Photodynamic therapy(PDT)can take place in the presence of three elements:Light with an appropriate wavelength;a photosensitizer;and the presence of oxygen.This type of treatment is very effective overall against bact...Photodynamic therapy(PDT)can take place in the presence of three elements:Light with an appropriate wavelength;a photosensitizer;and the presence of oxygen.This type of treatment is very effective overall against bacterial,viral and mycotic cells.In the last 10 years many papers have been published on PDT with different types of photosensitizers(e.g.,methylene blue,toluidine blue,indocyanine green,curcumin-based photosensitizers),different wavelengths(e.g.,460 nm,630 nm,660 nm,810 nm)and various parameters(e.g.,power of the light,time of illumination,number of sessions).In the scientific literature all types of PDT seem very effective,even if it is difficult to find a standard protocol for each oral pathology.PDT could be an interesting way to treat some dangerous oral infections refractory to common pharmacological therapies,such as candidiasis from multidrug-resistant Candida spp.展开更多
The tumor microenvironment, particularly the hypoxic property and glutathione (GSH) overexpression, substantially inhibits the efficacy of cancer therapy. In this article, we present the design of a magnetic nanoplatf...The tumor microenvironment, particularly the hypoxic property and glutathione (GSH) overexpression, substantially inhibits the efficacy of cancer therapy. In this article, we present the design of a magnetic nanoplatform (MNPT) comprised of a photosensitizer (Ce6) and an iron oxide (Fe3O4)/manganese oxide (MnO2) composite nanozyme. Reactive oxygen species (ROS), such as singlet oxygen (1O2) radicals produced by light irradiation and hydroxyl radicals (·OH) produced by catalysis, are therapeutic species. These therapeutic substances stimulate cell apoptosis by increasing oxidative stress. This apoptosis then triggers the immunological response, which combines photodynamic therapy and T-cell-mediated immunotherapy to treat cancer. Furthermore, MNPT can be utilized as a contrast agent in magnetic resonance and fluorescence dual-modality imaging to give real-time tracking and feedback on treatment.展开更多
The development of supramolecular hosts which can efficiently encapsulate photosensitizers to improve the photodynamic efficacy holds great promise for cancer therapy.Here,we report two perylene diimide-based metallac...The development of supramolecular hosts which can efficiently encapsulate photosensitizers to improve the photodynamic efficacy holds great promise for cancer therapy.Here,we report two perylene diimide-based metallacages that can form stable host–guest complexes with planar conjugated molecules including polycyclic aromatic hydrocarbons and photosensitizers(hypocrellin A).Such host–guest complexation not only prevents the aggregation of photosensitizers in aqueous environments,but also offers fluorescence resonance energy transfer(FRET)from the metallacage to the photosensitizers to further improve the singlet oxygen generation(Φ_(Δ)=0.66).The complexes are further assembled with amphiphilic polymers,forming nanoparticles with improved stability for anticancer study.Both in vitro and in vivo studies indicate that the nanoparticles display excellent anticancer activities upon light irradiation,showing great potential for cancer photodynamic therapy.This study provides a straightforward and effective approach for enhancing the photosensitivity of conventional photosensitizers via host–guest complexation-based FRET,which will open a new avenue for host–guest chemistry-based supramolecular theranostics.展开更多
Photodynamic therapy(PDT)brings new hope for the treatment of breast cancer due to few side effects and highly effective cell killing;however,the low bioavailability of traditional photosensitizers(PSs)and their depen...Photodynamic therapy(PDT)brings new hope for the treatment of breast cancer due to few side effects and highly effective cell killing;however,the low bioavailability of traditional photosensitizers(PSs)and their dependence on oxygen severely limits their application.Aggregation-induced emission(AIE)PSs can dramatically facilitate the photosensitization effect,which can have positive impacts on tumor PDT.To-date,most AIE PSs lack tumor targeting capability and possess poor cell delivery,resulting in their use in large quantities that are harmful to healthy tissues.In this study,a series of AIE PSs based on pyridinium-substituted triphenylamine salts(TTPAs 1-6)with different alkyl chain lengths are synthesized.Results reveal that TTPAs 1-6 promote the generation of type I and II ROS,including·OH and 1O_(2).In particular,the membrane permeability and targeting of TTPAs 4-6 bearing C8-C10 side-chains are higher than TTPAs 1-3 bearing shorter alkyl chains.Additionally,they can assemble with albumin,thereby forming nanoparticles(TTPA 4-6 NPs)in situ in blood,which significantly facilitates mitochondrial-targeting and strong ROS generation ability.Moreover,the TTPA 4-6 NPs are pH-responsive,allowing for increased accumulation or endocytosis of the tumor and enhancing the imaging or therapeutic effect.Therefore,the in vivo distributions of TTPA 4-6 NPs are visually enriched in tumor sites and exhibited excellent PDT efficacy.This work demonstrates a novel strategy for AIE PDT and has the potential to play an essential role in clinical applications using nano-delivery systems.展开更多
Vascular-targeted photodynamic therapy(V-PDT)is an effective treatment for port wine stains(PWS).However,repeated treatment is usually needed to achieve optimal treatment outcomes,possibly due to the limited treatment...Vascular-targeted photodynamic therapy(V-PDT)is an effective treatment for port wine stains(PWS).However,repeated treatment is usually needed to achieve optimal treatment outcomes,possibly due to the limited treatment light penetration depth in the PWS lesion.The optical clearing technique can increase light penetration in depth by reducing light scattering.This study aimed to investigate the V-PDT in combination with an optical clearing agent(OCA)for the therapeutic enhancement of V-PDT in the rodent skinfold window chamber model.Vascular responses were closely monitored with laser speckle contrast imaging(LSCI),optical coherence tomography angiography,and stereo microscope before,during,and after the treatment.We further quantitatively demonstrated the effects of V-PDT in combination with OCA on the blood flow and blood vessel size of skin microvasculature.The combination of OCA and V-PDT resulted in significant vascular damage,including vasoconstriction and the reduction of blood flow.Our results indicate the promising potential of OCA for enhancing V-PDT for treating vascular-related diseases,including PWS.展开更多
Photodynamic therapy(PDT)has significant advantages in treating primary tumors.However,the hypoxic tumor microenvironment hinders the generation of sufficient reactive oxygen species during PDT to effectively kill tum...Photodynamic therapy(PDT)has significant advantages in treating primary tumors.However,the hypoxic tumor microenvironment hinders the generation of sufficient reactive oxygen species during PDT to effectively kill tumor cells,further greatly limiting the applications of PDT in cancer treatment.Herein,we reported a temperature/pH dual controlled drug delivery system LPC@PCN@PDA/Fe^(3+)-AS1411 based on a porous coordination network(PCN(Mn))coated with polydopamine(PDA)and modified with an aptamer AS1411.β-lapachone(LPC)was loaded inside the PCN(Mn)framework,and Fe^(3+)was attached to the surface of the PDA coating.These nanoparticles(NPs)exhibited excellent multimodal cancer therapeutic effects and tumor targeting ability with their photo-and chemodynamic properties.The therapeutic effect can be enhanced by the production of sufficient oxygen by the internal hydrogen peroxide,which improves the photodynamic effect of the photosensitizer PCN(Mn)and the chemotherapy effect ofβ-lapachone.Notably,the conversion of Fe^(2+)to Fe^(3+)in the tumor cells exerts the Fenton effect,which generates hydroxyl radicals that cause lipid peroxidation in tumor cells and induce apoptosis,thus enhancing the chemodynamic therapeutic effect.In vitro and in vivo experiments revealed that the NPs demonstrated specific tumor targeting,excellent inhibition effect on tumor growth,and biocompatibility.Together,our findings can help develop an intelligent multifunctional therapeutic nanoplatform for cancer therapy.展开更多
