 120 min at 823 K, the initially amorphous films became polycrystalline with a predominant anatase structure and average crystallite sizes depending on dopant Cd concentration. Atomic force microscope (AIM) results show that the addition of the Cd to TiO2 thin films become smooth. Optical study shows the optical band gap, and transmission has been increasing with increasing doping concentration in TiO2 thin films. The electrical resistivity is decreases with increasing doping concentration Cd in TiO2 thin films could be attributed to the increasing charge concentration. Photocatalytic activity of the TiO2 films were studied by monitoring the degradation of aqueous methylene blue under UV light irradiation and was observed that increasing doping concentration had good photocatalytic activity which was explained as due to the structural and morphological properties of the films.展开更多
The Cu2S/tetrapod-like ZnO whisker(T-ZnOw) heterostructures were successfully synthesized via a simple polyol process employing the poly(vinyl pyrrolidone)(PVP) as a surfactant.The as-prepared heterostructures w...The Cu2S/tetrapod-like ZnO whisker(T-ZnOw) heterostructures were successfully synthesized via a simple polyol process employing the poly(vinyl pyrrolidone)(PVP) as a surfactant.The as-prepared heterostructures were characterized by X-ray diffraction(XRD),field emission scanning electron microscopy(FESEM),X-ray photoelectron spectroscopy(XPS) and Fourier transform infrared(FTIR).The photocatalytic properties of Cu2S/T-ZnOw nanocomposites synthesized with different PVP concentrations were evaluated by photodegradation of methyl orange(MO) under UV irradiation.The results show that the Cu2S/T-ZnOw nanocomposites exhibit remarkable improved photocatalytic property compared with the pure T-ZnOw.The sample prepared with 3.0 g/L PVP shows an excellent photocatalytic property and the highest photodegradation rate of MO is 97% after UV irradiation for 120 min.Besides,the photocatalytic activity of the photocatalyst has no evident decrease even after four cycles,which demonstrates that the Cu2S/T-ZnOw photocatalyst exhibits an excellent photostability.Moreover,the photocatalytic mechanism of the Cu2S/T-ZnOw nanocomposites was also discussed.展开更多
Energy band engineering and the nature of surface/interface of a semiconductor play a significant role in searching high efficiency photocatalysts. Actually, the active facets, morphology controlling, especially the e...Energy band engineering and the nature of surface/interface of a semiconductor play a significant role in searching high efficiency photocatalysts. Actually, the active facets, morphology controlling, especially the exposed facets modulation of photocatalysts during preparation are very desirable. In order to achieve high photocatalytic performance, intrinsic mechanism of such anisotropic properties should be fully considered. In this review, we mainly emphasis on the latest research developments of several extensively investigated photocatalysts and their anisotropic photocatalytic properties, as well as the correlation between effective masses anisotropy and photocatalytic properties. It will be helpful to understand the photocatalytic mechanism and promote rational development of photocatalyst for wide applications.展开更多
A series of nitrogen-doped SrMoO_(4) with different Sr/N mole ratio (R=0,0.05,0.10,0.15,0.20,0.40,and 0.60) were synthesized using urea as the N source via the vapor-thermal method.The photocatalytic degradation abili...A series of nitrogen-doped SrMoO_(4) with different Sr/N mole ratio (R=0,0.05,0.10,0.15,0.20,0.40,and 0.60) were synthesized using urea as the N source via the vapor-thermal method.The photocatalytic degradation ability of all samples was evaluated using methylene blue (MB) as a target contaminant.The band gaps of N-doped samples are all higher than that of pristine ones,which is only 3.12 eV.BET specific surface area S_(BET) and pore volume are increased due to the N doping.And the greater increase of S_(BET),the faster the photodegradation speed of methylene blue on SrMoO_(4).More specifically,the degradation efficiency of MB is improved up to 87%in 100 min.展开更多
In this study, bismuth oxyhalide(Bi OXs(X_Cl, Br, I)) semiconductors were prepared by a simple solvothermal method, with ethanol serving as solvent and a series of tetrabutylammonium halide surfactants as halogen ...In this study, bismuth oxyhalide(Bi OXs(X_Cl, Br, I)) semiconductors were prepared by a simple solvothermal method, with ethanol serving as solvent and a series of tetrabutylammonium halide surfactants as halogen sources. Under identical synthetic conditions, Bi OBr was more readily constructed into regular flower-like hierarchical architectures. The photocatalytic properties of the materials were studied by monitoring the degradation of rhodamine B(Rh B),with visible light absorption, and colorless salicylic acid(SA). It was found that both Rh B and SA were rapidly degraded on the surface of Bi OBr. Bi OCl was rather active for the degradation of Rh B,but ineffective toward the degradation of SA. However, neither Rh B nor SA could be degraded effectively in the case of Bi OI. Further experiments such as UV–visible spectroscopy and detection of U OH and O2 Uradicals suggest that the electronic structure of the Bi OX photocatalysts is responsible for the difference in their activities.展开更多
