Exploring the realms of physics that extend beyond thermal equilibrium has emerged as a crucial branch of condensed matter physics research.It aims to unravel the intricate processes involving the excitations,interact...Exploring the realms of physics that extend beyond thermal equilibrium has emerged as a crucial branch of condensed matter physics research.It aims to unravel the intricate processes involving the excitations,interactions,and annihilations of quasi-and many-body particles,and ultimately to achieve the manipulation and engineering of exotic non-equilibrium quantum phases on the ultrasmall and ultrafast spatiotemporal scales.Given the inherent complexities arising from many-body dynamics,it therefore seeks a technique that has efficient and diverse detection degrees of freedom to study the underlying physics.By combining high-power femtosecond lasers with real-or momentum-space photoemission electron microscopy(PEEM),imaging excited state phenomena from multiple perspectives,including time,real space,energy,momentum,and spin,can be conveniently achieved,making it a unique technique in studying physics out of equilibrium.In this context,we overview the working principle and technical advances of the PEEM apparatus and the related laser systems,and survey key excited-state phenomena probed through this surface-sensitive methodology,including the ultrafast dynamics of electrons,excitons,plasmons,spins,etc.,in materials ranging from bulk and nano-structured metals and semiconductors to low-dimensional quantum materials.Through this review,one can further envision that time-resolved PEEM will open new avenues for investigating a variety of classical and quantum phenomena in a multidimensional parameter space,offering unprecedented and comprehensive insights into important questions in the field of condensed matter physics.展开更多
The fast developing semiconductor industry is pushing to shrink and speed up transistors. This trend requires us to understand carrier dynamics in semiconductor heterojunctions with both high spatial and temporal reso...The fast developing semiconductor industry is pushing to shrink and speed up transistors. This trend requires us to understand carrier dynamics in semiconductor heterojunctions with both high spatial and temporal resolutions. Recently, we have successfully set up a timeresolved photoemission electron microscopy (TR-PEEM), which integrates the spectroscopic technique to measure electron densities at specific energy levels in space. This instrument provides us an unprecedented access to the evolution of electrons in terms of spatial location, time resolution, and energy, representing a new type of 4D spectro-microscopy. Here in this work, we present measurements of semiconductor performance with a time resolution of 184 fs, electron kinetic energy resolution of 150 meV, and spatial resolution of about 150 nm or better. We obtained time-resolved micro-area photoelectron spectra and energy-resolved TR-PEEM images on the Pb island on Si(111). These experimental results suggest that this instrument has the potential to be a powerful tool for investigating the carrier dynamics in various heterojunctions, which will deepen our understanding of semiconductor properties in the submicron/nanometer spatial scales and ultrafast time scales.展开更多
We report direct nanoscale imaging of ultrafast plasmon in a gold dolmen nanostructure excited with the 7is laser pulses by combining the interferometric time-resolved technology with the three-photon photoemission el...We report direct nanoscale imaging of ultrafast plasmon in a gold dolmen nanostructure excited with the 7is laser pulses by combining the interferometric time-resolved technology with the three-photon photoemission electron microscopy (PEEM). The interferometric time-resolved traces show that the plasmon mode beating pattern appears at the ends of the dimer slabs in the dolmen nanostructure as a result of coherent superposition of multiple localized surface plasmon modes induced by broad bandwidth of the ultrafast laser pulses. The PEEM measurement further discloses that in-phase of the oscillation field of two neighbor defects are surprisingly observed, which is attributed to the plasmon coupling between them. Furthermore, the control of the temporal delay between the pump and probe laser pluses could be utilized for manipulation of the near-field distribution. These findings deepen our understanding of ultrafast plasmon dynamics in a complex nanosystem.展开更多
