Photoelectrochemical NO_(3)^(-)reduction(PEC NITRR)not only provides a promising solution for promoting the global nitrogen cycle,but also converts NO_(3)^(-)to the important chemicals(NH_(3)).However,it is still a gr...Photoelectrochemical NO_(3)^(-)reduction(PEC NITRR)not only provides a promising solution for promoting the global nitrogen cycle,but also converts NO_(3)^(-)to the important chemicals(NH_(3)).However,it is still a great challenge to prepare catalysts with excellent NO_(3)^(-)adsorption/activation capacity to achieve high NITRR.Herein,we designed a novel Fe^(2+)~Cu^(2+)Fe^(3+)LDH/BiVO_(4)(FCF-LDH/BVO)catalyst with synergistic effect of chemical adsorption and physical enrichment.Fe^(2+)in FCF-LDH/BVO provides the rich Lewis acid sites for the adsorption of NO_(3)^(-),and the appropriate layer spacing of FCF-LDH further promotes the physical enrichment of NO_(3)^(-)in its interior,thus realizing the effective contact between NO_(3)^(-)and active sites(Fe^(2+)).FCF-LDH/BVO showed excellent NH_(3)production performance(FE_(NH_(3))=66.1%,r_(NH_(3))=13.8μg h^(-1)cm^(-2))and selectivity(FE_(NO_(2)^(-))=2.5%,r_(NO_(2)^(-))=4.9μg h^(-1)cm^(-2))in 0.5 mol L^(-1)Na_(2)SO_(4)electrolyte.In addition,FCF-LDH/BVO maintains the desirable PEC stability for six cycle experiments,showing great potential for practical application.The^(14)NO_(3)^(-)and^(15)NO_(3)^(-)isotope test provides strong evidence for further verification of the origin of N in the generated NH_(3).This LDH catalyst has a great potential in PEC removal of NO_(3)^(-)from groundwater.展开更多
Photoelectrochemical reduction of CO_(2)to produce CO with metal-organic frameworks(MOFs)is recognized as a desirable technology to mitigate CO_(2)emission and generate sustainable energy.To achieve highly efficient e...Photoelectrochemical reduction of CO_(2)to produce CO with metal-organic frameworks(MOFs)is recognized as a desirable technology to mitigate CO_(2)emission and generate sustainable energy.To achieve highly efficient electrocatalyst,it is essential to design a new material interface and uncover new reaction mechanisms or kinetics.Herein,we developed two metal-organic Cu-MOF and Bi-MOF layers using benzene tricarboxylic acid(H_(3)BTC)ligands on CuBi_(2)O_(4) photocathodes.Both MOF layers drastically improved the photoelectrochemical stability by suppressing the photo-corrosion through conformal surface passivation.The Cu-MOF modified CuBi_(2)O_(4) showed more significant charge separation and transfer efficiencies than the Bi-MOF modified control.Based on the transient photocurrent curves under the applied potential of 0.6 V vs.RHE,the rate-law analysis showed the CO_(2)photoreduction took place through a first-order reaction.Further,the photoelectrochemical impedance spectra(PEIS)revealed this reaction order,representing an“operando”analysis.Moreover,the reaction rate constant on Cu-MOF modified sample was higher than that on Bi-MOF modified one and bare CuBi_(2)O_(4).Combined with the density functional theory calculation,the surface absorption of CO_(2)and CO molecules and the higher energy barrier for*COOH intermediates could significantly determine the first order reaction.展开更多
Photoelectrochemical water splitting can convert solar energy into clean hydrogen energy for storage.It is desirable to explore non-precious electrocatalysts for practical applications of a photoelectrode in a large s...Photoelectrochemical water splitting can convert solar energy into clean hydrogen energy for storage.It is desirable to explore non-precious electrocatalysts for practical applications of a photoelectrode in a large scale.Here,we developed a facile spin-coating and in-situ photoelectrochemical reduction method to prepare a dispersed Cu electrocatalyst on a Si photocathode,which improves the performance remarkably.We find that thiourea in the precursor solution for spin-coating plays an important role in obtaining dispersed Cu particles on the surface of a Si photoelectrode.With thiourea in the precursor,the Cu/Si photocathode shows higher performance than the one without thiourea.Moreover,the Cu/Si photocathode also indicates good stability after 16 h illumination.展开更多