The metastable γ-Bi2O3 photocatalysts with different morphologies were fabricated by means of a chemical precipitation method. The microstructure of as-prepared samples was characterized by X-ray diffraction, transmi...The metastable γ-Bi2O3 photocatalysts with different morphologies were fabricated by means of a chemical precipitation method. The microstructure of as-prepared samples was characterized by X-ray diffraction, transmission electron microscopy and ultraviolet-visible diffusion reflectance spectroscopy. The photocatalytic performance of Bi2O3 powder was evaluated using rhodamine B as a model pollutant under visible light irradiation. The visible light photocatalytic activity of Bi2O3 with different morphologies is as follows, nanorod 〉 nanorod/nanoflake 〉 N doped TiO2 〉 irregular particle 〉 agglomerated particle. The γ-Bi2O3 shows the best photocatalytic performance and it can effectively degrade 97% RhB within 60 min.展开更多
A one-step microwave irradiation method was used to deposit carbon and nitrogen co-doped TiO2((C, N)-TiO2) on commercial brick((C, N)-TiO2/brick). The as-prepared samples were characterized by X-ray diffractio...A one-step microwave irradiation method was used to deposit carbon and nitrogen co-doped TiO2((C, N)-TiO2) on commercial brick((C, N)-TiO2/brick). The as-prepared samples were characterized by X-ray diffraction, ultraviolet–visible(UV–vis) diffuse reflectance spectroscopy, photoluminescence spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy(SEM). A selective technique was also used to investigate the concentration of hydroxyl radicals during UV–vis irradiation of the Methyl Orange solution with the as-prepared samples. The C and N dopants enhanced visible light absorption and provided a longer lifetime for the photo-generated electron–hole pairs. The SEM images showed that the as-prepared sample is porous. The dark adsorption and photodegradation test for(C, N)-TiO2/brick showed good photodegradation and good recyclability. The best photodegradation rate was 94% after 2 hr. The maximum degradation rate was maintained even after the 6th cycle. The good photocatalytic properties are attributed to the enhanced visible light absorption, enhanced pollutant adsorption arising from the porous structure of the(C, N)-TiO2 thin film, and longer lifetime of the photo-generated electron–hole pairs.(C, N)-TiO2/brick should have potential commercial applications in photodegradation processes because of its low cost, good photodegradation, and excellent recyclability.展开更多
CaTi_(2)O_(5)was selectively prepared by a solvothermal process without template and surfactant.The phase of the as-prepared samples was determined by X-ray diffraction(XRD).The microstructure was characterized by sca...CaTi_(2)O_(5)was selectively prepared by a solvothermal process without template and surfactant.The phase of the as-prepared samples was determined by X-ray diffraction(XRD).The microstructure was characterized by scanning electron microscopy(SEM)and transmission electron microscopy(TEM).Results found that pH values had a crucial effect on the crystal phase and shape evolution of the samples.CaTi_(2)O_(5)sample prepared at pH of 5.2 shows high efficient light harvesting,large surface area and crystallinity.Moreover,CaTi_(2)O_(5)shuttle-like sample shows good photocatalytic activity against methyl orange due to its longer and thinner shuttle-like morphology and high crystallinity,enhanced light harvesting and large surface area.The photocatalytic rate of CaTi_(2)O_(5)shuttle-like structure reaches 0.1988 min-1 for 25-min methyl orange degradation under the ultraviolet light irradiation and displays an excellent photostability with a degradation efficiency of 0.1952 min^(-1)after four cycles.展开更多
Using sunlight to drive chemical reactions via photocatalysis is paramount for a sustainable future.Among several photocatalysts,employing layered double hydrides(LDH) for photocatalytic application is most straightfo...Using sunlight to drive chemical reactions via photocatalysis is paramount for a sustainable future.Among several photocatalysts,employing layered double hydrides(LDH) for photocatalytic application is most straightforward and desirable owing to their distinctive two-dimensional(2D) lamellar structure and optical attributes.This article reviews the advancements in bimetallic/trimetallic LDHs and various strategies to achieve high efficiency toward an outstanding performing photocatalyst.Firstly,the tuning of LDH components that control the electro nic and structural properties is explained.The tu ning obtained through the adoption,combination,and incorporation of different cations and anions is also explained.The progress of modification methods,such as the adoption of different morphologies,delamination,and defect engineering towards enhanced photocatalytic activities,is discussed in the mainstream.The band engineering,structural characteristics,and redox tuning are further deliberated to maximize solar energy harvesting for different photocatalytic applications.Finally,the progress obtained in forming hierarchical heterostructures through hybridization with other semiconductors or conducting materials is systematically disclosed to get maximum photocatalytic performance.Moreover,the structural changes during the in-situ synthesis of LDH and the stability of LDH-based photocatalysts are deliberated.The review also summarizes the improvements in LDH properties obtained through modification tactics and discusses the prospects for future energy and environmental applications.展开更多