Photothermal and photodynamic therapies(PTT/PDT)hold promise for localized tumor treatment,yet their full potential is hampered by limitations such as the hypoxic tumor microenvironment and inadequate systemic immune ...Photothermal and photodynamic therapies(PTT/PDT)hold promise for localized tumor treatment,yet their full potential is hampered by limitations such as the hypoxic tumor microenvironment and inadequate systemic immune activation.Addressing these challenges,we present a novel near-infrared(NIR)-triggered RNS nanoreactor(PBNO-Ce6)to amplify the photodynamic and photothermal therapy efficacy against triple-negative breast cancer(TNBC).The designed PBNOCe6 combines sodium nitroprusside-doped Prussian Blue nanoparticles with Chlorin e6 to enable on-site RNS production through NIR-induced concurrent NO release and ROS generation.This not only enhances tumor cell eradication but also potentiates local and systemic antitumor immune responses,protecting mice from tumor rechallenge.Our in vivo evaluations revealed that treatment with PBNO-Ce6 leads to a remarkable 2.7-fold increase in cytotoxic T lymphocytes and a 62%decrease in regulatory T cells in comparison to the control PB-Ce6(Prussian Blue nanoparticles loaded with Chlorin e6),marking a substantial improvement over traditional PTT/PDT.As such,the PBNO-Ce6 nanoreactor represents a transformative approach for improving outcomes in TNBC and potentially other malignancies affected by similar barriers.展开更多
Photodynamic therapy(PDT)has been increasingly used in the clinical treatment of neoplastic,inflammatory and infectious skin diseases.However,the generation of reactive oxygen species(ROS)may induce undesired side eff...Photodynamic therapy(PDT)has been increasingly used in the clinical treatment of neoplastic,inflammatory and infectious skin diseases.However,the generation of reactive oxygen species(ROS)may induce undesired side effects in normal tissue surrounding the treatment lesion,which is a big challenge for the clinical application of PDT.To date,(–)-Epigallocatechin gallate(EGCG)has been widely proposed as an antiangiogenic and antitumor agent for the protection of normal tissue from ROS-mediated oxidative damage.This study evaluates the regulation ability of EGCG for photodynamic damage of blood vessels during hematoporphyrin monomethyl ether(Hemoporfin)-mediated PDT.The quenching rate constants of EGCG for the triplet-state Hemoporfin and photosensitized 1O2 generation are determined to be 6.8×10^(8)M^(−1)S^(−1),respectively.The vasoconstriction of blood vessels in the protected region treated with EGCG hydrogel after PDT is lower than that of the control region treated with pure hydrogel,suggesting an efficiently reduced photodamage of Hemoporfin for blood vessels treated with EGCG.This study indicates that EGCG is an efficient quencher for triplet-state Hemoporfin and 1O2,and EGCG could be potentially used to reduce the undesired photodamage of normal tissue in clinical PDT.展开更多
Photodynamic therapy(PDT)has limited effects in treating metastatic breast cancer.Immune checkpoints can deplete the function of immune cells;however,the expression of immune checkpoints after PDT is unclear.This stud...Photodynamic therapy(PDT)has limited effects in treating metastatic breast cancer.Immune checkpoints can deplete the function of immune cells;however,the expression of immune checkpoints after PDT is unclear.This study investigates whether the limited e±cacy of PDT is due to upregulated immune checkpoints and tries to combine the PDT and immune checkpoint inhibitor to observe the e±cacy.A metastatic breast cancer model was treated by PDT mediated by hematoporphyrin derivatives(HpD-PDT).The anti-tumor effect of HpD-PDT was observed,as well as CD4þT,CD8þT and calreticulin(CRT)by immunohistochemistry and immunofluorescence.Immune checkpoints on T cells were analyzed byflow cytometry after HpD-PDT.When combining PDT with immune checkpoint inhibitors,the antitumor effect and immune effect were assessed.For HpD-PDT at 100 mW/cm2 and 40,60 and 80 J/cm2,primary tumors were suppressed and CD4þT,CD8þT and CRT were elevated;however,distant tumors couldn't be inhibited and survival could not be prolonged.Immune checkpoints on T cells,especially PD1 and LAG-3 after HpD-PDT,were upregulated,which may explain the reason for the limited HpD-PDT effect.After PDT combined with anti-PD1 antibody,but not with anti-LAG-3 antibody,both the primary and distant tumors were signi-cantly inhibited and the survival time was prolonged,additionally,CD4þT,CD8þT,IFN-þCD4þT and TNF-þCD4þT cells were signi-cantly increased compared with HpD-PDT.HpD-PDT could not combat metastatic breast cancer.PD1 and LAG-3 were upregulated after HpD-PDT.Anti-PD1 antibody,but not anti-LAG-3 antibody,could augment the antitumor effect of HpD-PDT for treating metastatic breast cancer.展开更多
The cyanine dyes represented by IR780 can achieve synergistic photodynamic therapy(PDT)and photothermal therapy(PTT)under the stimulation of near-infrared(NIR)light(commonly 808 nm).Unfortunately,the stability of NIR-...The cyanine dyes represented by IR780 can achieve synergistic photodynamic therapy(PDT)and photothermal therapy(PTT)under the stimulation of near-infrared(NIR)light(commonly 808 nm).Unfortunately,the stability of NIR-excited cyanine dyes is not satisfactory.These cyanine dyes can be attacked by self-generated reactive oxygen species(ROS)during PDT processes,resulting in structural damage and rapid degradation,which is fatal for phototherapy.To address this issue,a novel non-cyanine dye(IR890)was elaborately designed and synthesized by our team.The maximum absorption wavelength of IR890 was located in the deep NIR region(ca.890 nm),which was beneficial for further improving tissue penetration depth.Importantly,IR890 exhibited good stability when continuously illuminated by deep NIR light.To improve the hydrophilicity and biocompatibility,the hydrophobic IR890 dye was grafted onto the side chain of hydrophilic polymer(POEGMA-b-PGMA-g-C≡CH)via click chemistry.Then,the synthesized POEGMA-b-PGMA-g-IR890 amphiphilic polymerwas utilized to prepare P-IR890 nano-photosensitizer via self-assembly method.Under irradiation with deep NIR light(850 nm,0.5 W/cm^(2),10 min),the dye degradation rate of P-IR890 was less than 5%.However,IR780 was almost completely degraded with the same light output power density and irradiation duration.In addition,P-IR890 could stably generate a large number of ROS and heat at the same time.It was rarely reported that the stable synergistic combination therapy of PDT and PTT could be efficiently performed by a single photosensitizer via irradiation with deep NIR light.P-IR890 exhibited favorable anti-tumor outcomes through apoptosis pathway.Therefore,the P-IR890 could provide a new insight into the design of photosensitizers and new opportunities for synergistic combination therapy of PDT and PTT.展开更多
Photodynamic therapy(PDT)is a promising cancer treatment.This study investigated the antitumor effects and mechanisms of a novel photosensitizer meso-5-[ρ-diethylene triamine pentaacetic acid-aminophenyl]−10,15,20-tr...Photodynamic therapy(PDT)is a promising cancer treatment.This study investigated the antitumor effects and mechanisms of a novel photosensitizer meso-5-[ρ-diethylene triamine pentaacetic acid-aminophenyl]−10,15,20-triphenyl-porphyrin(DTP)mediated PDT(DTP-PDT).Cell viability,reactive oxygen species(ROS),and apoptosis were measured with a Cell Counting Kit-8 assay,DCFH-DA fluorescent probe,and Hoechst staining,respectively.Cell apoptosis-and autophagy-related proteins were examined using western blotting.RNA sequencing was used to screen differentially expressed mRNAs(DERs),and bioinformatic analysis was performed to identify the major biological events after DTP-PDT.Our results show that DTP-PDT inhibited cell growth and induced ROS generation in MCF-7 and SGC7901 cells.The ROS scavenger N-acetyl-L-cysteine(NAC)and the P38 MAPK inhibitor SB203580 alleviated DTP-PDT-induced cytotoxicity.DTP-PDT induced cell apoptosis together with upregulated Bax and downregulated Bcl-2,which could also be inhibited by NAC or SB203580.The level of LC3B-Ⅱ,a marker of autophagy,was increased by DTP-PDT.A total of 3496 DERs were obtained after DTP-PDT.Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses indicated that DERs included those involved in cytosolic ribosomes,the nuclear lumen,protein binding,cell cycle,protein targeting to the endoplasmic reticulum,and ribosomal DNA replication.Disease Ontology and Reactome enrichment analyses indicated that DERs were associated with a variety of cancers and cell cycle checkpoints.Protein-protein interaction results demonstrated that cdk1 and rps27a ranked in the top 10 interacting genes.Therefore,DTP-PDT could inhibit cell growth and induce cell apoptosis and autophagy,partly through ROS and the P38 MAPK signaling pathway.Genes associated with the cell cycle,ribosomes,DNA replication,and protein binding may be the key changes in DTP-PDT-mediated cytotoxicity.展开更多
