Long afterglow photoluminescent materials Sr2MgSi2O7 doped with Eu2+, Dy3+ were prepared by sol-gel method. The synthesized samples were characterized by X-ray diffraction. The excitation spectrum, emission spectrum a...Long afterglow photoluminescent materials Sr2MgSi2O7 doped with Eu2+, Dy3+ were prepared by sol-gel method. The synthesized samples were characterized by X-ray diffraction. The excitation spectrum, emission spectrum and long decay curve were measured and analyzed. XRD pattern indicates that phosphor is with Sr2MgSi2O7 crystal structure. The wide range of excitation wavelength indicates that luminescent material can be excited by light from ultraviolet ray to visible light. The main peak of emission spectrum is located at 466 nm. Sample excited by visible light can emit bright blue light, and the afterglow time lasts more than 8 h.展开更多
Photochromic and photoluminescence materials show bright colors under different excitation conditions,and thus,these functional materials have been applied in many fields.Based on the photochromic and photoluminescenc...Photochromic and photoluminescence materials show bright colors under different excitation conditions,and thus,these functional materials have been applied in many fields.Based on the photochromic and photoluminescence theories,a block copolymer,which could be directly processed into nanofibers by electrospinning,was successfully prepared through atom transfer radical polymerization(ATRP).To synthesize the block copolymer,a vinyl monomer containing a spiropyran unit was employed to prepare the photochromic chain segment,and a polymethyl methacrylate(PMMA)chain segment was introduced to improve the processability of the block copolymer.Acting as the photoluminescence unit,the rare earth complex was linked to the side chain through coordination bonding between the rare earth ions and the ester groups of PMMA.When the photochromic and photoluminescence block copolymer was exposed to different wavelengths of ultraviolet(UV)light and visible(Vis)light,it could show white,red,green,yellow,and blue-purple.These results provide the potential of the as-prepared photochromic and photoluminescence block copolymer for application in fibers and fabrics.展开更多
Bulk materials were synthesized by the Bridgman technique using the elements Cu, Ga, Se. These samples were characterized by Energy Dispersive Spectrometry (EDS) to determine the elemental composition, as well as by X...Bulk materials were synthesized by the Bridgman technique using the elements Cu, Ga, Se. These samples were characterized by Energy Dispersive Spectrometry (EDS) to determine the elemental composition, as well as by X-ray diffraction for structure, hot point probe method for type of conductivity. Optical response (Photoconductivity) and Photoluminescence (PL) and PL-excitation (PLE) at temperatures from 4.2 to 77 K were also used to estimate the band-gap energy of Cu-Ga<sub>3</sub>Se<sub>5</sub>. They show a nearly perfect stoechiometry and present p-type conductivity. CuGa<sub>3</sub>Se<sub>5</sub> either have an Ordered Defect Chalcopyrite structure (ODC), or an Ordered Vacancy Chalcopyrite structure (OVC). The gap energy obtained by Photoconductivity and Photoluminescence (PL) for the different samples is 1.85 eV. Studying the variation of the gap as a function of the temperature shows that the transition is a D-A type. The defects that appear are probably Ga<sub>Cu</sub>.展开更多
We used density functional theory(DFT)calculations to study the influence of alkali earth metal element(AE)doping on the crystal structure and electronic band structure ofα-Si3N4.The diversity of atomic radii of alka...We used density functional theory(DFT)calculations to study the influence of alkali earth metal element(AE)doping on the crystal structure and electronic band structure ofα-Si3N4.The diversity of atomic radii of alkaline earth metal elements results in structural expansion when they were doped into theα-Si3N4 lattice.Formation energies of the doped structures indicate that dopants prefer to occupy the interstitial site under the nitrogen-deficient environment,while substitute Si under the nitrogen-rich environment,which provides a guide to synthesizingα-Si3N4 with different doping types by controlling nitrogen conditions.For electronic structures,energy levels of the dopants appear in the bottom of the conduction band or the top of the valence band or the forbidden band,which reduces the bandgap ofα-Si3N4.展开更多
文摘Long afterglow photoluminescent materials Sr2MgSi2O7 doped with Eu2+, Dy3+ were prepared by sol-gel method. The synthesized samples were characterized by X-ray diffraction. The excitation spectrum, emission spectrum and long decay curve were measured and analyzed. XRD pattern indicates that phosphor is with Sr2MgSi2O7 crystal structure. The wide range of excitation wavelength indicates that luminescent material can be excited by light from ultraviolet ray to visible light. The main peak of emission spectrum is located at 466 nm. Sample excited by visible light can emit bright blue light, and the afterglow time lasts more than 8 h.