BiOCl nanostructures including microspheres,microflowers,microplates,and nanoplates,have been synthesized by a simple solvothermal method using bismuth nitrate and sodium chloride as raw materials without adding any a...BiOCl nanostructures including microspheres,microflowers,microplates,and nanoplates,have been synthesized by a simple solvothermal method using bismuth nitrate and sodium chloride as raw materials without adding any additives.Structure and morphology of the products were characterized by powder X-ray diffraction,scanning electron microscopy,and transmission electron microscopy.The results indicated that the as-prepared microspheres and microflowers were composed of nanosheets.Although with different shape and lateral size,the nanoplates and microplales were all single-crystalline plates with exposed {001) facets.It was found that the volume ratio of polyethylene glycol 400 and H_2O in the solvent played a key role in the morphology of the products,and the possible growth mechanism was also discussed.The photocatalytic measurements indicated that the BiOCl samples exhibit good photocatalytic properties towards Rhodamine B.展开更多
Complexes Cu(II)(4'-R-terpyridine)2(C104)2[R=2-thienyl(1), 2-(5-bromothienyl)(2), 2-(5-methyl- thienyl)(3) and 2-(5-methoxythienyl)(4)] were synthesized, and their structures were determined by si...Complexes Cu(II)(4'-R-terpyridine)2(C104)2[R=2-thienyl(1), 2-(5-bromothienyl)(2), 2-(5-methyl- thienyl)(3) and 2-(5-methoxythienyl)(4)] were synthesized, and their structures were determined by single-crystal X-ray diffraction analyses and were further characterized by high resolution mass spectrometry, infrared spectrosco- py(m), as well as elemental analysis. Single crystal X-ray diffraction analysis shows that Cu(II) ions in the complexes are both six-coordinated with N6 coordination sphere, displaying distorted octahedral geometries. In addition, the UV-Vis absorption spectra show that the four complexes all exhibit absorption components in both UV and visible light regions. Thus, the photocatalytic activities of the four complexes in the degradation of organic dyes were investigated.展开更多
Photocatalysis is critically important for environmental remediation and renewable energy technologies.The ability to objectively characterize photocatalyst properties and photocatalysis processes is paramount for mea...Photocatalysis is critically important for environmental remediation and renewable energy technologies.The ability to objectively characterize photocatalyst properties and photocatalysis processes is paramount for meaningful performance evaluation and fundamental studies to guide the design and development of high-performance photocatalysts and photocatalysis systems.Photocatalysis is essentially an electron transfer process,and photoelectrocatalysis(PEC)principles can be used to directly quantify transferred electrons to determine the intrinsic properties of photocatalysts and photocatalysis processes in isolation,without interference from counter reactions due to physically separated oxidation and reduction half-reactions.In this review,we discuss emphatically the PEC-based principles for characterizing intrinsic properties of photocatalysts and important processes of photocatalysis,with a particular focus on their environmental applications in the degradation of pollutants,disinfection,and detection of chemical oxygen demand(COD).An outlook towards the potential applications of PEC technique is given.展开更多
We report on the synthesis of Sn-doped hematite nanoparticles(Sn-α-Fe_(2)O_(3) NPs)by the hydrothermal method.The prepared Sn-α-Fe_(2)O_(3) NPs had a highly pure and well crystalline rhombohedral phase with an avera...We report on the synthesis of Sn-doped hematite nanoparticles(Sn-α-Fe_(2)O_(3) NPs)by the hydrothermal method.The prepared Sn-α-Fe_(2)O_(3) NPs had a highly pure and well crystalline rhombohedral phase with an average particle size of 41.4 nm.The optical properties of as-synthesizedα-Fe_(2)O_(3) NPs show a higher bandgap energy(2.40-2.57 eV)than that of pure bulkα-Fe_(2)O_(3)(2.1 eV).By doping Sn intoα-Fe_(2)O_(3) NPs,the Sn-doped hematite was observed a redshift toward a long wavelength with in-creasing Sn concentration from 0%to 4.0%.The photocatalytic activity of Sn-dopedα-Fe_(2)O_(3) NPs was evaluated by Congo red(CR)dye degradation.The degradation efficiency of CR dye using Sn-α-Fe_(2)O_(3) NPs catalyst is higher than that of pureα-Fe_(2)O_(3) NPs.The highest degradation efficiency of CR dye was 97.8%using 2.5%Sn-dopedα-Fe_(2)O_(3) NPs catalyst under visible-light irradi-ation.These results suggest that the synthesized Sn-dopedα-Fe_(2)O_(3) nanoparticles might be a suitable approach to develop a photocatalytic degradation of toxic inorganic dye in wastewater.展开更多
Mesh-like Bi2MoO6 product was successfully synthesized by a hydrothermal method without using any surfactant or template. The pH value played an important role in the formation of this morphology. The as-prepared mesh...Mesh-like Bi2MoO6 product was successfully synthesized by a hydrothermal method without using any surfactant or template. The pH value played an important role in the formation of this morphology. The as-prepared mesh-like Bi2MoO6 sample exhibited excellent visible-light-driven photocatalytic e ciency. The photocatalytic activity of the mesh-like Bi2MoO6 sample was much higher than that of bulk Bi2MoO6 sample prepared by solid-state reac-tion. Di erence in the photocatalytic activities of the mesh-like Bi2MoO6 sample and bulk Bi2MoO6 sample was further investigated.展开更多
