The relative response factors(RRFs) for noble gas(Ng) were determined on a pulsed discharge helium photoionization detector. Using ab initio method, the atomic orbitals of noble gas were calculated and used to det...The relative response factors(RRFs) for noble gas(Ng) were determined on a pulsed discharge helium photoionization detector. Using ab initio method, the atomic orbitals of noble gas were calculated and used to determine the number of ionizable electrons on the basis of the continuous emission of He2. The molar responses of noble gases is well correlated with the number of ionizable electrons.展开更多
The ring imaging Cherenkov(RICH) detector for particle identification(PID) is being evaluated for the future super tau-charm facility(STCF) complex. In this work, the prototype readout electronics for the RICH PID det...The ring imaging Cherenkov(RICH) detector for particle identification(PID) is being evaluated for the future super tau-charm facility(STCF) complex. In this work, the prototype readout electronics for the RICH PID detector is designed. The prototype RICH PID detector is based on a thick gas electron multiplier combined with a micromegas detector for Cherenkov light detection. Considering that there will be a large number(~ 690,000) of detector channels in future RICH detector, the readout electronics faces many challenges to precisely measuring time and charge information, such as reducing the noise,increasing density, and improving precision. The requirements of the readout electronics are explored, the downselection of the ASICs is made and thus a prototype readout electronics is designed and implemented. Tests are also conducted to evaluate the performance of the prototype readout electronics, and the results indicate that the time resolution is better than ~ 1 ns(RMS) when the input charge is greater than ~ 12 fC based on the APV25chip, while the time resolution is better than ~ 1 ns(RMS) at an input charge of over ~ 48 fC based on the AGET and STCF ASIC chips, and the equivalent noise charge is better than ~ 0.5 fC(RMS) @ 20 pF based on the three ASICs. The test results indicate that the prototype readout electronics design meets the requirement of the future RICH PID detector and thus provides a reference for future engineering.展开更多
基金the National Natural Science Foundation of China(No.20503010)
文摘The relative response factors(RRFs) for noble gas(Ng) were determined on a pulsed discharge helium photoionization detector. Using ab initio method, the atomic orbitals of noble gas were calculated and used to determine the number of ionizable electrons on the basis of the continuous emission of He2. The molar responses of noble gases is well correlated with the number of ionizable electrons.
基金supported by the international partnership program of the Chinese Academy of Sciences under Grant No.211134KYSB20200057Double First-Class university project foundation of USTC+1 种基金Youth Innovation Promotion Association CASCAS Center for Excellence in Particle Physics(CCEPP)。
文摘The ring imaging Cherenkov(RICH) detector for particle identification(PID) is being evaluated for the future super tau-charm facility(STCF) complex. In this work, the prototype readout electronics for the RICH PID detector is designed. The prototype RICH PID detector is based on a thick gas electron multiplier combined with a micromegas detector for Cherenkov light detection. Considering that there will be a large number(~ 690,000) of detector channels in future RICH detector, the readout electronics faces many challenges to precisely measuring time and charge information, such as reducing the noise,increasing density, and improving precision. The requirements of the readout electronics are explored, the downselection of the ASICs is made and thus a prototype readout electronics is designed and implemented. Tests are also conducted to evaluate the performance of the prototype readout electronics, and the results indicate that the time resolution is better than ~ 1 ns(RMS) when the input charge is greater than ~ 12 fC based on the APV25chip, while the time resolution is better than ~ 1 ns(RMS) at an input charge of over ~ 48 fC based on the AGET and STCF ASIC chips, and the equivalent noise charge is better than ~ 0.5 fC(RMS) @ 20 pF based on the three ASICs. The test results indicate that the prototype readout electronics design meets the requirement of the future RICH PID detector and thus provides a reference for future engineering.