The first operation of an electrically pumped 1.3μm InAs/GaAs quantum-dot laser was previously reported epitaxially grown on Si (100) substrate. Here the direct epitaxial growth condition of 1.3μm InAs/OaAs quantu...The first operation of an electrically pumped 1.3μm InAs/GaAs quantum-dot laser was previously reported epitaxially grown on Si (100) substrate. Here the direct epitaxial growth condition of 1.3μm InAs/OaAs quantum on a Si substrate is further investigated using atomic force microscopy, etch pit density and temperature-dependent photoluminescence (PL) measurements. The PL for Si-based InAs/GaAs quantum dots appears to be very sensitive to the initial OaAs nucleation temperature and thickness with strongest room-temperature emission at 40000 (17Onto nucleation layer thickness), due to the lower density of defects generated under this growth condition, and stronger carrier confinement within the quantum dots.展开更多
The photoluminescence (PL) characteristics of ZnCuInS quantum dots (Q, Ds) with varying ZnS shell thicknesses of O, 0.5, and 1.5 layers are investigated systemically by time-correlated single-photon counting measu...The photoluminescence (PL) characteristics of ZnCuInS quantum dots (Q, Ds) with varying ZnS shell thicknesses of O, 0.5, and 1.5 layers are investigated systemically by time-correlated single-photon counting measurements and temperature-dependent PL measurements. The results show that a ZnS shell thickness of 1.5 layers can effectively improve the PL quantum yield in one order of magnitude by depressing the surface trapping states of the core ZnCuInS QDs at room temperature. However, the PL measurements at the elevated temperature reveal that the core-shell nanocrystals remain temperature-sensitive with respect to their relatively thin shells. The temperature sensitivity of these small-sized single-layered core-shell nanocrystals may find applications as effective thermometers for the in vivo detection of biological reactions within cells.展开更多
Evolution of surface morphology and optical characteristics of 1.3-μm In0.5Ga0.5As/GaAs quantum dots (QDs) grown by molecular beam epitaxy (MBE) are investigated by atomic force microscopy (AFM) and photolumine...Evolution of surface morphology and optical characteristics of 1.3-μm In0.5Ga0.5As/GaAs quantum dots (QDs) grown by molecular beam epitaxy (MBE) are investigated by atomic force microscopy (AFM) and photoluminescence (PL). After deposition of 16 monolayers (ML) of In0.5Ga0.5As, QDs are formed and elongated along the [120] direction when using sub-ML depositions, while large size InGaAs QDs with better uniformity are formed when using ML or super-ML depositions. It is also found that the larger size QDs show enhanced PL efficiency without optical nonlinearity, which is in contrast to the elongated QDs.展开更多
CdTe/CdS quantum dots(QDs) are fabricated on Si nanowires(NWs) substrates with and without Au nanoparticles(NPs). The formation of Au NPs on Si NWs can be certified as shown in scanning electron microscopy image...CdTe/CdS quantum dots(QDs) are fabricated on Si nanowires(NWs) substrates with and without Au nanoparticles(NPs). The formation of Au NPs on Si NWs can be certified as shown in scanning electron microscopy images. The optical properties of samples are also investigated. It is interesting to find that the photoluminescence(PL) intensity of Cd Te/Cd S QD films on Si nanowire substrates with Au NPs is significantly increased,which can reach 8-fold higher than that of samples on planar Si without Au NPs. The results of finite-difference time-domain simulation indicate that Au NPs induce stronger localization of electric field and then boost the PL intensity of QDs nearby. Furthermore, the time-resolved luminescence decay curve shows the PL lifetime, which is about 5.5 ns at the emission peaks of QD films on planar, increasing from 1.8 ns of QD films on Si NWs to4.7 ns after introducing Au NPs into Si NWs.展开更多
This paper reports that a series of Nd3+:Er3+:yb3+ co-doped borosilicate glasses have been prepared and their absorption spectra measured. The J-O intensity parameters Ωk (k = 2, 4, 6), spontaneous radiative l...This paper reports that a series of Nd3+:Er3+:yb3+ co-doped borosilicate glasses have been prepared and their absorption spectra measured. The J-O intensity parameters Ωk (k = 2, 4, 6), spontaneous radiative lifetime Trad, spontaneous transition probability A, fluorescence branching ratio β and oscillator strength fed of the Nd3+ ions at room temperature are calculated based on Judd-Ofelt (J-O) theory. The temperature dependence of the up-conversion photoluminescence characteristics in a Nd3+:Er3+:Yb3+ co-doped sample is studied under a 978 nm semiconductor laser excitation, and the energy transfer mechanisms among Yb3+, Er3+ and Nd3+ ions are analysed. The results show that the J-O intensity parameters Ω2 increase when the Nd3+ concentration of the Nd3+:Er3+:yb3+ co-doped borosilicate glasses increases. The possibility of spontaneous transition is small and lifetimes are long at levels of 4F5/2 and 4F3/2. The intensity of Nd3+ emissions at 595, 691, 753, 813 and 887 nm axe markedly enhanced when the sample temperature exceeds 400 K. The reasons being the cooperation of the secondary sensitization from Era+ to Nd3+ and the contribution of a multi-phonon.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11434010,11574356 and 11504415the Funds from the Royal Society,the Defense Science Technology Laboratory and UK Engineering and Physics Research Council
文摘The first operation of an electrically pumped 1.3μm InAs/GaAs quantum-dot laser was previously reported epitaxially grown on Si (100) substrate. Here the direct epitaxial growth condition of 1.3μm InAs/OaAs quantum on a Si substrate is further investigated using atomic force microscopy, etch pit density and temperature-dependent photoluminescence (PL) measurements. The PL for Si-based InAs/GaAs quantum dots appears to be very sensitive to the initial OaAs nucleation temperature and thickness with strongest room-temperature emission at 40000 (17Onto nucleation layer thickness), due to the lower density of defects generated under this growth condition, and stronger carrier confinement within the quantum dots.