Van der Waals(VDW)heterostructures have attracted significant research interest due to their tunable interfacial properties and potential applications in many areas such as electronics,optoelectronic,and heterocatalys...Van der Waals(VDW)heterostructures have attracted significant research interest due to their tunable interfacial properties and potential applications in many areas such as electronics,optoelectronic,and heterocatalysis.In this work,the influences of interfacial defects on the electronic structures and photocatalytic properties of hBN/MX_(2)(M=Mo,W,and X=S,Se)are studied using density functional theory calculations.The results reveal that the band alignment of hBN/MX_(2) can be adjusted by introducing vacancies and atomic doping.The type-Ⅰband alignment of the host structure is maintained in the heterostructure with n-type doping in the hBN sublayer.Interestingly,the band alignment changed into the type-Ⅱheterostructrue due to V_(B) defect and p-type doping is introduced into the hBN sublayer.This can conduce to the separation of photo-generated electron-hole pairs at the interfaces,which is highly desired for heterostructure photocatalysis.In addition,two Z-type heterostructures including h BN(BeB)/MoS_(2),hBN(Be_(B))/MoSe_(2),and hBN(V_(N))/MoSe_(2)are achieved,showing the decreasing of band gap and ideal redox potential for water splitting.Our results reveal the possibility of engineering the interfacial and photocatalysis properties of hBN/MX_(2) heterostructures via interfacial defects.展开更多
A novel 3D MCP,[Co;(μ;-OH)(btc)(bmip)];(1,H;btc=1,3,5-benzenetricarboxylate acid,bmip=1,3-bis(2-methylimidazolyl)propane),was synthesized under hydrothermal conditions and characterized by single-crystal X-ray ...A novel 3D MCP,[Co;(μ;-OH)(btc)(bmip)];(1,H;btc=1,3,5-benzenetricarboxylate acid,bmip=1,3-bis(2-methylimidazolyl)propane),was synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction,powder XRD,FT-IR,TGA and elemental analysis techniques.MCP 1 features a 3D framework based on tetranuclear Co(Ⅱ)clusters where the four cobalt ions are coplanar,and shows an unusual binodal(3,10)-connected topology.Furthermore,the photocatalytic experiment result indicates the degradation ratios of rhodamine B(RhB)reach 78.2%when MCP 1 acts as catalyst.展开更多
The reaction of flexible bis(imidazole) ligand and 1,2-bis(imidazol-l'-yl)methane (bimm) with Co(Ⅱ) salt under ionothermal method resulted in the formation of a new coordination polymer {[Co(bimm)3]·...The reaction of flexible bis(imidazole) ligand and 1,2-bis(imidazol-l'-yl)methane (bimm) with Co(Ⅱ) salt under ionothermal method resulted in the formation of a new coordination polymer {[Co(bimm)3]·(PF6)2}n (1). X-ray single-crystal diffraction determination reveals that 1 crystallizes in the triclinic Pi space group, with α = 8.647(6), b = 12.092(9), c = 14.967(1 l) A, α = 88.912(8), β = 81.199(8), ), = 89.395(8)°, V= 1546 (2) A3, Z = 2, Mr = 793.39, Dc= 1.704 Mg/m3,μ = 0.768 mm-1 F(000) = 798, the final R = 0.0626 and wR = 0.1634 for 4319 observed reflections with I〉 2σ(I). In compound 1, the Co(lI) ion is connected to another Co(ll) by two bimm ligands to form 1D double chains which are further linked by bimm ligands to form a 2D wavelike layer. Topologically, the structure of 1 represents a uninodal 2D 4-connected sq1/Shubnikov tetragonal plane net. Moreover, thermogravimetric analyses and photocatalytic property for 1 have also been investigated.展开更多
基金Project (NS2010153) supported by Nanjing University of Aeronautics and Astronautics Research Funding, ChinaProject (BE2009130) supported by Jiangsu Key Technology R&D Program, China
文摘Using Ti powder as reagent, TiO 2 nanoneedle/nanoribbon spheres were prepared via hydrothermal method in NaOH solution. The samples were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) with selected area electron diffraction (SAED), X-ray diffraction (XRD), and UV-visible light absorption spectrum. The results indicate that the growth orientations of the crystals are influenced by the hydrothermal temperature and NaOH concentration. The diameter of the nanoneedle spheres and nanoribbon spheres (40 50 μm) are almost the same as that of Ti powders. TiO 2 nanoneedle/nanoribbon sphere powders are anatase after heat treatment at 450 °C for 1 h. Furthermore, methyl orange was used as a target molecule to estimate the photocatalytic activity of the specimens. Under the same testing conditions, the photocatalytic activities of the products decrease in the following order: TiO 2 nanoneedle sphere, TiO 2 nanoribbon sphere and P25.
基金Supported by the Education Department of Heilongjiang Province(12541111)the Program for Innovative Research Team in University of Heilongjiang Province(2013TD008)the Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province and Harbin University of Science and Technology and the Technology and Innovative Experimental Project of Harbin University of Science and Technology
文摘In this work, BiV04 powders were synthesized by a sol-gel method, and the BiV04 gels with different calcination temperature were investigated by X-ray diffraction (XRD). Absorption range and band gap energy, which are respon- sible for the observed photocatalyst behavior, were investigated by UV/vis diffuse reflectance spectroscopy (DRS) for pure and silver oxide loaded BiV04. Pbotocatalytic properties of the prepared samples were examined by studying the degradation of the methyl orange. When using NaCI02 as an electron acceptor, the possible photocatalytic mech- anism has been discussed by photocatalytic reactions. With the help of electron acceptor, the results show clearly that the BiV04 loaded silver oxide exhibited superior photocatalytic activity in simulated dye wastewater treatment.