Osteosarcoma is a malignant tumor originating from bone tissue that progresses rapidly and has a poor patient prognosis.Immunotherapy has shown great potential in the treatment of osteosarcoma.However,the immunosuppre...Osteosarcoma is a malignant tumor originating from bone tissue that progresses rapidly and has a poor patient prognosis.Immunotherapy has shown great potential in the treatment of osteosarcoma.However,the immunosuppressive microenvironment severely limits the efficacy of osteosarcoma treatment.The dual pH-sensitive nanocarrier has emerged as an effective antitumor drug delivery system that can selectively release drugs into the acidic tumor microenvironment.Here,we prepared a dual pH-sensitive nanocarrier,loaded with the photosensitizer Chlorin e6(Ce6)and CD47 monoclonal antibodies(aCD47),to deliver synergistic photodynamic and immunotherapy of osteosarcoma.On laser irradiation,Ce6 can generate reactive oxygen species(ROS)to kill cancer cells directly and induces immunogenic tumor cell death(ICD),which further facilitates the dendritic cell maturation induced by blockade of CD47 by aCD47.Moreover,both calreticulin released during ICD and CD47 blockade can accelerate phagocytosis of tumor cells by macrophages,promote antigen presentation,and eventually induce T lymphocyte-mediated antitumor immunity.Overall,the dual pH-sensitive nanodrug loaded with Ce6 and aCD47 showed excellent immune-activating and anti-tumor effects in osteosarcoma,which may lay the theoretical foundation for a novel combination model of osteosarcoma treatment.展开更多
Photodynamic therapy(PDT)can produce high levels of reactive oxygen species(ROS)to kill tumor cells and induce antitumor immunity.However,intracellular antioxidant systems,including glutathione(GSH)system and thioredo...Photodynamic therapy(PDT)can produce high levels of reactive oxygen species(ROS)to kill tumor cells and induce antitumor immunity.However,intracellular antioxidant systems,including glutathione(GSH)system and thioredoxin(Trx)system,limit the accumulation of ROS,resulting in compromised PDT and insufficient immune stimulation.Herein,we designed a nanomedicine PtHPs co-loading photosensitizer pyropheophorbide a(PPa)and cisplatin prodrug Pt-COOH(IV)(Pt(IV))based on hydroxyethyl starch(HES)to inhibit both GSH and Trx antioxidant systems and achieve potent PDT as well as antitumor immune responses.Specifically,HES-PPa and HES-Pt were obtained by coupling HES with PPa and Pt(IV),and assembled into nanoparticle PtHPs by emulsification method to achieve the purpose of co-delivery of PPa and Pt(IV).PtHPs improved PPa photostability while retaining PPa photodynamic properties.In vitro experiments showed that PtHPs reduced GSH,inhibited Trx system and had better cell-killing effect and ROS generation ability.Subcutaneous tumormodels showed that PtHPs had good safety and tumor inhibition effect.Bilateral tumor models suggested that PtHPs promoted the release of damage-associated molecular patterns and the maturation of dendritic cells,induced T cell-mediated immune responses,and thus suppressed the growth of both primary and distal tumors.This study reports a novel platinum-based nanomedicine and provides a newstrategy for boosting PDT therapy-mediated antitumor immunity by overcoming intrinsic antioxidant systems.展开更多
Glutathione(GSH)-activated prodrugs are promising for overcoming the limitations of conventional anti-tumor drugs.However,current GSH-responsive disulfide groups exhibit unregulated reactivity,making it impossible to ...Glutathione(GSH)-activated prodrugs are promising for overcoming the limitations of conventional anti-tumor drugs.However,current GSH-responsive disulfide groups exhibit unregulated reactivity,making it impossible to precisely control the drug release rate.We herein report a series of GSH-responsive prodrugs with a“three-in-one”molecular design by integrating a fluorescence report unit,stimuliresponsive unit and chemodrug into one scaffold with tunable aromatic nucleophilic substitution(SNAr)reactivity.The drug release rate of these prodrugs is tailored by modification of substituent groups with different electron-withdrawing or-donating abilities on the BODIPY core.Furthermore,the prodrugs self-assemble in water to form nanoparticles that serve as photosensitizers to produce reactive oxygen species upon irradiation for photodynamic therapy(PDT).The PDT process also increases the concentration of GSH in cells,further promoting the release of drugs for chemotherapy.This strategy provides a powerful platform for sequential photodynamic and chemotherapy with tunable drug release rates and synergistic therapeutic effects.展开更多
An “Eigenstate Adjustment Autonomy” Model, permeated by the Nanosystem’s Fermi Level Pinning along with its rigid Conduction Band Discontinuity, compatible with pertinent Experimental Measurements, is being employe...An “Eigenstate Adjustment Autonomy” Model, permeated by the Nanosystem’s Fermi Level Pinning along with its rigid Conduction Band Discontinuity, compatible with pertinent Experimental Measurements, is being employed for studying how the Functional Eigenstate of the Two-Dimensional Electron Gas (2DEG) dwelling within the Quantum Well of a typical Semiconductor Nanoheterointerface evolves versus (cryptographically) selectable consecutive Cumulative Photon Dose values. Thus, it is ultimately discussed that the experimentally observed (after a Critical Cumulative Photon Dose) Phenomenon of 2DEG Negative Differential Mobility allows for the Nanosystem to exhibit an Effective Qubit Specific Functionality potentially conducive to (Telecommunication) Quantum Information Registering.展开更多
Objective: To evaluate the clinical effectiveness and adverse effects of photodynamic therapy (PDT) for the upper gastrointestinal tract cancers. Methods: 56 patients with upper gastrointestinal cancers in differe...Objective: To evaluate the clinical effectiveness and adverse effects of photodynamic therapy (PDT) for the upper gastrointestinal tract cancers. Methods: 56 patients with upper gastrointestinal cancers in different clinical stages were treated with PDT. Diode laser (630 nm) was used as the light source and the parameters were as follows: power density 200 to 400 mW/cm, energy density 100 to 300 J/cm. PHOTOFRIN was used as photosensitizer, which was given in a dose of 2 mg/kg intravenously 12-24 h before irradiation. Results: Evaluation of the 56 patients' therapeutic effectiveness showed that 6 patients (10.7%) had a complete response (CR), 33 patients (58.9%) partial response (PR), 12 patients (21.4%) mild response (MR), and 5 patients (8.9%) no response (NR). The total response rate (CR+PR) was 69.6%. No patients had severe adverse effects in this group. Conclusion: PDT is an effective and safe palliative modality for upper gastrointestinal tract cancers.展开更多