Powered by an inexhaustible supply of solar energy,photoelectrochemical(PEC)nitrogen reduction reaction(NRR)provides an ideal solution for the synthesis of green ammonia(NH_(3)).Although great efforts have been made i...Powered by an inexhaustible supply of solar energy,photoelectrochemical(PEC)nitrogen reduction reaction(NRR)provides an ideal solution for the synthesis of green ammonia(NH_(3)).Although great efforts have been made in the past decades,there are still significant challenges in increasing the NH_(3) yields of the PEC-NRR devices.In addition to the issues of low activity and selectivity similar to electrochemical NRR,the progress of PEC-NRR is also impeded by the limited increase in NH_(3) yields as the electrode is enlarged.Here,we propose an editable electrode design strategy that parallels unit photo-electrodes to achieve a linear increase in NH_(3) yields with electrode active area.We demonstrate that the editable electrode design strategy minimizes the electrode charge transfer resistance,allowing more photo-generated carriers to reach the electrode surface and promote the catalytic reaction.We believe that this editable electrode design strategy provides an avenue to achieve sustainable PEC NH_(3) production.展开更多
Developing high activity and low-cost materials to produce hydrogen by the sustainable way of photoelectrochemical is key to social development.The abundance and inexpensive Cu_(2)O has been received increasing resear...Developing high activity and low-cost materials to produce hydrogen by the sustainable way of photoelectrochemical is key to social development.The abundance and inexpensive Cu_(2)O has been received increasing research as its suitable energy level for photocatalytic water reduction.However,the fast charge recombination rate and the sluggish catalytic kinetics are the huge challenges facing the Cu_(2)O photoreduction.Here,the highly reactive Cu_(2)O@C-MoS_(2)photocathode is constructed by depositing dual-cocatalysts of the carbon layer and MoS_(2)nanosheets on Cu_(2)O nanowires to realize efficient water reduction.An impressive carrier concentration of 6.59×10^(23)cm^(-3)is received,which is 2.78 times of the bare Cu_(2)O,resulting in remarkable enhancement in photocurrent density of 3.34 times for the Cu_(2)O@CMoS_(2)photocathode.Moreover,the applied bias photon-to-current conversion efficiency of the bare Cu_(2)O enhanced 4.5 times from 0.16%to 0.72%in the Cu_(2)O@C-MoS_(2)photocathode.The analysis shows that the Cu_(2)O as light absorber,the carbon layer as electron transfer promoter,and MoS_(2)nanosheets as catalytic sites,thus facilitating chrage separation and enhancing catalytic kinetics.This system paves a feasible strategy for designing other photoelectrodes to realize efficient charge separation and high catalytic activity.展开更多
基金National Natural Science Foundation of China(22075112)Jiangsu Province and Education Ministry Co-Sponsored Synergistic Innovation Center of Modern Agricultural Equipment(XTCX2027)Jiangsu Province Innovation Support Program International Science and Technology Cooperation Project(BZ2022045)。
文摘Photoelectrochemical NO_(3)^(-)reduction(PEC NITRR)not only provides a promising solution for promoting the global nitrogen cycle,but also converts NO_(3)^(-)to the important chemicals(NH_(3)).However,it is still a great challenge to prepare catalysts with excellent NO_(3)^(-)adsorption/activation capacity to achieve high NITRR.Herein,we designed a novel Fe^(2+)~Cu^(2+)Fe^(3+)LDH/BiVO_(4)(FCF-LDH/BVO)catalyst with synergistic effect of chemical adsorption and physical enrichment.Fe^(2+)in FCF-LDH/BVO provides the rich Lewis acid sites for the adsorption of NO_(3)^(-),and the appropriate layer spacing of FCF-LDH further promotes the physical enrichment of NO_(3)^(-)in its interior,thus realizing the effective contact between NO_(3)^(-)and active sites(Fe^(2+)).FCF-LDH/BVO showed excellent NH_(3)production performance(FE_(NH_(3))=66.1%,r_(NH_(3))=13.8μg h^(-1)cm^(-2))and selectivity(FE_(NO_(2)^(-))=2.5%,r_(NO_(2)^(-))=4.9μg h^(-1)cm^(-2))in 0.5 mol L^(-1)Na_(2)SO_(4)electrolyte.In addition,FCF-LDH/BVO maintains the desirable PEC stability for six cycle experiments,showing great potential for practical application.The^(14)NO_(3)^(-)and^(15)NO_(3)^(-)isotope test provides strong evidence for further verification of the origin of N in the generated NH_(3).This LDH catalyst has a great potential in PEC removal of NO_(3)^(-)from groundwater.
基金supported by the National Natural Science Foundation of China(Project.U1604121)and Startup funding from Suzhou University of Science and Technology.