Clear imaging of surface plasmon polaritons(SPPs)is a prerequisite for SPPs-based applications.In this work,we demonstrate an improvement of near-field imaging of SPPs via directly comparing the visibility of the phot...Clear imaging of surface plasmon polaritons(SPPs)is a prerequisite for SPPs-based applications.In this work,we demonstrate an improvement of near-field imaging of SPPs via directly comparing the visibility of the photoemission electron microscopy(PEEM)image of SPPs under one-and two-color laser excitation(also known as one-or two-color laser PEEM).By measuring the photoelectron yield and the contrast of the interference fringes of SPPs,we demonstrate that in addition to enhancing the photoemission yield,two-color laser PEEM can significantly improve the contrast between bright and dark fringes(nearly 4 times higher than that of one-color laser case).By recording the nonlinear order of the photoelectrons ejected from the bright and dark fringes,respectively,the underlying mechanism for the improved visibility is revealed.In addition,the influences of the polarization direction of 400-nm laser on the PEEM images of the SPPs with different wave vector directions are shown.These results can provide technical support for the development of SPPs-based communication devices and catalysis.展开更多
We report the direct imaging of plasmon on the tips pulses and probing of ultrafast plasmon dynamics by of nano-prisms in a bowtie structure excited by 7 fs laser combining the pump-probe technology with three-photon ...We report the direct imaging of plasmon on the tips pulses and probing of ultrafast plasmon dynamics by of nano-prisms in a bowtie structure excited by 7 fs laser combining the pump-probe technology with three-photon photoemission electron microscopy. Different photoemission patterns induced by the plasmon effect are observed when the bowties are excited by s- and p-polarized femtosecond laser pulses. A series of images of the evolution of local surface plasmon modes on different tips of the bowtie are obtained by the time-resolved three-photon photoemission electron microscopy, and the result discloses that plasmon excitation is dominated by the interfer- ence of the pump and probe pulses within the first 13 fs of the delay time, and thereafter the individual plasmon starts to oscillate on its own characteristic resonant frequencies.展开更多
Localized surface plasmon resonance(LSPR)can be supported by metallic nanoparticles and engineered nanostructures.An understanding of the spatially resolved near-field properties and dynamics of LSPR is important,but ...Localized surface plasmon resonance(LSPR)can be supported by metallic nanoparticles and engineered nanostructures.An understanding of the spatially resolved near-field properties and dynamics of LSPR is important,but remains experimentally challenging.We report experimental studies toward this aim using photoemission electron microscopy(PEEM)with high spatial resolution of sub-10 nm.Various engineered gold nanostructure arrays(such as rods,nanodisk-like particles and dimers)are investigated via PEEM using near-infrared(NIR)femtosecond laser pulses as the excitation source.When the LSPR wavelengths overlap the spectrum of the femtosecond pulses,the LSPR is efficiently excited and promotes multiphoton photoemission,which is correlated with the local intensity of the metallic nanoparticles in the near field.Thus,the local field distribution of the LSPR on different Au nanostructures can be directly explored and discussed using the PEEM images.In addition,the dynamics of the LSPR is studied by combining interferometric time-resolved pump-probe technique and PEEM.Detailed information on the oscillation and dephasing of the LSPR field can be obtained.The results identify PEEM as a powerful tool for accessing the near-field mapping and dynamic properties of plasmonic nanostructures.展开更多
In this paper a negative electron affinity (NEA) multialkali photocathode of (Na<sub>2</sub>KSb-Cs)-O-Cs structure is fabricated by new technology. It is found that its emission stability is much bette...In this paper a negative electron affinity (NEA) multialkali photocathode of (Na<sub>2</sub>KSb-Cs)-O-Cs structure is fabricated by new technology. It is found that its emission stability is much better than that of the NEA GaAs photocathode, but is inferior to that of the conventional Na<sub>2</sub>KSb(Cs). After 70 hour performance in a pumping vacuum system, the emission sensitivity of the NEA (Na<sub>2</sub>KSb-Cs)-O-Cs photocathode drops only by 2.5%. The emission stability is closely related to the states of the activation cesium and oxygen during activation, best results being obtained with cesium ions and excited oxygen. Furthermore, better photoemission sensitivity and emission stability may be obtained if the cathode is illuminated by intense white light during the activation process. The performance of the NEA (Na<sub>2</sub>KSb-Cs)-O-Cs cathode which has not been illuminated by intense white light during activation may be improved by the illumination even during operation intermission.展开更多