基金Supported by the National Natural Science Foundation of China(No.21373178 and 21503183)the Scientific Research Foundation of Shaanxi Provincial Education Department(No.16JK1857)the Natural Scientific Research Foundation of Yan’an City Technology Division of China(No.2016kg-01)
文摘A new 3D coordination polymer, [Cd2(L)(bpb)2]n(1, H4L = 1,4-di(2,6-dimethyl-3,5-dicarboxypyridyl) benzene, bpb = 1,4-bis(4-pyridyl) benzene, has been hydrothermally synthesized and characterized by single-crystal X-ray diffraction analysis, elemental analysis, TGA, IR spectroscopy and UV-Vis spectrum. Complex 1 crystallizes in orthorhombic, space group C2221, with a = 10.9393(12), b = 20.900(3), c = 20.027(2) A, β = 90°, V = 4578.9(9) A^3, Dc = 41.668 Mg/cm^3, Mr = 1149.74, F(000) = 2312.0, μ = 0.996 mm^(–1), Z = 4, the final R = 0.0316 and wR = 0.0786 for 4271 observed reflections with I 〉 2σ(I). Structural analysis shows that 1 possesses a 3D network based on the 2D layer bridged by L^4-ligands, while the 2D layers are composed of the adjacent 1D chains joined by L^4-ligand. The photoluminescent investigation indicates that one broad emission band with the maximum of 445 nm can be observed in 1. Moreover, compound 1 has high photocatalytic degradation effects on methylene blue under UV irradiation.
文摘Undoped and doped cadmuim titanium oxide thin films at different percentage (1, 3, 4, and 5)% were fabricated by spray pyrolysis by using a solution of titanium tetrachloride and ethyl alcohol. The films have been deposited on heated quartz substrates at 623 K. After annealing for 120 min at 823 K, the initially amorphous films became polycrystalline with a predominant anatase structure and average crystallite sizes depending on dopant Cd concentration. Atomic force microscope (AIM) results show that the addition of the Cd to TiO2 thin films become smooth. Optical study shows the optical band gap, and transmission has been increasing with increasing doping concentration in TiO2 thin films. The electrical resistivity is decreases with increasing doping concentration Cd in TiO2 thin films could be attributed to the increasing charge concentration. Photocatalytic activity of the TiO2 films were studied by monitoring the degradation of aqueous methylene blue under UV light irradiation and was observed that increasing doping concentration had good photocatalytic activity which was explained as due to the structural and morphological properties of the films.
基金Project (2009AA03Z427) supported by the High-tech Research and Development Program of ChinaProject (2006z02-006-3) supported by the Science Foundation of Sichuan Province,China
文摘The Cu2S/tetrapod-like ZnO whisker(T-ZnOw) heterostructures were successfully synthesized via a simple polyol process employing the poly(vinyl pyrrolidone)(PVP) as a surfactant.The as-prepared heterostructures were characterized by X-ray diffraction(XRD),field emission scanning electron microscopy(FESEM),X-ray photoelectron spectroscopy(XPS) and Fourier transform infrared(FTIR).The photocatalytic properties of Cu2S/T-ZnOw nanocomposites synthesized with different PVP concentrations were evaluated by photodegradation of methyl orange(MO) under UV irradiation.The results show that the Cu2S/T-ZnOw nanocomposites exhibit remarkable improved photocatalytic property compared with the pure T-ZnOw.The sample prepared with 3.0 g/L PVP shows an excellent photocatalytic property and the highest photodegradation rate of MO is 97% after UV irradiation for 120 min.Besides,the photocatalytic activity of the photocatalyst has no evident decrease even after four cycles,which demonstrates that the Cu2S/T-ZnOw photocatalyst exhibits an excellent photostability.Moreover,the photocatalytic mechanism of the Cu2S/T-ZnOw nanocomposites was also discussed.
文摘Energy band engineering and the nature of surface/interface of a semiconductor play a significant role in searching high efficiency photocatalysts. Actually, the active facets, morphology controlling, especially the exposed facets modulation of photocatalysts during preparation are very desirable. In order to achieve high photocatalytic performance, intrinsic mechanism of such anisotropic properties should be fully considered. In this review, we mainly emphasis on the latest research developments of several extensively investigated photocatalysts and their anisotropic photocatalytic properties, as well as the correlation between effective masses anisotropy and photocatalytic properties. It will be helpful to understand the photocatalytic mechanism and promote rational development of photocatalyst for wide applications.