AIM:To compare the efficacy of low-fluence photodynamic therapy(PDT) combinations in the treatment of age-related macular degeneration(AMD).· METHODS:Forty-five previously untreated eyes of 45 patients with exuda...AIM:To compare the efficacy of low-fluence photodynamic therapy(PDT) combinations in the treatment of age-related macular degeneration(AMD).· METHODS:Forty-five previously untreated eyes of 45 patients with exudative AMD whose best-corrected visual acuity(BCVA) was ≥0.3(Snellen) were enrolled.15 patients in Group I underwent low-fluence PDT(25J/cm2-300mW/cm2-83sec) and intravitreal pegaptanib combination,15 patients in Group II underwent PDT(50J/cm2-600mW/cm2-83sec) and intravitreal pegaptanib combination while,15 patients in Group III underwent intravitreal pegaptanib monotherapy.Complete ophthalmologic examinations were performed in pre and post treatment visits,and the results were statistically analised.A clinical activity score(CAS) was calculated by using changes in lesion size,amount of hemorrhage,staining pattern in FA and OCT measurement of intra/subretinal fluid.≤3 logMAR lines of decrease in BCVA and decrease in CAS were considered as successful treatment.· RESULTS:The mean age of 19 female(42.2%) and 26 male(57.8%) patients was(72.82±8.02) years.Mean follow-up was(13.93±5.87) months.Lesion type was occult in 28 eyes(62.2%).Treatment success rates according to BCVA assessments were 86.7%,80%,60% and mean BCVA decrease were 0.3,1.0,2.2 logMAR lines in Group I,II and III,respectively(P >0.05).According to the changes in central macular thickness and CAS,no difference was found among the study groups(P =0.850 and P =0.811,respectively).Patients treated with combination regimens had lower intravitreal injection frequencies(P =0.015).· CONCLUSION:Combination regimen with intravitreal pegaptanib and low-fluence PDT seems to be safe and effective in stabilizing the clinical activity and BCVA in exudative AMD.·展开更多
To perform a systematic review and meta-analysis on clinical outcomes of photodynamic therapy (PDT) in non-resectable cholangiocarcinoma.METHODSIncluded studies compared outcomes with photodynamic therapy and biliary ...To perform a systematic review and meta-analysis on clinical outcomes of photodynamic therapy (PDT) in non-resectable cholangiocarcinoma.METHODSIncluded studies compared outcomes with photodynamic therapy and biliary stenting (PDT group) vs biliary stenting only (BS group) in palliation of non-resectable cholangiocarcinoma. Articles were searched in MEDLINE, PubMed, and EMBASE. Pooled proportions were calculated using fixed and random effects model. Heterogeneity among studies was assessed using the I<sup>2</sup> statistic.RESULTSTen studies (n = 402) that met inclusion criteria were included in this analysis. The P for χ<sup>2</sup> heterogeneity for all the pooled accuracy estimates was > 0.10. Pooled odds ratio for successful biliary drainage (decrease in bilirubin level > 50% within 7days after stenting) in PDT vs BS group was 4.39 (95%CI: 2.35-8.19). Survival period in PDT and BS groups were 413.04 d (95%CI: 349.54-476.54) and 183.41 (95%CI: 136.81-230.02) respectively. The change in Karnofsky performance scores after intervention in PDT and BS groups were +6.99 (95%CI: 4.15-9.82) and -3.93 (95%CI: -8.63-0.77) respectively. Odds ratio for post-intervention cholangitis in PDT vs BS group was 0.57 (95%CI: 0.35-0.94). In PDT group, 10.51% (95%CI: 6.94-14.72) had photosensitivity reactions that were self-limiting. Subgroup analysis of prospective studies showed similar results, except the incidence of cholangitis was comparable in both groups.CONCLUSIONIn palliation of unresectable cholangiocarcinoma, PDT seems to be significantly superior to BS alone. PDT should be used as an adjunct to biliary stenting in these patients.展开更多
AIM:To evaluate the effect of photodynamic therapy (PDT) on metal stent patency in patients with unresectable hilar cholangiocarcinoma (CC). METHODS:This was a retrospective analysis of patients with hilar CC referred...AIM:To evaluate the effect of photodynamic therapy (PDT) on metal stent patency in patients with unresectable hilar cholangiocarcinoma (CC). METHODS:This was a retrospective analysis of patients with hilar CC referred to our institution from December, 1999 to January, 2011. Out of 232 patients, thirty-three patients with unresectable hilar CC were treated. Eighteen patients in the PDT group were treated with uncovered metal stents after one session of PDT. Fifteen patients in the control group were treated with metal stents alone. Porfimer sodium (2 mg/kg) was administered intravenously to PDT patients. Fortyeight hours later, PDT was administered using a diffusing fiber that was advanced across the tumor by either endoscopic retrograde cholangiopancreatography or percutaneous cholangiography. After performance of PDT, uncovered metal stents were inserted to ensure adequate decompression and bile drainage. Patient survival rates and cumulative stent patency were calculated using Kaplan-Meier analysis with the log-rank test. RESULTS:The PDT and control patients were comparable with respect to age, gender, health status, pretreatment bilirubin, and hilar CC stage. When compared to control, the PDT group was associated with significantly prolonged stent patency (median 244 ± 66 and 177 ± 45 d, respectively, P = 0.002) and longer patient survival (median 356 ± 213 and 230 ± 73 d, respectively, P = 0.006). Early complication rates were similar between the groups (PDT group 17%, control group 13%) and all patients were treated conservatively. Stent malfunctions occurred in 14 PDT patients (78%) and 12 control patients (80%). Of these 26 patients, twenty-two were treated endoscopically and four were treated with external drainage. CONCLUSION:Metal stenting after one session of PDT may be safe with acceptable complication rates. The PDT group was associated with a significantly longer stent patency than the control group in patients with unresectable hilar CC.展开更多
AIM: To investigate the anti-tumor effects of combined cytotoxic drug (gemcitabine) and photodynamic therapy (PDT) on human pancreatic cancer xenograft in nude mice.METHODS: Human pancreatic cancer cell line SW1...AIM: To investigate the anti-tumor effects of combined cytotoxic drug (gemcitabine) and photodynamic therapy (PDT) on human pancreatic cancer xenograft in nude mice.METHODS: Human pancreatic cancer cell line SW1990 was used in the investigation of the in vivo effect of combined gemcitabine and PDT on human pancreatic cancer xenograft in mice. Sixty mice were randomly allocated into a control group (without treatment), photosensitizer treatment group (2 mg/kg photosan, without illumination), chemotherapy group (50 mg/kg gemcitabine i.p.), PDT group (2 mg/kg photosan + laser irradiation) and combined treatment group (photosan + chemotherapy), with 12 mice in each group. Tumor size was measured twice every week. Anti-tumor activity in different groups was evaluated by tumor growth inhibition (TGI)RESULTS: No significant anti-tumor effect was observed either in photosensitizer treatment group or in chemotherapy group. PDT led to necrosis in cancer lesions and significantly reduced tumor volume compared with photosensitizer on day 6 and at the following time points after initialization of therapy (0.24 ± 0.15-0.49 ± 0.08 vs 0.43 ± 0.18-1.25± 0.09, P 〈 0.05). PDT significantly reduced tumor volume in combined treatment group compared with photosensitizer treatment group (0.12 ± 0.07-0.28 ± 0.22 vs 0.39 ± 0.15-2.20 ± 0.12, P 〈 0.05), small dose chemotherapy group (0.12 ± 0.07-0.28 ± 0.12 vs 0.32 ± 0.14-1.16 ± 0.08, P 〈 0.05) and control group (0.12 ± 0.07-0.28 ± 0.12 vs 0.43 ± 0.18-1.25 ± 0.09, P 〈 0.05). TGI was higher in the combined treatment group (82.42%) than in the PDT group (58.18%).CONCLUSION: PDT has a significant anti-tumor effect, which is maintained for a short time and can be significantly enhanced by small doses of gemcitabine.展开更多
文摘Photodynamic therapy(PDT)can take place in the presence of three elements:Light with an appropriate wavelength;a photosensitizer;and the presence of oxygen.This type of treatment is very effective overall against bacterial,viral and mycotic cells.In the last 10 years many papers have been published on PDT with different types of photosensitizers(e.g.,methylene blue,toluidine blue,indocyanine green,curcumin-based photosensitizers),different wavelengths(e.g.,460 nm,630 nm,660 nm,810 nm)and various parameters(e.g.,power of the light,time of illumination,number of sessions).In the scientific literature all types of PDT seem very effective,even if it is difficult to find a standard protocol for each oral pathology.PDT could be an interesting way to treat some dangerous oral infections refractory to common pharmacological therapies,such as candidiasis from multidrug-resistant Candida spp.