The two-dimensional electron gas(2DEG)generated at the LaAlO3/SrTiO3 interface has been in the focus of oxides re-search since its first discovery.Although oxygen vacancies play an important role in the generation of ...The two-dimensional electron gas(2DEG)generated at the LaAlO3/SrTiO3 interface has been in the focus of oxides re-search since its first discovery.Although oxygen vacancies play an important role in the generation of the insulator-to-metal transition of the SrTiO3 bare surface,their contribution at the LaAlO3/SrTiO3 interface remains unclear.In this work,we investigated a LaAlO3/SrTiO3 heterostructure with regional distribution of defect-based localized polar sites at the interface.Using static and time-resolved threshold photoemission electron microscopy,we prove that oxygen vacan-cies are induced near those polar sites,resulting in the increase of carrier density of the 2DEG states.In addition,oxy-gen-related surface states were uncovered,which we attributed to the release of lattice oxygen during the formation of oxygen vacancies.Such effects are mainly found spatially located around the defect sites at the buried interface,while other regions remain unaffected.Our results confirm that the itinerant electrons induced by oxygen vacancies can coex-ist with the charge transfer mechanism in the LaAlO3/SrTiO3 heterostructure,together leading to the formation of the metallic interface.These observations provide fundamental insights into the nature of LaAlO3/SrTiO3 interface based 2DEG and unique perspectives for potential applications.展开更多
The in situ valence band photoemission spectrum (PES) and X-ray absorption spectrum (XAS) at V LⅡ-LⅢ edges of the VO2 thin film, which is prepared by pulsed laser deposition, are measured across the metal–insul...The in situ valence band photoemission spectrum (PES) and X-ray absorption spectrum (XAS) at V LⅡ-LⅢ edges of the VO2 thin film, which is prepared by pulsed laser deposition, are measured across the metal–insulator transition (MIT) temperature (TMIT=67 ℃). The spectra show evidence for changes in the electronic structure depending on temperature. Across the TMIT, pure V 3d characteristic d‖ and O 2p-V 3d hybridization characteristic πpd, σpd bands vary in binding energy position and density of state distributions. The XAS reveals a temperature-dependent reversible energy shift at the V LⅢ-edge. The PES and XAS results imply a synergetic energy position shift of occupied valence bands and unoccupied conduction band states across the phase transition. A joint inspection of the PES and XAS results shows that the MIT is not a one-step process, instead it is a process in which a semiconductor phase appears as an intermediate state. The final metallic phase from insulating state is reached through insulator–semiconductor, semiconductor–metal processes, and vice versa. The conventional MIT at around the TMIT=67 ℃ is actually a semiconductor–insulator transformation point.展开更多
Explicit visualization of different components of surface plasmon polaritons(SPPs) propagating at dielectric/metal interfaces is crucial in offering chances for the detailed design and control of the functionalities o...Explicit visualization of different components of surface plasmon polaritons(SPPs) propagating at dielectric/metal interfaces is crucial in offering chances for the detailed design and control of the functionalities of plasmonic nanodevices in the future. Here, we reported independent imaging of the vertical and horizontal components of SPPs launched from a rectangular trench in the gold film by a 400-nm laser-assisted near-infrared(NIR) femtosecond laser time-resolved photoemission electron microscopy(TR-PEEM). The experiments demonstrate that distinct imaging of different components of SPPs field can be easily achieved by introducing the 400-nm laser. It can circumvent the risk of sample damage and information loss of excited SPPs field that is generally confronted in the usual NIR laser TR-PEEM scheme. The underlying mechanism for realizing distinct imaging of different components of the SPPs field with two-color PEEM is revealed via measuring the double logarithmic dependence of photoemission yield with the 800-nm and 400-nm pulse powers of different polarizations. Moreover, it is found that the PEEM image quality of the vertical and horizontal components of the SPPs field is nearly independent of the 400-nm pulse polarization. These results pave a way for SPPs-based applications and offer a possible solution for drawing a space-time field of SPPs in three dimensions.展开更多
