An intercalative composite of graphite oxide (GO) as host intercalated by an object of TiO2 nanoparticles was obtained at low temperature by mixing GO with Ti(SO4)2 solution, and by another object of Ti2O3 while m...An intercalative composite of graphite oxide (GO) as host intercalated by an object of TiO2 nanoparticles was obtained at low temperature by mixing GO with Ti(SO4)2 solution, and by another object of Ti2O3 while mixing with TiCl4 ethanol solution. Microstructures of the GO and its intercalative composites at different C/Ti ratio were studied by XRD, SEM, AFM and FF-IR, and the evolution of these lamellar structures was studied based on the temperature change. The photocatalytic activity of the intercalative composites was characterized according to the degradation of methyl orange. The intercalative composite formed by Ti(SO4)2 solution presents an excellent photocatalytic reactivity, while that formed by TiCl4 presents no observablly photocatalytic reactivity. The electric conductivity variation of different composites was checked, in order to investigate the role of the possible electron transfer between the graphite layer and TiO2 nanocrystal during TiO2 excited by UV light irradiation.展开更多
基金Funded by The National Natural Science Foundation of China(No.50572070 and No.50672066)
文摘An intercalative composite of graphite oxide (GO) as host intercalated by an object of TiO2 nanoparticles was obtained at low temperature by mixing GO with Ti(SO4)2 solution, and by another object of Ti2O3 while mixing with TiCl4 ethanol solution. Microstructures of the GO and its intercalative composites at different C/Ti ratio were studied by XRD, SEM, AFM and FF-IR, and the evolution of these lamellar structures was studied based on the temperature change. The photocatalytic activity of the intercalative composites was characterized according to the degradation of methyl orange. The intercalative composite formed by Ti(SO4)2 solution presents an excellent photocatalytic reactivity, while that formed by TiCl4 presents no observablly photocatalytic reactivity. The electric conductivity variation of different composites was checked, in order to investigate the role of the possible electron transfer between the graphite layer and TiO2 nanocrystal during TiO2 excited by UV light irradiation.