基金supported by the National Natural Science Foundation of China(Gtant No.:32201169)the Natural Science Foundation of Jiangsu Province(Grant No.:BK20220662).
文摘The tumor microenvironment, particularly the hypoxic property and glutathione (GSH) overexpression, substantially inhibits the efficacy of cancer therapy. In this article, we present the design of a magnetic nanoplatform (MNPT) comprised of a photosensitizer (Ce6) and an iron oxide (Fe3O4)/manganese oxide (MnO2) composite nanozyme. Reactive oxygen species (ROS), such as singlet oxygen (1O2) radicals produced by light irradiation and hydroxyl radicals (·OH) produced by catalysis, are therapeutic species. These therapeutic substances stimulate cell apoptosis by increasing oxidative stress. This apoptosis then triggers the immunological response, which combines photodynamic therapy and T-cell-mediated immunotherapy to treat cancer. Furthermore, MNPT can be utilized as a contrast agent in magnetic resonance and fluorescence dual-modality imaging to give real-time tracking and feedback on treatment.
基金supported by the National Natural Science Foundation of China(22171219 and 22222112)Innovation Talent Promotion Plan of Shaanxi Province for Science and Technology Innovation Team(2023-CX-TD-51)+2 种基金Key Laboratory Fund for Plasma Physics(6142A04210108)the Interdisciplinary Training Program for Doctoral Candidate of Xi’an Jiaotong University(IDT2105)National Natural Science Foundation NSAF Joint Fund(U2230112).
文摘The development of supramolecular hosts which can efficiently encapsulate photosensitizers to improve the photodynamic efficacy holds great promise for cancer therapy.Here,we report two perylene diimide-based metallacages that can form stable host–guest complexes with planar conjugated molecules including polycyclic aromatic hydrocarbons and photosensitizers(hypocrellin A).Such host–guest complexation not only prevents the aggregation of photosensitizers in aqueous environments,but also offers fluorescence resonance energy transfer(FRET)from the metallacage to the photosensitizers to further improve the singlet oxygen generation(Φ_(Δ)=0.66).The complexes are further assembled with amphiphilic polymers,forming nanoparticles with improved stability for anticancer study.Both in vitro and in vivo studies indicate that the nanoparticles display excellent anticancer activities upon light irradiation,showing great potential for cancer photodynamic therapy.This study provides a straightforward and effective approach for enhancing the photosensitivity of conventional photosensitizers via host–guest complexation-based FRET,which will open a new avenue for host–guest chemistry-based supramolecular theranostics.
基金This work was supported by the National Natural Science Foundation of China(81860543,32360237)Guizhou Provincial Science and Technology Projects(ZK[2023]Key Project 041,ZK[2021]076,[2019]2792 and[2018]5779-14)+2 种基金Guizhou Provincial Department of Education Foundation(KY[2022]229)Cultivation program of the Affiliated Hospital of Guizhou Medical University(gyfynsfc-2022-39)Cultivation program of the Guizhou Medical University(20NSP012)。
文摘Photodynamic therapy(PDT)brings new hope for the treatment of breast cancer due to few side effects and highly effective cell killing;however,the low bioavailability of traditional photosensitizers(PSs)and their dependence on oxygen severely limits their application.Aggregation-induced emission(AIE)PSs can dramatically facilitate the photosensitization effect,which can have positive impacts on tumor PDT.To-date,most AIE PSs lack tumor targeting capability and possess poor cell delivery,resulting in their use in large quantities that are harmful to healthy tissues.In this study,a series of AIE PSs based on pyridinium-substituted triphenylamine salts(TTPAs 1-6)with different alkyl chain lengths are synthesized.Results reveal that TTPAs 1-6 promote the generation of type I and II ROS,including·OH and 1O_(2).In particular,the membrane permeability and targeting of TTPAs 4-6 bearing C8-C10 side-chains are higher than TTPAs 1-3 bearing shorter alkyl chains.Additionally,they can assemble with albumin,thereby forming nanoparticles(TTPA 4-6 NPs)in situ in blood,which significantly facilitates mitochondrial-targeting and strong ROS generation ability.Moreover,the TTPA 4-6 NPs are pH-responsive,allowing for increased accumulation or endocytosis of the tumor and enhancing the imaging or therapeutic effect.Therefore,the in vivo distributions of TTPA 4-6 NPs are visually enriched in tumor sites and exhibited excellent PDT efficacy.This work demonstrates a novel strategy for AIE PDT and has the potential to play an essential role in clinical applications using nano-delivery systems.
基金supported by the National Natural Science Foundation of China(Grant Numbers 62205025 and 61835015)Beijing Natural Science Foundation(7222309)+2 种基金the Open Project Program of Wuhan National Laboratory for Optoelectronics(2020WNLOKF025)CAMS Innovation Fund for Medical Sciences(CIFMS)(2019-I2M-5-061)Beijing Institute of Technology Research Fund Program for Young Scholars(XSQD-202123001).
文摘Vascular-targeted photodynamic therapy(V-PDT)is an effective treatment for port wine stains(PWS).However,repeated treatment is usually needed to achieve optimal treatment outcomes,possibly due to the limited treatment light penetration depth in the PWS lesion.The optical clearing technique can increase light penetration in depth by reducing light scattering.This study aimed to investigate the V-PDT in combination with an optical clearing agent(OCA)for the therapeutic enhancement of V-PDT in the rodent skinfold window chamber model.Vascular responses were closely monitored with laser speckle contrast imaging(LSCI),optical coherence tomography angiography,and stereo microscope before,during,and after the treatment.We further quantitatively demonstrated the effects of V-PDT in combination with OCA on the blood flow and blood vessel size of skin microvasculature.The combination of OCA and V-PDT resulted in significant vascular damage,including vasoconstriction and the reduction of blood flow.Our results indicate the promising potential of OCA for enhancing V-PDT for treating vascular-related diseases,including PWS.
