Photocatalytic conversion of CO_(2)into a special chemical fuel with high yield and selectivity is still a major challenge.Herein,a 3 D hierarchical Ni Al-LDH/Ti_(3)C_(2)MXene(LDH/TC)nanocomposite is constructed throu...Photocatalytic conversion of CO_(2)into a special chemical fuel with high yield and selectivity is still a major challenge.Herein,a 3 D hierarchical Ni Al-LDH/Ti_(3)C_(2)MXene(LDH/TC)nanocomposite is constructed through in situ loading of Ti_(3)C_(2)nanosheets on the Ni Al-LDH scaffold during the hydrothermal process.The formation of a uniform and well-defined 2 D/2 D heterogeneous interface can be realized by optimizing the ratio of Ti_(3)C_(2)and the precursors for Ni Al-LDH.The 3 D hierarchical scaffold with high specific surface area contributes to the favourable photon adsorption and utilization.The intimate contact between Ti_(3)C_(2)and Ni Al-LDH with numerous interfaces effectively promotes the separation of the photoinduced electron-hole pairs in Ni Al-LDH.Together with the highly exposed oxidation-reduction active sites and the enhanced CO_(2)capture and activation.The maximum photocatalytic CO production rate on Ni AlLDH/Ti_(3)C_(2)reaches 11.82 lmol g^(-1)h^(-1)with 92%selectivity and superior stability.This work provides an effective approach for the development of an ideal photocatalyst by collaborative utilization of materials with different dimensionalities.展开更多
Herein,the catalysts of ultrathin g-C_(3)N_(4)surface-modified hollow spherical Bi2MoO6(g-C_(3)N_(4)/Bi2MoO6,abbreviated as CN/BMO)were fabricated by the co-solvothermal method.The variable valence Mo^(5+)/Mo^(6+)ioni...Herein,the catalysts of ultrathin g-C_(3)N_(4)surface-modified hollow spherical Bi2MoO6(g-C_(3)N_(4)/Bi2MoO6,abbreviated as CN/BMO)were fabricated by the co-solvothermal method.The variable valence Mo^(5+)/Mo^(6+)ionic bridge in CN/BMO catalysts can boost the rapid transfer of photogenerated electrons from Bi2MoO6to g-C_(3)N_(4).And the synergy effect of g-C_(3)N_(4)and Bi2MoO6components remarkably enhance CO_(2)adsorption capability.CN/BMO-2 catalyst has the best performances for visible light-driven CO_(2)reduction compared with single Bi2MoO6and g-C_(3)N_(4),i.e.,its amount and selectivity of CO product are 139.50μmol g-1and 96.88%for 9 h,respectively.Based on the results of characterizations and density functional theory calculation,the photocatalytic mechanism for CO_(2)reduction is proposed.The high-efficient separation efficiency of photogenerated electron-hole pairs,induced by variable valence Mo^(5+)/Mo^(6+)ionic bridge,can boost the rate-limiting steps(COOH*-to-CO*and CO*desorption)of selective visible light-driven CO_(2)conversion into CO.It inspires the establishment of efficient photocatalysts for CO_(2)conversion.展开更多
基金the National Natural Science Foundation of China(51303083)the National Natural Science Foundation of China for Excellent Young Scholars(51922050)+2 种基金the Natural Science Foundation of Jiangsu Province(BK20191293)the China Postdoctoral Science Foundation(2017m621708)the Fundamental Research Funds for the Central Universities(30920021123)for financial support。
文摘Photocatalytic conversion of CO_(2)into a special chemical fuel with high yield and selectivity is still a major challenge.Herein,a 3 D hierarchical Ni Al-LDH/Ti_(3)C_(2)MXene(LDH/TC)nanocomposite is constructed through in situ loading of Ti_(3)C_(2)nanosheets on the Ni Al-LDH scaffold during the hydrothermal process.The formation of a uniform and well-defined 2 D/2 D heterogeneous interface can be realized by optimizing the ratio of Ti_(3)C_(2)and the precursors for Ni Al-LDH.The 3 D hierarchical scaffold with high specific surface area contributes to the favourable photon adsorption and utilization.The intimate contact between Ti_(3)C_(2)and Ni Al-LDH with numerous interfaces effectively promotes the separation of the photoinduced electron-hole pairs in Ni Al-LDH.Together with the highly exposed oxidation-reduction active sites and the enhanced CO_(2)capture and activation.The maximum photocatalytic CO production rate on Ni AlLDH/Ti_(3)C_(2)reaches 11.82 lmol g^(-1)h^(-1)with 92%selectivity and superior stability.This work provides an effective approach for the development of an ideal photocatalyst by collaborative utilization of materials with different dimensionalities.
基金supported by the National Natural Science Foundation of China(21972166)the Beijing Natural Science Foundation(2202045)the National Key Research and Development Program of China(2019YFC1907600)。
文摘Herein,the catalysts of ultrathin g-C_(3)N_(4)surface-modified hollow spherical Bi2MoO6(g-C_(3)N_(4)/Bi2MoO6,abbreviated as CN/BMO)were fabricated by the co-solvothermal method.The variable valence Mo^(5+)/Mo^(6+)ionic bridge in CN/BMO catalysts can boost the rapid transfer of photogenerated electrons from Bi2MoO6to g-C_(3)N_(4).And the synergy effect of g-C_(3)N_(4)and Bi2MoO6components remarkably enhance CO_(2)adsorption capability.CN/BMO-2 catalyst has the best performances for visible light-driven CO_(2)reduction compared with single Bi2MoO6and g-C_(3)N_(4),i.e.,its amount and selectivity of CO product are 139.50μmol g-1and 96.88%for 9 h,respectively.Based on the results of characterizations and density functional theory calculation,the photocatalytic mechanism for CO_(2)reduction is proposed.The high-efficient separation efficiency of photogenerated electron-hole pairs,induced by variable valence Mo^(5+)/Mo^(6+)ionic bridge,can boost the rate-limiting steps(COOH*-to-CO*and CO*desorption)of selective visible light-driven CO_(2)conversion into CO.It inspires the establishment of efficient photocatalysts for CO_(2)conversion.