Microscale charge and energy transfer is an ultrafast process that can determine the photoelectrochemical performance of devices.However,nonlinear and nonequilibrium properties hinder our understanding of ultrafast pr...Microscale charge and energy transfer is an ultrafast process that can determine the photoelectrochemical performance of devices.However,nonlinear and nonequilibrium properties hinder our understanding of ultrafast processes;thus,the direct imaging strategy has become an effective means to uncover ultrafast charge and energy transfer processes.Due to diffraction limits of optical imaging,the obtained optical image has insufficient spatial resolution.Therefore,electron beam imaging combined with a pulse laser showing high spatial–temporal resolution has become a popular area of research,and numerous breakthroughs have been achieved in recent years.In this review,we cover three typical ultrafast electron beam imaging techniques,namely,time-resolved photoemission electron microscopy,scanning ultrafast electron microscopy,and ultrafast transmission electron microscopy,in addition to the principles and characteristics of these three techniques.Some outstanding results related to photon–electron interactions,charge carrier transport and relaxation,electron–lattice coupling,and lattice oscillation are also reviewed.In summary,ultrafast electron beam imaging with high spatial–temporal resolution and multidimensional imaging abilities can promote the fundamental under-standing of physics,chemistry,and optics,as well as guide the development of advanced semiconductors and electronics.展开更多
Nanoscale plasmonic systems combine the advantages of optical frequencies with those of small spatial scales, circumventing the limitations of conventional photonic systems by exploiting the strong field confinement o...Nanoscale plasmonic systems combine the advantages of optical frequencies with those of small spatial scales, circumventing the limitations of conventional photonic systems by exploiting the strong field confinement of surface plasmons. As a result of this miniaturization to the nanoscale, electron microscopy techniques are the natural investigative methods of choice. Recent years have seen the development of a number of electron microscopy techniques that combine the use of electrons and photons to enable unprecedented views of surface plasmons in terms of combined spatial, energy, and time resolution. This review aims to provide a comparative survey of these different approaches from an experimental viewpoint by outlining their respective experimental domains of suitability and highlighting their complementary strengths and limitations as applied to plasmonics in particular.展开更多
High harmonic generation(HHG)delivering attosecond pulse duration with photon energy in the extreme ultraviolet spectral range has been demonstrated as a robust table-top coherent light source,allowing for the observa...High harmonic generation(HHG)delivering attosecond pulse duration with photon energy in the extreme ultraviolet spectral range has been demonstrated as a robust table-top coherent light source,allowing for the observation and manipulation of ultrafast process within the shortest time window ever made by humans.The past decade has witnessed the rapid progress of HHG from a variety of solid targets and its application for photoemission spectroscopy in condensed matter.In this article,we review the HHG in solids and the understanding of the underlying physics of HHG,which allows all-optical band structure reconstruction.We also introduce combinations of HHG source and photoemission spectroscopy,such as angular-resolved photoemission spectroscopy and photoemission electron microscopy.With the capacity of exploring a wide momentum space and high temporal resolution,the extension of attosecond science to the field of condensed matter physics will lead to new insights into the fundamental ultrafast dynamics in novel quantum materials.展开更多
A simple hand calculation method based on group theory is proposed to predict the near field maps of finite metallic nanoparticles(MNP)of canonical geometries:prism,cube,hexagon,disk,sphere,etc.corresponding to low or...A simple hand calculation method based on group theory is proposed to predict the near field maps of finite metallic nanoparticles(MNP)of canonical geometries:prism,cube,hexagon,disk,sphere,etc.corresponding to low order localized surface plasmon resonance excitations.In this article,we report the principles of the group theory approach and demonstrate,through several examples,the general character of the group theory method which can be applied to describe the plasmonic response of particles of finite or infinite symmetry point groups.Experimental validation is achieved by collection of high-resolution subwavelength near-field maps by photoemission electron microscopy(PEEM)on a representative set of Au colloidal particles exhibiting either finite(hexagon)or infinite(disk,sphere)symmetry point groups.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.12374223)Shenzhen Science and Technology Program(Grant No.20231117151322001).