基金supported by the National Natural Science Foundation of China(No.62071413)the Hebei Natural Science Foundation of China(Nos.C2019203556 and F2020203056)the Natural Science Foundation of Hebei Province for Innovation Group Project,China(No.C2022203003)。
文摘Photodynamic therapy(PDT)has significant advantages in treating primary tumors.However,the hypoxic tumor microenvironment hinders the generation of sufficient reactive oxygen species during PDT to effectively kill tumor cells,further greatly limiting the applications of PDT in cancer treatment.Herein,we reported a temperature/pH dual controlled drug delivery system LPC@PCN@PDA/Fe^(3+)-AS1411 based on a porous coordination network(PCN(Mn))coated with polydopamine(PDA)and modified with an aptamer AS1411.β-lapachone(LPC)was loaded inside the PCN(Mn)framework,and Fe^(3+)was attached to the surface of the PDA coating.These nanoparticles(NPs)exhibited excellent multimodal cancer therapeutic effects and tumor targeting ability with their photo-and chemodynamic properties.The therapeutic effect can be enhanced by the production of sufficient oxygen by the internal hydrogen peroxide,which improves the photodynamic effect of the photosensitizer PCN(Mn)and the chemotherapy effect ofβ-lapachone.Notably,the conversion of Fe^(2+)to Fe^(3+)in the tumor cells exerts the Fenton effect,which generates hydroxyl radicals that cause lipid peroxidation in tumor cells and induce apoptosis,thus enhancing the chemodynamic therapeutic effect.In vitro and in vivo experiments revealed that the NPs demonstrated specific tumor targeting,excellent inhibition effect on tumor growth,and biocompatibility.Together,our findings can help develop an intelligent multifunctional therapeutic nanoplatform for cancer therapy.
基金the financial support from the National Natural Science Foundation of China (No. 82372019, 82022034, 82173327)Jiangsu Province Natural Science Foundation of China (BK20200032)Double First Class Foundation of China Pharmaceutical University(CPUQNJC22_03)
文摘Photothermal and photodynamic therapies(PTT/PDT)hold promise for localized tumor treatment,yet their full potential is hampered by limitations such as the hypoxic tumor microenvironment and inadequate systemic immune activation.Addressing these challenges,we present a novel near-infrared(NIR)-triggered RNS nanoreactor(PBNO-Ce6)to amplify the photodynamic and photothermal therapy efficacy against triple-negative breast cancer(TNBC).The designed PBNOCe6 combines sodium nitroprusside-doped Prussian Blue nanoparticles with Chlorin e6 to enable on-site RNS production through NIR-induced concurrent NO release and ROS generation.This not only enhances tumor cell eradication but also potentiates local and systemic antitumor immune responses,protecting mice from tumor rechallenge.Our in vivo evaluations revealed that treatment with PBNO-Ce6 leads to a remarkable 2.7-fold increase in cytotoxic T lymphocytes and a 62%decrease in regulatory T cells in comparison to the control PB-Ce6(Prussian Blue nanoparticles loaded with Chlorin e6),marking a substantial improvement over traditional PTT/PDT.As such,the PBNO-Ce6 nanoreactor represents a transformative approach for improving outcomes in TNBC and potentially other malignancies affected by similar barriers.
基金supported by the National Natural Science Foundation of China(Grant Nos.61935004,62227823 and 61805040)the Beijing Institute of Technology Research Fund Program for Young Scholars(XSQD-202123001).
文摘Photodynamic therapy(PDT)has been increasingly used in the clinical treatment of neoplastic,inflammatory and infectious skin diseases.However,the generation of reactive oxygen species(ROS)may induce undesired side effects in normal tissue surrounding the treatment lesion,which is a big challenge for the clinical application of PDT.To date,(–)-Epigallocatechin gallate(EGCG)has been widely proposed as an antiangiogenic and antitumor agent for the protection of normal tissue from ROS-mediated oxidative damage.This study evaluates the regulation ability of EGCG for photodynamic damage of blood vessels during hematoporphyrin monomethyl ether(Hemoporfin)-mediated PDT.The quenching rate constants of EGCG for the triplet-state Hemoporfin and photosensitized 1O2 generation are determined to be 6.8×10^(8)M^(−1)S^(−1),respectively.The vasoconstriction of blood vessels in the protected region treated with EGCG hydrogel after PDT is lower than that of the control region treated with pure hydrogel,suggesting an efficiently reduced photodamage of Hemoporfin for blood vessels treated with EGCG.This study indicates that EGCG is an efficient quencher for triplet-state Hemoporfin and 1O2,and EGCG could be potentially used to reduce the undesired photodamage of normal tissue in clinical PDT.
基金supported by the National Key Research and Development Program of China[2018YFB0407200]National Natural Science Foundation of China[61975239]Medical and Health Technology Innovation Project of the Chinese Academy of Medical Sciences[2019-I2M-5061].
文摘Photodynamic therapy(PDT)has limited effects in treating metastatic breast cancer.Immune checkpoints can deplete the function of immune cells;however,the expression of immune checkpoints after PDT is unclear.This study investigates whether the limited e±cacy of PDT is due to upregulated immune checkpoints and tries to combine the PDT and immune checkpoint inhibitor to observe the e±cacy.A metastatic breast cancer model was treated by PDT mediated by hematoporphyrin derivatives(HpD-PDT).The anti-tumor effect of HpD-PDT was observed,as well as CD4þT,CD8þT and calreticulin(CRT)by immunohistochemistry and immunofluorescence.Immune checkpoints on T cells were analyzed byflow cytometry after HpD-PDT.When combining PDT with immune checkpoint inhibitors,the antitumor effect and immune effect were assessed.For HpD-PDT at 100 mW/cm2 and 40,60 and 80 J/cm2,primary tumors were suppressed and CD4þT,CD8þT and CRT were elevated;however,distant tumors couldn't be inhibited and survival could not be prolonged.Immune checkpoints on T cells,especially PD1 and LAG-3 after HpD-PDT,were upregulated,which may explain the reason for the limited HpD-PDT effect.After PDT combined with anti-PD1 antibody,but not with anti-LAG-3 antibody,both the primary and distant tumors were signi-cantly inhibited and the survival time was prolonged,additionally,CD4þT,CD8þT,IFN-þCD4þT and TNF-þCD4þT cells were signi-cantly increased compared with HpD-PDT.HpD-PDT could not combat metastatic breast cancer.PD1 and LAG-3 were upregulated after HpD-PDT.Anti-PD1 antibody,but not anti-LAG-3 antibody,could augment the antitumor effect of HpD-PDT for treating metastatic breast cancer.
基金This project was supported by National Natural Science Foundation of China(Grant No.82271629 and 82301790)Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang(Grant No.2023R01002)Ningbo Natural Science Foundation(Grant No.2023J054).
文摘The cyanine dyes represented by IR780 can achieve synergistic photodynamic therapy(PDT)and photothermal therapy(PTT)under the stimulation of near-infrared(NIR)light(commonly 808 nm).Unfortunately,the stability of NIR-excited cyanine dyes is not satisfactory.These cyanine dyes can be attacked by self-generated reactive oxygen species(ROS)during PDT processes,resulting in structural damage and rapid degradation,which is fatal for phototherapy.To address this issue,a novel non-cyanine dye(IR890)was elaborately designed and synthesized by our team.The maximum absorption wavelength of IR890 was located in the deep NIR region(ca.890 nm),which was beneficial for further improving tissue penetration depth.Importantly,IR890 exhibited good stability when continuously illuminated by deep NIR light.To improve the hydrophilicity and biocompatibility,the hydrophobic IR890 dye was grafted onto the side chain of hydrophilic polymer(POEGMA-b-PGMA-g-C≡CH)via click chemistry.Then,the synthesized POEGMA-b-PGMA-g-IR890 amphiphilic polymerwas utilized to prepare P-IR890 nano-photosensitizer via self-assembly method.Under irradiation with deep NIR light(850 nm,0.5 W/cm^(2),10 min),the dye degradation rate of P-IR890 was less than 5%.However,IR780 was almost completely degraded with the same light output power density and irradiation duration.In addition,P-IR890 could stably generate a large number of ROS and heat at the same time.It was rarely reported that the stable synergistic combination therapy of PDT and PTT could be efficiently performed by a single photosensitizer via irradiation with deep NIR light.P-IR890 exhibited favorable anti-tumor outcomes through apoptosis pathway.Therefore,the P-IR890 could provide a new insight into the design of photosensitizers and new opportunities for synergistic combination therapy of PDT and PTT.