基金Funded by National Key Research and Development Program of China (No.2021YFA1600203)。
文摘A series of nitrogen-doped SrMoO_(4) with different Sr/N mole ratio (R=0,0.05,0.10,0.15,0.20,0.40,and 0.60) were synthesized using urea as the N source via the vapor-thermal method.The photocatalytic degradation ability of all samples was evaluated using methylene blue (MB) as a target contaminant.The band gaps of N-doped samples are all higher than that of pristine ones,which is only 3.12 eV.BET specific surface area S_(BET) and pore volume are increased due to the N doping.And the greater increase of S_(BET),the faster the photodegradation speed of methylene blue on SrMoO_(4).More specifically,the degradation efficiency of MB is improved up to 87%in 100 min.
基金supported by the National Natural Science Foundation of China (Nos. 21377067, 21177072, 21207079)Natural Science Foundation for Innovation Group of Hubei Province, China (No. 2009CDA020)open fund (KF2011-07) from the State Key Laboratory of Environmental Chemistry and Ecotoxicology, RCEES, CAS
文摘In this study, bismuth oxyhalide(Bi OXs(X_Cl, Br, I)) semiconductors were prepared by a simple solvothermal method, with ethanol serving as solvent and a series of tetrabutylammonium halide surfactants as halogen sources. Under identical synthetic conditions, Bi OBr was more readily constructed into regular flower-like hierarchical architectures. The photocatalytic properties of the materials were studied by monitoring the degradation of rhodamine B(Rh B),with visible light absorption, and colorless salicylic acid(SA). It was found that both Rh B and SA were rapidly degraded on the surface of Bi OBr. Bi OCl was rather active for the degradation of Rh B,but ineffective toward the degradation of SA. However, neither Rh B nor SA could be degraded effectively in the case of Bi OI. Further experiments such as UV–visible spectroscopy and detection of U OH and O2 Uradicals suggest that the electronic structure of the Bi OX photocatalysts is responsible for the difference in their activities.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51072012 and51272015)
文摘The metastable γ-Bi2O3 photocatalysts with different morphologies were fabricated by means of a chemical precipitation method. The microstructure of as-prepared samples was characterized by X-ray diffraction, transmission electron microscopy and ultraviolet-visible diffusion reflectance spectroscopy. The photocatalytic performance of Bi2O3 powder was evaluated using rhodamine B as a model pollutant under visible light irradiation. The visible light photocatalytic activity of Bi2O3 with different morphologies is as follows, nanorod 〉 nanorod/nanoflake 〉 N doped TiO2 〉 irregular particle 〉 agglomerated particle. The γ-Bi2O3 shows the best photocatalytic performance and it can effectively degrade 97% RhB within 60 min.
基金supported by the National Natural Science Foundation of China (Nos. 51672090 and 51372092)
文摘A one-step microwave irradiation method was used to deposit carbon and nitrogen co-doped TiO2((C, N)-TiO2) on commercial brick((C, N)-TiO2/brick). The as-prepared samples were characterized by X-ray diffraction, ultraviolet–visible(UV–vis) diffuse reflectance spectroscopy, photoluminescence spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy(SEM). A selective technique was also used to investigate the concentration of hydroxyl radicals during UV–vis irradiation of the Methyl Orange solution with the as-prepared samples. The C and N dopants enhanced visible light absorption and provided a longer lifetime for the photo-generated electron–hole pairs. The SEM images showed that the as-prepared sample is porous. The dark adsorption and photodegradation test for(C, N)-TiO2/brick showed good photodegradation and good recyclability. The best photodegradation rate was 94% after 2 hr. The maximum degradation rate was maintained even after the 6th cycle. The good photocatalytic properties are attributed to the enhanced visible light absorption, enhanced pollutant adsorption arising from the porous structure of the(C, N)-TiO2 thin film, and longer lifetime of the photo-generated electron–hole pairs.(C, N)-TiO2/brick should have potential commercial applications in photodegradation processes because of its low cost, good photodegradation, and excellent recyclability.
基金the National Natural Science Foundation of China(No.51502119)Jiangxi Major Natural Science Foundation(Nos.20152ACB21022 and 20161BBH80048)。
文摘CaTi_(2)O_(5)was selectively prepared by a solvothermal process without template and surfactant.The phase of the as-prepared samples was determined by X-ray diffraction(XRD).The microstructure was characterized by scanning electron microscopy(SEM)and transmission electron microscopy(TEM).Results found that pH values had a crucial effect on the crystal phase and shape evolution of the samples.CaTi_(2)O_(5)sample prepared at pH of 5.2 shows high efficient light harvesting,large surface area and crystallinity.Moreover,CaTi_(2)O_(5)shuttle-like sample shows good photocatalytic activity against methyl orange due to its longer and thinner shuttle-like morphology and high crystallinity,enhanced light harvesting and large surface area.The photocatalytic rate of CaTi_(2)O_(5)shuttle-like structure reaches 0.1988 min-1 for 25-min methyl orange degradation under the ultraviolet light irradiation and displays an excellent photostability with a degradation efficiency of 0.1952 min^(-1)after four cycles.