文摘Exploring the realms of physics that extend beyond thermal equilibrium has emerged as a crucial branch of condensed matter physics research.It aims to unravel the intricate processes involving the excitations,interactions,and annihilations of quasi-and many-body particles,and ultimately to achieve the manipulation and engineering of exotic non-equilibrium quantum phases on the ultrasmall and ultrafast spatiotemporal scales.Given the inherent complexities arising from many-body dynamics,it therefore seeks a technique that has efficient and diverse detection degrees of freedom to study the underlying physics.By combining high-power femtosecond lasers with real-or momentum-space photoemission electron microscopy(PEEM),imaging excited state phenomena from multiple perspectives,including time,real space,energy,momentum,and spin,can be conveniently achieved,making it a unique technique in studying physics out of equilibrium.In this context,we overview the working principle and technical advances of the PEEM apparatus and the related laser systems,and survey key excited-state phenomena probed through this surface-sensitive methodology,including the ultrafast dynamics of electrons,excitons,plasmons,spins,etc.,in materials ranging from bulk and nano-structured metals and semiconductors to low-dimensional quantum materials.Through this review,one can further envision that time-resolved PEEM will open new avenues for investigating a variety of classical and quantum phenomena in a multidimensional parameter space,offering unprecedented and comprehensive insights into important questions in the field of condensed matter physics.
基金supported by the National Key R&D Program (No.2018YFA0208700 and No.2016YFA0200602)the National Natural Science Foundation of China (No.21688102 and No.21403222)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDB17000000)the Youth Innovation Promotion Association of Chinese Academy of Sciences (No.2017224)
文摘The fast developing semiconductor industry is pushing to shrink and speed up transistors. This trend requires us to understand carrier dynamics in semiconductor heterojunctions with both high spatial and temporal resolutions. Recently, we have successfully set up a timeresolved photoemission electron microscopy (TR-PEEM), which integrates the spectroscopic technique to measure electron densities at specific energy levels in space. This instrument provides us an unprecedented access to the evolution of electrons in terms of spatial location, time resolution, and energy, representing a new type of 4D spectro-microscopy. Here in this work, we present measurements of semiconductor performance with a time resolution of 184 fs, electron kinetic energy resolution of 150 meV, and spatial resolution of about 150 nm or better. We obtained time-resolved micro-area photoelectron spectra and energy-resolved TR-PEEM images on the Pb island on Si(111). These experimental results suggest that this instrument has the potential to be a powerful tool for investigating the carrier dynamics in various heterojunctions, which will deepen our understanding of semiconductor properties in the submicron/nanometer spatial scales and ultrafast time scales.
基金Supported by the National Basic Research Program of China under Grant No 2013CB922404the National Natural Science Foundation of China under Grant Nos 11474040,11474039,61605017 and 61575030the Project of Changchun Science and Technology Bureau under Grant No 14KP007
文摘We report direct nanoscale imaging of ultrafast plasmon in a gold dolmen nanostructure excited with the 7is laser pulses by combining the interferometric time-resolved technology with the three-photon photoemission electron microscopy (PEEM). The interferometric time-resolved traces show that the plasmon mode beating pattern appears at the ends of the dimer slabs in the dolmen nanostructure as a result of coherent superposition of multiple localized surface plasmon modes induced by broad bandwidth of the ultrafast laser pulses. The PEEM measurement further discloses that in-phase of the oscillation field of two neighbor defects are surprisingly observed, which is attributed to the plasmon coupling between them. Furthermore, the control of the temporal delay between the pump and probe laser pluses could be utilized for manipulation of the near-field distribution. These findings deepen our understanding of ultrafast plasmon dynamics in a complex nanosystem.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62005022 and 12004052)the Fund from the Jilin Provincial Key Laboratory of Ultrafast and Extreme Ultraviolet Optics,China(Grant No.YDZJ202102CXJD028)+2 种基金the Fund from the Department of Science and Technology of Jilin Province,China(Grant Nos.20200201268JC and 20200401052GX)the“111”Project of China(Grant No.D17017)the Fund from the Ministry of Education Key Laboratory for Cross-Scale Microand Nano-Manufacturing,Changchun University of Science and Technology,China。
文摘Clear imaging of surface plasmon polaritons(SPPs)is a prerequisite for SPPs-based applications.In this work,we demonstrate an improvement of near-field imaging of SPPs via directly comparing the visibility of the photoemission electron microscopy(PEEM)image of SPPs under one-and two-color laser excitation(also known as one-or two-color laser PEEM).By measuring the photoelectron yield and the contrast of the interference fringes of SPPs,we demonstrate that in addition to enhancing the photoemission yield,two-color laser PEEM can significantly improve the contrast between bright and dark fringes(nearly 4 times higher than that of one-color laser case).By recording the nonlinear order of the photoelectrons ejected from the bright and dark fringes,respectively,the underlying mechanism for the improved visibility is revealed.In addition,the influences of the polarization direction of 400-nm laser on the PEEM images of the SPPs with different wave vector directions are shown.These results can provide technical support for the development of SPPs-based communication devices and catalysis.