基金supported by the Applied Basic Research Project of Shanxi Province(201901D211470)Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province(201802093)The National Natural Science Foundation of China(No.81773765).
文摘Photodynamic therapy(PDT)is a promising cancer treatment.This study investigated the antitumor effects and mechanisms of a novel photosensitizer meso-5-[ρ-diethylene triamine pentaacetic acid-aminophenyl]−10,15,20-triphenyl-porphyrin(DTP)mediated PDT(DTP-PDT).Cell viability,reactive oxygen species(ROS),and apoptosis were measured with a Cell Counting Kit-8 assay,DCFH-DA fluorescent probe,and Hoechst staining,respectively.Cell apoptosis-and autophagy-related proteins were examined using western blotting.RNA sequencing was used to screen differentially expressed mRNAs(DERs),and bioinformatic analysis was performed to identify the major biological events after DTP-PDT.Our results show that DTP-PDT inhibited cell growth and induced ROS generation in MCF-7 and SGC7901 cells.The ROS scavenger N-acetyl-L-cysteine(NAC)and the P38 MAPK inhibitor SB203580 alleviated DTP-PDT-induced cytotoxicity.DTP-PDT induced cell apoptosis together with upregulated Bax and downregulated Bcl-2,which could also be inhibited by NAC or SB203580.The level of LC3B-Ⅱ,a marker of autophagy,was increased by DTP-PDT.A total of 3496 DERs were obtained after DTP-PDT.Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses indicated that DERs included those involved in cytosolic ribosomes,the nuclear lumen,protein binding,cell cycle,protein targeting to the endoplasmic reticulum,and ribosomal DNA replication.Disease Ontology and Reactome enrichment analyses indicated that DERs were associated with a variety of cancers and cell cycle checkpoints.Protein-protein interaction results demonstrated that cdk1 and rps27a ranked in the top 10 interacting genes.Therefore,DTP-PDT could inhibit cell growth and induce cell apoptosis and autophagy,partly through ROS and the P38 MAPK signaling pathway.Genes associated with the cell cycle,ribosomes,DNA replication,and protein binding may be the key changes in DTP-PDT-mediated cytotoxicity.
文摘Osteosarcoma is a malignant tumor originating from bone tissue that progresses rapidly and has a poor patient prognosis.Immunotherapy has shown great potential in the treatment of osteosarcoma.However,the immunosuppressive microenvironment severely limits the efficacy of osteosarcoma treatment.The dual pH-sensitive nanocarrier has emerged as an effective antitumor drug delivery system that can selectively release drugs into the acidic tumor microenvironment.Here,we prepared a dual pH-sensitive nanocarrier,loaded with the photosensitizer Chlorin e6(Ce6)and CD47 monoclonal antibodies(aCD47),to deliver synergistic photodynamic and immunotherapy of osteosarcoma.On laser irradiation,Ce6 can generate reactive oxygen species(ROS)to kill cancer cells directly and induces immunogenic tumor cell death(ICD),which further facilitates the dendritic cell maturation induced by blockade of CD47 by aCD47.Moreover,both calreticulin released during ICD and CD47 blockade can accelerate phagocytosis of tumor cells by macrophages,promote antigen presentation,and eventually induce T lymphocyte-mediated antitumor immunity.Overall,the dual pH-sensitive nanodrug loaded with Ce6 and aCD47 showed excellent immune-activating and anti-tumor effects in osteosarcoma,which may lay the theoretical foundation for a novel combination model of osteosarcoma treatment.
基金This work was financially supported by grants from the National Research and Development Program of China(2020YFA0211200,2020YFA0710700)the National Science Foundation of China(82172757)+2 种基金the Program for HUST Academic Frontier Youth Team(2018QYTD01)the HCP Program for HUSTthe Opening fund of Hubei Key Laboratory of Bioinorganic Chemistry&Materia Medica(No.BCMM202302).
文摘Photodynamic therapy(PDT)can produce high levels of reactive oxygen species(ROS)to kill tumor cells and induce antitumor immunity.However,intracellular antioxidant systems,including glutathione(GSH)system and thioredoxin(Trx)system,limit the accumulation of ROS,resulting in compromised PDT and insufficient immune stimulation.Herein,we designed a nanomedicine PtHPs co-loading photosensitizer pyropheophorbide a(PPa)and cisplatin prodrug Pt-COOH(IV)(Pt(IV))based on hydroxyethyl starch(HES)to inhibit both GSH and Trx antioxidant systems and achieve potent PDT as well as antitumor immune responses.Specifically,HES-PPa and HES-Pt were obtained by coupling HES with PPa and Pt(IV),and assembled into nanoparticle PtHPs by emulsification method to achieve the purpose of co-delivery of PPa and Pt(IV).PtHPs improved PPa photostability while retaining PPa photodynamic properties.In vitro experiments showed that PtHPs reduced GSH,inhibited Trx system and had better cell-killing effect and ROS generation ability.Subcutaneous tumormodels showed that PtHPs had good safety and tumor inhibition effect.Bilateral tumor models suggested that PtHPs promoted the release of damage-associated molecular patterns and the maturation of dendritic cells,induced T cell-mediated immune responses,and thus suppressed the growth of both primary and distal tumors.This study reports a novel platinum-based nanomedicine and provides a newstrategy for boosting PDT therapy-mediated antitumor immunity by overcoming intrinsic antioxidant systems.
基金support from the National Natural Science Foundation of China(22177014,22231001 and 21971023)the Fundamental Research Funds for the Central Universities and Key Laboratory of Photochemical Conversion and Optoelectronic Materials,TIPC,CAS.
文摘Glutathione(GSH)-activated prodrugs are promising for overcoming the limitations of conventional anti-tumor drugs.However,current GSH-responsive disulfide groups exhibit unregulated reactivity,making it impossible to precisely control the drug release rate.We herein report a series of GSH-responsive prodrugs with a“three-in-one”molecular design by integrating a fluorescence report unit,stimuliresponsive unit and chemodrug into one scaffold with tunable aromatic nucleophilic substitution(SNAr)reactivity.The drug release rate of these prodrugs is tailored by modification of substituent groups with different electron-withdrawing or-donating abilities on the BODIPY core.Furthermore,the prodrugs self-assemble in water to form nanoparticles that serve as photosensitizers to produce reactive oxygen species upon irradiation for photodynamic therapy(PDT).The PDT process also increases the concentration of GSH in cells,further promoting the release of drugs for chemotherapy.This strategy provides a powerful platform for sequential photodynamic and chemotherapy with tunable drug release rates and synergistic therapeutic effects.
文摘An “Eigenstate Adjustment Autonomy” Model, permeated by the Nanosystem’s Fermi Level Pinning along with its rigid Conduction Band Discontinuity, compatible with pertinent Experimental Measurements, is being employed for studying how the Functional Eigenstate of the Two-Dimensional Electron Gas (2DEG) dwelling within the Quantum Well of a typical Semiconductor Nanoheterointerface evolves versus (cryptographically) selectable consecutive Cumulative Photon Dose values. Thus, it is ultimately discussed that the experimentally observed (after a Critical Cumulative Photon Dose) Phenomenon of 2DEG Negative Differential Mobility allows for the Nanosystem to exhibit an Effective Qubit Specific Functionality potentially conducive to (Telecommunication) Quantum Information Registering.