基金United Arab Emirates University (UAE) for providing funding of this research undergrant # 12N097。
文摘Using sunlight to drive chemical reactions via photocatalysis is paramount for a sustainable future.Among several photocatalysts,employing layered double hydrides(LDH) for photocatalytic application is most straightforward and desirable owing to their distinctive two-dimensional(2D) lamellar structure and optical attributes.This article reviews the advancements in bimetallic/trimetallic LDHs and various strategies to achieve high efficiency toward an outstanding performing photocatalyst.Firstly,the tuning of LDH components that control the electro nic and structural properties is explained.The tu ning obtained through the adoption,combination,and incorporation of different cations and anions is also explained.The progress of modification methods,such as the adoption of different morphologies,delamination,and defect engineering towards enhanced photocatalytic activities,is discussed in the mainstream.The band engineering,structural characteristics,and redox tuning are further deliberated to maximize solar energy harvesting for different photocatalytic applications.Finally,the progress obtained in forming hierarchical heterostructures through hybridization with other semiconductors or conducting materials is systematically disclosed to get maximum photocatalytic performance.Moreover,the structural changes during the in-situ synthesis of LDH and the stability of LDH-based photocatalysts are deliberated.The review also summarizes the improvements in LDH properties obtained through modification tactics and discusses the prospects for future energy and environmental applications.
基金supported by the National Natural Science Foundation of China(Nos.21001081,21043004)the Education Commission of Tianjin(No.20110510)
文摘BiOCl nanostructures including microspheres,microflowers,microplates,and nanoplates,have been synthesized by a simple solvothermal method using bismuth nitrate and sodium chloride as raw materials without adding any additives.Structure and morphology of the products were characterized by powder X-ray diffraction,scanning electron microscopy,and transmission electron microscopy.The results indicated that the as-prepared microspheres and microflowers were composed of nanosheets.Although with different shape and lateral size,the nanoplates and microplales were all single-crystalline plates with exposed {001) facets.It was found that the volume ratio of polyethylene glycol 400 and H_2O in the solvent played a key role in the morphology of the products,and the possible growth mechanism was also discussed.The photocatalytic measurements indicated that the BiOCl samples exhibit good photocatalytic properties towards Rhodamine B.
基金Supported by the National Natural Science Foundation of China(No.21302138).
文摘Complexes Cu(II)(4'-R-terpyridine)2(C104)2[R=2-thienyl(1), 2-(5-bromothienyl)(2), 2-(5-methyl- thienyl)(3) and 2-(5-methoxythienyl)(4)] were synthesized, and their structures were determined by single-crystal X-ray diffraction analyses and were further characterized by high resolution mass spectrometry, infrared spectrosco- py(m), as well as elemental analysis. Single crystal X-ray diffraction analysis shows that Cu(II) ions in the complexes are both six-coordinated with N6 coordination sphere, displaying distorted octahedral geometries. In addition, the UV-Vis absorption spectra show that the four complexes all exhibit absorption components in both UV and visible light regions. Thus, the photocatalytic activities of the four complexes in the degradation of organic dyes were investigated.
基金financially supported by the Natural Science Foundation of China(52172106)the Anhui Provincial Natural Science Foundation(2108085QB60 and 2108085QB61)+2 种基金the China Postdoctoral Science Foundation(2020M682057)the Special Research Assistant Program,Chinese Academy of SciencesJiangsu Provincial Double-Innovation Doctor Program(JSSCBS20210996)。
文摘Photocatalysis is critically important for environmental remediation and renewable energy technologies.The ability to objectively characterize photocatalyst properties and photocatalysis processes is paramount for meaningful performance evaluation and fundamental studies to guide the design and development of high-performance photocatalysts and photocatalysis systems.Photocatalysis is essentially an electron transfer process,and photoelectrocatalysis(PEC)principles can be used to directly quantify transferred electrons to determine the intrinsic properties of photocatalysts and photocatalysis processes in isolation,without interference from counter reactions due to physically separated oxidation and reduction half-reactions.In this review,we discuss emphatically the PEC-based principles for characterizing intrinsic properties of photocatalysts and important processes of photocatalysis,with a particular focus on their environmental applications in the degradation of pollutants,disinfection,and detection of chemical oxygen demand(COD).An outlook towards the potential applications of PEC technique is given.
基金the financial support of Vietnam Academy of Science and Technology under project VAST01.04/18-19.
文摘We report on the synthesis of Sn-doped hematite nanoparticles(Sn-α-Fe_(2)O_(3) NPs)by the hydrothermal method.The prepared Sn-α-Fe_(2)O_(3) NPs had a highly pure and well crystalline rhombohedral phase with an average particle size of 41.4 nm.The optical properties of as-synthesizedα-Fe_(2)O_(3) NPs show a higher bandgap energy(2.40-2.57 eV)than that of pure bulkα-Fe_(2)O_(3)(2.1 eV).By doping Sn intoα-Fe_(2)O_(3) NPs,the Sn-doped hematite was observed a redshift toward a long wavelength with in-creasing Sn concentration from 0%to 4.0%.The photocatalytic activity of Sn-dopedα-Fe_(2)O_(3) NPs was evaluated by Congo red(CR)dye degradation.The degradation efficiency of CR dye using Sn-α-Fe_(2)O_(3) NPs catalyst is higher than that of pureα-Fe_(2)O_(3) NPs.The highest degradation efficiency of CR dye was 97.8%using 2.5%Sn-dopedα-Fe_(2)O_(3) NPs catalyst under visible-light irradi-ation.These results suggest that the synthesized Sn-dopedα-Fe_(2)O_(3) nanoparticles might be a suitable approach to develop a photocatalytic degradation of toxic inorganic dye in wastewater.