基金Supported by the National Basic Research Program of China under Grant No 2013CB922404the National Natural Science Foundation of China under Grant Nos 11474040 11274053,11474039 and 61178022the Project under Grant No 14KP007
文摘We report the direct imaging of plasmon on the tips pulses and probing of ultrafast plasmon dynamics by of nano-prisms in a bowtie structure excited by 7 fs laser combining the pump-probe technology with three-photon photoemission electron microscopy. Different photoemission patterns induced by the plasmon effect are observed when the bowties are excited by s- and p-polarized femtosecond laser pulses. A series of images of the evolution of local surface plasmon modes on different tips of the bowtie are obtained by the time-resolved three-photon photoemission electron microscopy, and the result discloses that plasmon excitation is dominated by the interfer- ence of the pump and probe pulses within the first 13 fs of the delay time, and thereafter the individual plasmon starts to oscillate on its own characteristic resonant frequencies.
基金This study was supported by funding from the Ministry of Education,Culture,Sports,Science,and Technology of Japan:KAKENHI Grant-in-Aid for Scientific Research No.23225006,Nanotechnology Platform(Hokkaido University)and the Low-Carbon Research Network of Japan.
文摘Localized surface plasmon resonance(LSPR)can be supported by metallic nanoparticles and engineered nanostructures.An understanding of the spatially resolved near-field properties and dynamics of LSPR is important,but remains experimentally challenging.We report experimental studies toward this aim using photoemission electron microscopy(PEEM)with high spatial resolution of sub-10 nm.Various engineered gold nanostructure arrays(such as rods,nanodisk-like particles and dimers)are investigated via PEEM using near-infrared(NIR)femtosecond laser pulses as the excitation source.When the LSPR wavelengths overlap the spectrum of the femtosecond pulses,the LSPR is efficiently excited and promotes multiphoton photoemission,which is correlated with the local intensity of the metallic nanoparticles in the near field.Thus,the local field distribution of the LSPR on different Au nanostructures can be directly explored and discussed using the PEEM images.In addition,the dynamics of the LSPR is studied by combining interferometric time-resolved pump-probe technique and PEEM.Detailed information on the oscillation and dephasing of the LSPR field can be obtained.The results identify PEEM as a powerful tool for accessing the near-field mapping and dynamic properties of plasmonic nanostructures.
基金This work is supported by the Natural Science Foundation of Fujian Province, China.
文摘In this paper a negative electron affinity (NEA) multialkali photocathode of (Na<sub>2</sub>KSb-Cs)-O-Cs structure is fabricated by new technology. It is found that its emission stability is much better than that of the NEA GaAs photocathode, but is inferior to that of the conventional Na<sub>2</sub>KSb(Cs). After 70 hour performance in a pumping vacuum system, the emission sensitivity of the NEA (Na<sub>2</sub>KSb-Cs)-O-Cs photocathode drops only by 2.5%. The emission stability is closely related to the states of the activation cesium and oxygen during activation, best results being obtained with cesium ions and excited oxygen. Furthermore, better photoemission sensitivity and emission stability may be obtained if the cathode is illuminated by intense white light during the activation process. The performance of the NEA (Na<sub>2</sub>KSb-Cs)-O-Cs cathode which has not been illuminated by intense white light during activation may be improved by the illumination even during operation intermission.
