We observe enhanced terahertz (THz) radiation generated from a Si3N4 film-coated GaAs photoconductive dipole antenna. Compared to an uncoated antenna with identical electrode geometry and optical excitation power, the...We observe enhanced terahertz (THz) radiation generated from a Si3N4 film-coated GaAs photoconductive dipole antenna. Compared to an uncoated antenna with identical electrode geometry and optical excitation power, the Si3N4 film-coated antenna has a higher effective DC resistance and larger breakdown voltage. As a result, the peak amplitude of generated THz radiation is significantly enhanced due to the Si3N4 film-coated layer.展开更多
基金This work is supported by the National Natural Science Foundation of China (No. 50077017) and the U.S.National Science Foundation. X.-C. Zhang is the author to whom the correspondence should be addressed,
文摘We observe enhanced terahertz (THz) radiation generated from a Si3N4 film-coated GaAs photoconductive dipole antenna. Compared to an uncoated antenna with identical electrode geometry and optical excitation power, the Si3N4 film-coated antenna has a higher effective DC resistance and larger breakdown voltage. As a result, the peak amplitude of generated THz radiation is significantly enhanced due to the Si3N4 film-coated layer.