基金Application Fundamental and Advanced Technology Research Proposal Project of Tianjin,China(No.18JCZDJC38300)。
文摘Photochromic and photoluminescence materials show bright colors under different excitation conditions,and thus,these functional materials have been applied in many fields.Based on the photochromic and photoluminescence theories,a block copolymer,which could be directly processed into nanofibers by electrospinning,was successfully prepared through atom transfer radical polymerization(ATRP).To synthesize the block copolymer,a vinyl monomer containing a spiropyran unit was employed to prepare the photochromic chain segment,and a polymethyl methacrylate(PMMA)chain segment was introduced to improve the processability of the block copolymer.Acting as the photoluminescence unit,the rare earth complex was linked to the side chain through coordination bonding between the rare earth ions and the ester groups of PMMA.When the photochromic and photoluminescence block copolymer was exposed to different wavelengths of ultraviolet(UV)light and visible(Vis)light,it could show white,red,green,yellow,and blue-purple.These results provide the potential of the as-prepared photochromic and photoluminescence block copolymer for application in fibers and fabrics.
文摘Bulk materials were synthesized by the Bridgman technique using the elements Cu, Ga, Se. These samples were characterized by Energy Dispersive Spectrometry (EDS) to determine the elemental composition, as well as by X-ray diffraction for structure, hot point probe method for type of conductivity. Optical response (Photoconductivity) and Photoluminescence (PL) and PL-excitation (PLE) at temperatures from 4.2 to 77 K were also used to estimate the band-gap energy of Cu-Ga<sub>3</sub>Se<sub>5</sub>. They show a nearly perfect stoechiometry and present p-type conductivity. CuGa<sub>3</sub>Se<sub>5</sub> either have an Ordered Defect Chalcopyrite structure (ODC), or an Ordered Vacancy Chalcopyrite structure (OVC). The gap energy obtained by Photoconductivity and Photoluminescence (PL) for the different samples is 1.85 eV. Studying the variation of the gap as a function of the temperature shows that the transition is a D-A type. The defects that appear are probably Ga<sub>Cu</sub>.
基金Funded by National Key Research and Development Program of China(No.2017YFB0310400)the National Natural Science Foundation of China(Nos.51872217,51932006,51972246 and 51521001)+3 种基金Fundamental Research Funds for the Central Universities in ChinaState Key Laboratory of Advanced Electromagnetic Engineering and Technology(Huazhong University of Science and Technology),the Joint Fund(No.6141A02022255)the Major Program of the Specialized Technological Innovation of HuBei Province,China(No.2019AFA176)the“111”Project(No.B13035)。
文摘We used density functional theory(DFT)calculations to study the influence of alkali earth metal element(AE)doping on the crystal structure and electronic band structure ofα-Si3N4.The diversity of atomic radii of alkaline earth metal elements results in structural expansion when they were doped into theα-Si3N4 lattice.Formation energies of the doped structures indicate that dopants prefer to occupy the interstitial site under the nitrogen-deficient environment,while substitute Si under the nitrogen-rich environment,which provides a guide to synthesizingα-Si3N4 with different doping types by controlling nitrogen conditions.For electronic structures,energy levels of the dopants appear in the bottom of the conduction band or the top of the valence band or the forbidden band,which reduces the bandgap ofα-Si3N4.