基金Supported by the National Natural Science Foundation of China under Grant Nos 21573094,11274142,11474131 and 51502109the China Postdoctoral Science Foundation Funded Project under Grant Nos 2011M500927 and 2013T60319
文摘The photoluminescence (PL) characteristics of ZnCuInS quantum dots (Q, Ds) with varying ZnS shell thicknesses of O, 0.5, and 1.5 layers are investigated systemically by time-correlated single-photon counting measurements and temperature-dependent PL measurements. The results show that a ZnS shell thickness of 1.5 layers can effectively improve the PL quantum yield in one order of magnitude by depressing the surface trapping states of the core ZnCuInS QDs at room temperature. However, the PL measurements at the elevated temperature reveal that the core-shell nanocrystals remain temperature-sensitive with respect to their relatively thin shells. The temperature sensitivity of these small-sized single-layered core-shell nanocrystals may find applications as effective thermometers for the in vivo detection of biological reactions within cells.
基金supported by the National Natural Science Foundation of China(No.10734060)the National Basic Research Program of China(No.2006CB921504)
文摘Evolution of surface morphology and optical characteristics of 1.3-μm In0.5Ga0.5As/GaAs quantum dots (QDs) grown by molecular beam epitaxy (MBE) are investigated by atomic force microscopy (AFM) and photoluminescence (PL). After deposition of 16 monolayers (ML) of In0.5Ga0.5As, QDs are formed and elongated along the [120] direction when using sub-ML depositions, while large size InGaAs QDs with better uniformity are formed when using ML or super-ML depositions. It is also found that the larger size QDs show enhanced PL efficiency without optical nonlinearity, which is in contrast to the elongated QDs.
基金Supported by the Qing Lan Project of the Higher Education Institutions of Jiangsu Province,Qing Lan Project of Yangzhou Polytechnic Institute,the Natural Science Foundation of Yangzhou City under Grant No YZ2016123the National Natural Science Foundation of China under Grant No 61376004
文摘CdTe/CdS quantum dots(QDs) are fabricated on Si nanowires(NWs) substrates with and without Au nanoparticles(NPs). The formation of Au NPs on Si NWs can be certified as shown in scanning electron microscopy images. The optical properties of samples are also investigated. It is interesting to find that the photoluminescence(PL) intensity of Cd Te/Cd S QD films on Si nanowire substrates with Au NPs is significantly increased,which can reach 8-fold higher than that of samples on planar Si without Au NPs. The results of finite-difference time-domain simulation indicate that Au NPs induce stronger localization of electric field and then boost the PL intensity of QDs nearby. Furthermore, the time-resolved luminescence decay curve shows the PL lifetime, which is about 5.5 ns at the emission peaks of QD films on planar, increasing from 1.8 ns of QD films on Si NWs to4.7 ns after introducing Au NPs into Si NWs.
基金Project supported by the Fundamental Research Funds for the Central Universities(Grant No.2010LKWL07)the National Basic Research Program of China(Grant No.2010CB226805)
文摘This paper reports that a series of Nd3+:Er3+:yb3+ co-doped borosilicate glasses have been prepared and their absorption spectra measured. The J-O intensity parameters Ωk (k = 2, 4, 6), spontaneous radiative lifetime Trad, spontaneous transition probability A, fluorescence branching ratio β and oscillator strength fed of the Nd3+ ions at room temperature are calculated based on Judd-Ofelt (J-O) theory. The temperature dependence of the up-conversion photoluminescence characteristics in a Nd3+:Er3+:Yb3+ co-doped sample is studied under a 978 nm semiconductor laser excitation, and the energy transfer mechanisms among Yb3+, Er3+ and Nd3+ ions are analysed. The results show that the J-O intensity parameters Ω2 increase when the Nd3+ concentration of the Nd3+:Er3+:yb3+ co-doped borosilicate glasses increases. The possibility of spontaneous transition is small and lifetimes are long at levels of 4F5/2 and 4F3/2. The intensity of Nd3+ emissions at 595, 691, 753, 813 and 887 nm axe markedly enhanced when the sample temperature exceeds 400 K. The reasons being the cooperation of the secondary sensitization from Era+ to Nd3+ and the contribution of a multi-phonon.