基金supported by the National Key Research and Development Program of China under Grant Nos.2018YFB2200403 and 2018YFA0704404the National Natural Science Foundation of China under Grant Nos.61775003,11734001,91950204,11527901+1 种基金Beijing Municipal Science&Technology Commission No.Z191100007219001support by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)-TRR 173-268565370(projects A02).
文摘The two-dimensional electron gas(2DEG)generated at the LaAlO3/SrTiO3 interface has been in the focus of oxides re-search since its first discovery.Although oxygen vacancies play an important role in the generation of the insulator-to-metal transition of the SrTiO3 bare surface,their contribution at the LaAlO3/SrTiO3 interface remains unclear.In this work,we investigated a LaAlO3/SrTiO3 heterostructure with regional distribution of defect-based localized polar sites at the interface.Using static and time-resolved threshold photoemission electron microscopy,we prove that oxygen vacan-cies are induced near those polar sites,resulting in the increase of carrier density of the 2DEG states.In addition,oxy-gen-related surface states were uncovered,which we attributed to the release of lattice oxygen during the formation of oxygen vacancies.Such effects are mainly found spatially located around the defect sites at the buried interface,while other regions remain unaffected.Our results confirm that the itinerant electrons induced by oxygen vacancies can coex-ist with the charge transfer mechanism in the LaAlO3/SrTiO3 heterostructure,together leading to the formation of the metallic interface.These observations provide fundamental insights into the nature of LaAlO3/SrTiO3 interface based 2DEG and unique perspectives for potential applications.
基金Project supported by the Natural Science Foundation of the Chinese Academy of Sciences(Grant No.H91G750Y21)
文摘The in situ valence band photoemission spectrum (PES) and X-ray absorption spectrum (XAS) at V LⅡ-LⅢ edges of the VO2 thin film, which is prepared by pulsed laser deposition, are measured across the metal–insulator transition (MIT) temperature (TMIT=67 ℃). The spectra show evidence for changes in the electronic structure depending on temperature. Across the TMIT, pure V 3d characteristic d‖ and O 2p-V 3d hybridization characteristic πpd, σpd bands vary in binding energy position and density of state distributions. The XAS reveals a temperature-dependent reversible energy shift at the V LⅢ-edge. The PES and XAS results imply a synergetic energy position shift of occupied valence bands and unoccupied conduction band states across the phase transition. A joint inspection of the PES and XAS results shows that the MIT is not a one-step process, instead it is a process in which a semiconductor phase appears as an intermediate state. The final metallic phase from insulating state is reached through insulator–semiconductor, semiconductor–metal processes, and vice versa. The conventional MIT at around the TMIT=67 ℃ is actually a semiconductor–insulator transformation point.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 62005022, 12004052, and 62175018)the Fund from Jilin Provincial Key Laboratory of Ultrafast and Extreme Ultraviolet Optics (Grant No. YDZJ202102CXJD028)+2 种基金Department of Science and Technology of the Jilin Province, China (Grant Nos. 20200201268JC and 20200401052GX)the “111” Project of China (Grant No. D17017)the Fund from the Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology。
文摘Explicit visualization of different components of surface plasmon polaritons(SPPs) propagating at dielectric/metal interfaces is crucial in offering chances for the detailed design and control of the functionalities of plasmonic nanodevices in the future. Here, we reported independent imaging of the vertical and horizontal components of SPPs launched from a rectangular trench in the gold film by a 400-nm laser-assisted near-infrared(NIR) femtosecond laser time-resolved photoemission electron microscopy(TR-PEEM). The experiments demonstrate that distinct imaging of different components of SPPs field can be easily achieved by introducing the 400-nm laser. It can circumvent the risk of sample damage and information loss of excited SPPs field that is generally confronted in the usual NIR laser TR-PEEM scheme. The underlying mechanism for realizing distinct imaging of different components of the SPPs field with two-color PEEM is revealed via measuring the double logarithmic dependence of photoemission yield with the 800-nm and 400-nm pulse powers of different polarizations. Moreover, it is found that the PEEM image quality of the vertical and horizontal components of the SPPs field is nearly independent of the 400-nm pulse polarization. These results pave a way for SPPs-based applications and offer a possible solution for drawing a space-time field of SPPs in three dimensions.