文摘Photoelectrochemical reduction of CO_(2)to produce CO with metal-organic frameworks(MOFs)is recognized as a desirable technology to mitigate CO_(2)emission and generate sustainable energy.To achieve highly efficient electrocatalyst,it is essential to design a new material interface and uncover new reaction mechanisms or kinetics.Herein,we developed two metal-organic Cu-MOF and Bi-MOF layers using benzene tricarboxylic acid(H_(3)BTC)ligands on CuBi_(2)O_(4) photocathodes.Both MOF layers drastically improved the photoelectrochemical stability by suppressing the photo-corrosion through conformal surface passivation.The Cu-MOF modified CuBi_(2)O_(4) showed more significant charge separation and transfer efficiencies than the Bi-MOF modified control.Based on the transient photocurrent curves under the applied potential of 0.6 V vs.RHE,the rate-law analysis showed the CO_(2)photoreduction took place through a first-order reaction.Further,the photoelectrochemical impedance spectra(PEIS)revealed this reaction order,representing an“operando”analysis.Moreover,the reaction rate constant on Cu-MOF modified sample was higher than that on Bi-MOF modified one and bare CuBi_(2)O_(4).Combined with the density functional theory calculation,the surface absorption of CO_(2)and CO molecules and the higher energy barrier for*COOH intermediates could significantly determine the first order reaction.
基金supported by the International S&T Cooperation Program of China (2017YFE0120700)the National Natural Science foundation of China (21875105, 61674097)+1 种基金the National Scientific Instrument Develop Major Project of National Natural Science Foundation of China (51627810)the advanced research program of Education Institute of Jiangsu Province (PPZY2015A033)
文摘Photoelectrochemical water splitting can convert solar energy into clean hydrogen energy for storage.It is desirable to explore non-precious electrocatalysts for practical applications of a photoelectrode in a large scale.Here,we developed a facile spin-coating and in-situ photoelectrochemical reduction method to prepare a dispersed Cu electrocatalyst on a Si photocathode,which improves the performance remarkably.We find that thiourea in the precursor solution for spin-coating plays an important role in obtaining dispersed Cu particles on the surface of a Si photoelectrode.With thiourea in the precursor,the Cu/Si photocathode shows higher performance than the one without thiourea.Moreover,the Cu/Si photocathode also indicates good stability after 16 h illumination.
基金supported by the National Natural Science Foundation of China(Nos.52071231 and 51722103)the Natural Science Foundation of Tianjin city(No.19JCJQJC61900).
文摘Powered by an inexhaustible supply of solar energy,photoelectrochemical(PEC)nitrogen reduction reaction(NRR)provides an ideal solution for the synthesis of green ammonia(NH_(3)).Although great efforts have been made in the past decades,there are still significant challenges in increasing the NH_(3) yields of the PEC-NRR devices.In addition to the issues of low activity and selectivity similar to electrochemical NRR,the progress of PEC-NRR is also impeded by the limited increase in NH_(3) yields as the electrode is enlarged.Here,we propose an editable electrode design strategy that parallels unit photo-electrodes to achieve a linear increase in NH_(3) yields with electrode active area.We demonstrate that the editable electrode design strategy minimizes the electrode charge transfer resistance,allowing more photo-generated carriers to reach the electrode surface and promote the catalytic reaction.We believe that this editable electrode design strategy provides an avenue to achieve sustainable PEC NH_(3) production.
基金supported financially by the National Natural Science Foundation of China(Nos.51571151,51701139,51671143,and U1601216)the China Postdoctoral Science Foundation(2019M661014)the Tianjin Natural Science Foundation(No.16JCYBJC17600)。
文摘Developing high activity and low-cost materials to produce hydrogen by the sustainable way of photoelectrochemical is key to social development.The abundance and inexpensive Cu_(2)O has been received increasing research as its suitable energy level for photocatalytic water reduction.However,the fast charge recombination rate and the sluggish catalytic kinetics are the huge challenges facing the Cu_(2)O photoreduction.Here,the highly reactive Cu_(2)O@C-MoS_(2)photocathode is constructed by depositing dual-cocatalysts of the carbon layer and MoS_(2)nanosheets on Cu_(2)O nanowires to realize efficient water reduction.An impressive carrier concentration of 6.59×10^(23)cm^(-3)is received,which is 2.78 times of the bare Cu_(2)O,resulting in remarkable enhancement in photocurrent density of 3.34 times for the Cu_(2)O@CMoS_(2)photocathode.Moreover,the applied bias photon-to-current conversion efficiency of the bare Cu_(2)O enhanced 4.5 times from 0.16%to 0.72%in the Cu_(2)O@C-MoS_(2)photocathode.The analysis shows that the Cu_(2)O as light absorber,the carbon layer as electron transfer promoter,and MoS_(2)nanosheets as catalytic sites,thus facilitating chrage separation and enhancing catalytic kinetics.This system paves a feasible strategy for designing other photoelectrodes to realize efficient charge separation and high catalytic activity.