文摘Objective: To evaluate the clinical effectiveness and adverse effects of photodynamic therapy (PDT) for the upper gastrointestinal tract cancers. Methods: 56 patients with upper gastrointestinal cancers in different clinical stages were treated with PDT. Diode laser (630 nm) was used as the light source and the parameters were as follows: power density 200 to 400 mW/cm, energy density 100 to 300 J/cm. PHOTOFRIN was used as photosensitizer, which was given in a dose of 2 mg/kg intravenously 12-24 h before irradiation. Results: Evaluation of the 56 patients' therapeutic effectiveness showed that 6 patients (10.7%) had a complete response (CR), 33 patients (58.9%) partial response (PR), 12 patients (21.4%) mild response (MR), and 5 patients (8.9%) no response (NR). The total response rate (CR+PR) was 69.6%. No patients had severe adverse effects in this group. Conclusion: PDT is an effective and safe palliative modality for upper gastrointestinal tract cancers.
文摘AIM:To compare the efficacy of low-fluence photodynamic therapy(PDT) combinations in the treatment of age-related macular degeneration(AMD).· METHODS:Forty-five previously untreated eyes of 45 patients with exudative AMD whose best-corrected visual acuity(BCVA) was ≥0.3(Snellen) were enrolled.15 patients in Group I underwent low-fluence PDT(25J/cm2-300mW/cm2-83sec) and intravitreal pegaptanib combination,15 patients in Group II underwent PDT(50J/cm2-600mW/cm2-83sec) and intravitreal pegaptanib combination while,15 patients in Group III underwent intravitreal pegaptanib monotherapy.Complete ophthalmologic examinations were performed in pre and post treatment visits,and the results were statistically analised.A clinical activity score(CAS) was calculated by using changes in lesion size,amount of hemorrhage,staining pattern in FA and OCT measurement of intra/subretinal fluid.≤3 logMAR lines of decrease in BCVA and decrease in CAS were considered as successful treatment.· RESULTS:The mean age of 19 female(42.2%) and 26 male(57.8%) patients was(72.82±8.02) years.Mean follow-up was(13.93±5.87) months.Lesion type was occult in 28 eyes(62.2%).Treatment success rates according to BCVA assessments were 86.7%,80%,60% and mean BCVA decrease were 0.3,1.0,2.2 logMAR lines in Group I,II and III,respectively(P >0.05).According to the changes in central macular thickness and CAS,no difference was found among the study groups(P =0.850 and P =0.811,respectively).Patients treated with combination regimens had lower intravitreal injection frequencies(P =0.015).· CONCLUSION:Combination regimen with intravitreal pegaptanib and low-fluence PDT seems to be safe and effective in stabilizing the clinical activity and BCVA in exudative AMD.·
文摘To perform a systematic review and meta-analysis on clinical outcomes of photodynamic therapy (PDT) in non-resectable cholangiocarcinoma.METHODSIncluded studies compared outcomes with photodynamic therapy and biliary stenting (PDT group) vs biliary stenting only (BS group) in palliation of non-resectable cholangiocarcinoma. Articles were searched in MEDLINE, PubMed, and EMBASE. Pooled proportions were calculated using fixed and random effects model. Heterogeneity among studies was assessed using the I<sup>2</sup> statistic.RESULTSTen studies (n = 402) that met inclusion criteria were included in this analysis. The P for χ<sup>2</sup> heterogeneity for all the pooled accuracy estimates was > 0.10. Pooled odds ratio for successful biliary drainage (decrease in bilirubin level > 50% within 7days after stenting) in PDT vs BS group was 4.39 (95%CI: 2.35-8.19). Survival period in PDT and BS groups were 413.04 d (95%CI: 349.54-476.54) and 183.41 (95%CI: 136.81-230.02) respectively. The change in Karnofsky performance scores after intervention in PDT and BS groups were +6.99 (95%CI: 4.15-9.82) and -3.93 (95%CI: -8.63-0.77) respectively. Odds ratio for post-intervention cholangitis in PDT vs BS group was 0.57 (95%CI: 0.35-0.94). In PDT group, 10.51% (95%CI: 6.94-14.72) had photosensitivity reactions that were self-limiting. Subgroup analysis of prospective studies showed similar results, except the incidence of cholangitis was comparable in both groups.CONCLUSIONIn palliation of unresectable cholangiocarcinoma, PDT seems to be significantly superior to BS alone. PDT should be used as an adjunct to biliary stenting in these patients.
文摘AIM:To evaluate the effect of photodynamic therapy (PDT) on metal stent patency in patients with unresectable hilar cholangiocarcinoma (CC). METHODS:This was a retrospective analysis of patients with hilar CC referred to our institution from December, 1999 to January, 2011. Out of 232 patients, thirty-three patients with unresectable hilar CC were treated. Eighteen patients in the PDT group were treated with uncovered metal stents after one session of PDT. Fifteen patients in the control group were treated with metal stents alone. Porfimer sodium (2 mg/kg) was administered intravenously to PDT patients. Fortyeight hours later, PDT was administered using a diffusing fiber that was advanced across the tumor by either endoscopic retrograde cholangiopancreatography or percutaneous cholangiography. After performance of PDT, uncovered metal stents were inserted to ensure adequate decompression and bile drainage. Patient survival rates and cumulative stent patency were calculated using Kaplan-Meier analysis with the log-rank test. RESULTS:The PDT and control patients were comparable with respect to age, gender, health status, pretreatment bilirubin, and hilar CC stage. When compared to control, the PDT group was associated with significantly prolonged stent patency (median 244 ± 66 and 177 ± 45 d, respectively, P = 0.002) and longer patient survival (median 356 ± 213 and 230 ± 73 d, respectively, P = 0.006). Early complication rates were similar between the groups (PDT group 17%, control group 13%) and all patients were treated conservatively. Stent malfunctions occurred in 14 PDT patients (78%) and 12 control patients (80%). Of these 26 patients, twenty-two were treated endoscopically and four were treated with external drainage. CONCLUSION:Metal stenting after one session of PDT may be safe with acceptable complication rates. The PDT group was associated with a significantly longer stent patency than the control group in patients with unresectable hilar CC.
文摘AIM: To investigate the anti-tumor effects of combined cytotoxic drug (gemcitabine) and photodynamic therapy (PDT) on human pancreatic cancer xenograft in nude mice.METHODS: Human pancreatic cancer cell line SW1990 was used in the investigation of the in vivo effect of combined gemcitabine and PDT on human pancreatic cancer xenograft in mice. Sixty mice were randomly allocated into a control group (without treatment), photosensitizer treatment group (2 mg/kg photosan, without illumination), chemotherapy group (50 mg/kg gemcitabine i.p.), PDT group (2 mg/kg photosan + laser irradiation) and combined treatment group (photosan + chemotherapy), with 12 mice in each group. Tumor size was measured twice every week. Anti-tumor activity in different groups was evaluated by tumor growth inhibition (TGI)RESULTS: No significant anti-tumor effect was observed either in photosensitizer treatment group or in chemotherapy group. PDT led to necrosis in cancer lesions and significantly reduced tumor volume compared with photosensitizer on day 6 and at the following time points after initialization of therapy (0.24 ± 0.15-0.49 ± 0.08 vs 0.43 ± 0.18-1.25± 0.09, P 〈 0.05). PDT significantly reduced tumor volume in combined treatment group compared with photosensitizer treatment group (0.12 ± 0.07-0.28 ± 0.22 vs 0.39 ± 0.15-2.20 ± 0.12, P 〈 0.05), small dose chemotherapy group (0.12 ± 0.07-0.28 ± 0.12 vs 0.32 ± 0.14-1.16 ± 0.08, P 〈 0.05) and control group (0.12 ± 0.07-0.28 ± 0.12 vs 0.43 ± 0.18-1.25 ± 0.09, P 〈 0.05). TGI was higher in the combined treatment group (82.42%) than in the PDT group (58.18%).CONCLUSION: PDT has a significant anti-tumor effect, which is maintained for a short time and can be significantly enhanced by small doses of gemcitabine.