文摘Microscale charge and energy transfer is an ultrafast process that can determine the photoelectrochemical performance of devices.However,nonlinear and nonequilibrium properties hinder our understanding of ultrafast processes;thus,the direct imaging strategy has become an effective means to uncover ultrafast charge and energy transfer processes.Due to diffraction limits of optical imaging,the obtained optical image has insufficient spatial resolution.Therefore,electron beam imaging combined with a pulse laser showing high spatial–temporal resolution has become a popular area of research,and numerous breakthroughs have been achieved in recent years.In this review,we cover three typical ultrafast electron beam imaging techniques,namely,time-resolved photoemission electron microscopy,scanning ultrafast electron microscopy,and ultrafast transmission electron microscopy,in addition to the principles and characteristics of these three techniques.Some outstanding results related to photon–electron interactions,charge carrier transport and relaxation,electron–lattice coupling,and lattice oscillation are also reviewed.In summary,ultrafast electron beam imaging with high spatial–temporal resolution and multidimensional imaging abilities can promote the fundamental under-standing of physics,chemistry,and optics,as well as guide the development of advanced semiconductors and electronics.
文摘Nanoscale plasmonic systems combine the advantages of optical frequencies with those of small spatial scales, circumventing the limitations of conventional photonic systems by exploiting the strong field confinement of surface plasmons. As a result of this miniaturization to the nanoscale, electron microscopy techniques are the natural investigative methods of choice. Recent years have seen the development of a number of electron microscopy techniques that combine the use of electrons and photons to enable unprecedented views of surface plasmons in terms of combined spatial, energy, and time resolution. This review aims to provide a comparative survey of these different approaches from an experimental viewpoint by outlining their respective experimental domains of suitability and highlighting their complementary strengths and limitations as applied to plasmonics in particular.
基金supported by the National Natural Science Foundation of China(Grant Nos.91850209,12174435 and 12034020)the National Key Research and Development Program of China(2017YFB0405202,2018YFB1107200).
文摘High harmonic generation(HHG)delivering attosecond pulse duration with photon energy in the extreme ultraviolet spectral range has been demonstrated as a robust table-top coherent light source,allowing for the observation and manipulation of ultrafast process within the shortest time window ever made by humans.The past decade has witnessed the rapid progress of HHG from a variety of solid targets and its application for photoemission spectroscopy in condensed matter.In this article,we review the HHG in solids and the understanding of the underlying physics of HHG,which allows all-optical band structure reconstruction.We also introduce combinations of HHG source and photoemission spectroscopy,such as angular-resolved photoemission spectroscopy and photoemission electron microscopy.With the capacity of exploring a wide momentum space and high temporal resolution,the extension of attosecond science to the field of condensed matter physics will lead to new insights into the fundamental ultrafast dynamics in novel quantum materials.
基金The CEA authors acknowledge financial support by the French National Agency(ANR)in the frame of its program in Nanosciences and Nanotechnologies(PEEM Plasmon Project ANR-08-NANO-034,ANR P2N 2013-Samiré)NanosciencesÎle-de-France(PEEM Plasmonics project)+1 种基金the“Triangle de la Physique”(PEPS Project 2012-035T)the doctoral school“Ecole Doctorale Ondes et Matière(EDOM)”.
文摘A simple hand calculation method based on group theory is proposed to predict the near field maps of finite metallic nanoparticles(MNP)of canonical geometries:prism,cube,hexagon,disk,sphere,etc.corresponding to low order localized surface plasmon resonance excitations.In this article,we report the principles of the group theory approach and demonstrate,through several examples,the general character of the group theory method which can be applied to describe the plasmonic response of particles of finite or infinite symmetry point groups.Experimental validation is achieved by collection of high-resolution subwavelength near-field maps by photoemission electron microscopy(PEEM)on a representative set of Au colloidal particles exhibiting either finite(hexagon)or infinite(disk,sphere)symmetry point groups.