文摘Mesh-like Bi2MoO6 product was successfully synthesized by a hydrothermal method without using any surfactant or template. The pH value played an important role in the formation of this morphology. The as-prepared mesh-like Bi2MoO6 sample exhibited excellent visible-light-driven photocatalytic e ciency. The photocatalytic activity of the mesh-like Bi2MoO6 sample was much higher than that of bulk Bi2MoO6 sample prepared by solid-state reac-tion. Di erence in the photocatalytic activities of the mesh-like Bi2MoO6 sample and bulk Bi2MoO6 sample was further investigated.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFB3802400)the National Natural Science Foundation of China(Grant Nos.52161037,U20A20237,51871065,and 51971068)+4 种基金the Scientific Research and Technology Development Program of Guangxi Zhuang Autonmous Region Province,China(Grant Nos.AD19110037,AA19182014,AD17195073,and AA17202030-1)the Guangxi Natural Science Foundation,China(Grant Nos.2017JJB150085 and 2019GXNSFGA245005)the Innovation Project of GUET Graduate Education,China(Grant No.2022YCXS197)the Guangxi Bagui Scholar Foundation,Guangxi Collaborative Innovation Centre of Structure and Property for New Energy and Materials,Guangxi Advanced Functional Materials Foundation and Application Talents Small Highlands,ChinesischDeutsche Kooperationsgruppe,China(Grant No.GZ1528)the Guangxi Key Laboratory of Information Material,China(Grant No.201025-Z)。
文摘Van der Waals(VDW)heterostructures have attracted significant research interest due to their tunable interfacial properties and potential applications in many areas such as electronics,optoelectronic,and heterocatalysis.In this work,the influences of interfacial defects on the electronic structures and photocatalytic properties of hBN/MX_(2)(M=Mo,W,and X=S,Se)are studied using density functional theory calculations.The results reveal that the band alignment of hBN/MX_(2) can be adjusted by introducing vacancies and atomic doping.The type-Ⅰband alignment of the host structure is maintained in the heterostructure with n-type doping in the hBN sublayer.Interestingly,the band alignment changed into the type-Ⅱheterostructrue due to V_(B) defect and p-type doping is introduced into the hBN sublayer.This can conduce to the separation of photo-generated electron-hole pairs at the interfaces,which is highly desired for heterostructure photocatalysis.In addition,two Z-type heterostructures including h BN(BeB)/MoS_(2),hBN(Be_(B))/MoSe_(2),and hBN(V_(N))/MoSe_(2)are achieved,showing the decreasing of band gap and ideal redox potential for water splitting.Our results reveal the possibility of engineering the interfacial and photocatalysis properties of hBN/MX_(2) heterostructures via interfacial defects.
基金Supported by the National Natural Science Foundation of China(No.21373132,21603133)Key scientific research project of education department of Shaanxi province(17JS027)the Science Foundation of Shaanxi University of Technology(No.SLGQD2017-14)
文摘A novel 3D MCP,[Co;(μ;-OH)(btc)(bmip)];(1,H;btc=1,3,5-benzenetricarboxylate acid,bmip=1,3-bis(2-methylimidazolyl)propane),was synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction,powder XRD,FT-IR,TGA and elemental analysis techniques.MCP 1 features a 3D framework based on tetranuclear Co(Ⅱ)clusters where the four cobalt ions are coplanar,and shows an unusual binodal(3,10)-connected topology.Furthermore,the photocatalytic experiment result indicates the degradation ratios of rhodamine B(RhB)reach 78.2%when MCP 1 acts as catalyst.
基金supported by the Natural Science Foundation of Henan Province(132300410326)the Foundation of the Education Department of Henan Province(13A150801 and 14A150040)
文摘The reaction of flexible bis(imidazole) ligand and 1,2-bis(imidazol-l'-yl)methane (bimm) with Co(Ⅱ) salt under ionothermal method resulted in the formation of a new coordination polymer {[Co(bimm)3]·(PF6)2}n (1). X-ray single-crystal diffraction determination reveals that 1 crystallizes in the triclinic Pi space group, with α = 8.647(6), b = 12.092(9), c = 14.967(1 l) A, α = 88.912(8), β = 81.199(8), ), = 89.395(8)°, V= 1546 (2) A3, Z = 2, Mr = 793.39, Dc= 1.704 Mg/m3,μ = 0.768 mm-1 F(000) = 798, the final R = 0.0626 and wR = 0.1634 for 4319 observed reflections with I〉 2σ(I). In compound 1, the Co(lI) ion is connected to another Co(ll) by two bimm ligands to form 1D double chains which are further linked by bimm ligands to form a 2D wavelike layer. Topologically, the structure of 1 represents a uninodal 2D 4-connected sq1/Shubnikov tetragonal plane net. Moreover, thermogravimetric analyses and photocatalytic property for 1 have also been investigated.