We investigate theoretically two photon entanglement processes in a photonic-crystal cavity embedding a quantum dot in tile strong-coupling regime. The model proposed by Johne et al. (Johne R, Gippius N A, Pavlovic G...We investigate theoretically two photon entanglement processes in a photonic-crystal cavity embedding a quantum dot in tile strong-coupling regime. The model proposed by Johne et al. (Johne R, Gippius N A, Pavlovic G, Solnyshkov D D, Shelykh I A and Malpuech G 2008 Phys. Rev. Lett. 100 240404), and by Robert et al. (Robert J, Gippius N A and Malpuech G 2009 Phys. Rev. B 79 155317) is modified by considering irreversible dissipation and incoherent continuous pumping for the quantum dot, which is necessary to connect the realistic experiment. The dynamics of tile system is analysed by employing the Born Markov master equation, through which the spectra for the system are computed as a fnnction of various parameters. By means of this analysis the photon-reabsorption process in the strong- coupling regime is first observed and analysed from the perspective of radiation spectrum and the optimal parameters for observing energy-entangled photon pairs are identified.展开更多
Bohm’s variation of the Einstein-Podolsky-Rosen thought experiment may be used to reveal the path a photon travels in Young’s experiment without destroying the observed interference pattern. Photons emitted by a lig...Bohm’s variation of the Einstein-Podolsky-Rosen thought experiment may be used to reveal the path a photon travels in Young’s experiment without destroying the observed interference pattern. Photons emitted by a light-source with zero spin are incident on a screen with two narrow slits separated by a small distance, with antiparallel polarized photonic spin filters placed in front of both slits. It follows that the slit through which an incident photon passed to form an interference pattern can be determined by performing an intermediate delayed choice measurement. This experimental probe is ideal for penetrating the shroud of mystery surrounding the wave-particle duality exhibited by quantum phenomena.展开更多
We report the generation of polarization-entangled photon pairs in the 1550 nm band by pumping an uneven nonlinear interferometer loop with two orthogonally polarized counterpropagating pump pulses.The uneven nonlinea...We report the generation of polarization-entangled photon pairs in the 1550 nm band by pumping an uneven nonlinear interferometer loop with two orthogonally polarized counterpropagating pump pulses.The uneven nonlinear interferometer,providing a more ideal interference pattern due to the elimination of secondary maxima,consists of four pieces of dispersion-shifted fibers sandwiched with three pieces of standard single-mode fibers,and the lengths of the nonlinear fibers follow the binomial distribution.The mode number of the photon pairs deduced from the measured joint spectrum is∼1.03.The collection efficiency of the photon pairs is found to be∼94%(after background noise correction).The directly measured visibility of two-photon interference of the polarization-entangled photon pairs is∼92%,while no interference is observed in the direct detection of either the signal or idler photons.展开更多
Broadband photon pairs are highly desirable for quantum metrology,quantum sensing,and quantum communication.Such sources are usually designed through type-0 phase-matching spontaneous parametric down-conversion(SPDC)t...Broadband photon pairs are highly desirable for quantum metrology,quantum sensing,and quantum communication.Such sources are usually designed through type-0 phase-matching spontaneous parametric down-conversion(SPDC)that makes the photon pairs hard to separate in the frequency-degenerate case and thus limits their applications.In this paper,we design a broadband frequency-degenerate telecom-band photon pair source via the type-II SPDC in a dispersion-engineered thin-film lithium niobate waveguide,where the polarization modes of photon pairs are orthogonal and thus are easily separated deterministically.With a 5-mm-long waveguide,our design can achieve a bandwidth of 5.56 THz(44.8 nm),which is 8.6 times larger than that of the bulk lithium niobate,and the central wavelength can be flexibly adjusted.Our design is a promising approach towards high-quality integrated photon sources and may have wide applications in photonic quantum technologies.展开更多
Reliable generation of single photons is of key importance for fundamental physical experiments and quantum protocols.The periodically poled lithium niobate[LN]waveguide has shown promise for an integrated quantum sou...Reliable generation of single photons is of key importance for fundamental physical experiments and quantum protocols.The periodically poled lithium niobate[LN]waveguide has shown promise for an integrated quantum source due to its large spectral tunability and high efficiency,benefiting from the quasi-phase-matching.Here we demonstrate photon-pair sources based on an LN waveguide periodically poled by a tightly focused femtosecond laser beam.The pair coincidence rate reaches~8000 counts per second for average pump power of 3.2 m W[peak power is 2.9 k W).Our results prove the possibility of application of the nonlinear photonics structure fabricated by femtosecond laser to the integrated quantum source.This method can be extended to three-dimensional domain structures,which provide a potential platform for steering the spatial degree of freedom of the entangled two-photon states.展开更多
We investigate the Bose-Einstein condensation of photons and photon pairs in a two-dimension optical microcavity. We find that in the paraxial approximation, the mixed gas of photons and photon pairs is formally equiv...We investigate the Bose-Einstein condensation of photons and photon pairs in a two-dimension optical microcavity. We find that in the paraxial approximation, the mixed gas of photons and photon pairs is formally equivalent to a two dimension system of massive bosons with non-vanishing chemical potential, which implies the existence of two possible condensate phase. We also discuss the quantum phase transition of the system and obtain the critical point analytically. Moreover, we find that the quantum phase transition of the system can be interpreted as second harmonic generation.展开更多
In this article, we review on narrowband photon pairs produced in nonlinear crystals, and especially in atomic ensembles. In atomic ensembles, "write-read" process in pulse mode and spontaneous four-wave mixing proc...In this article, we review on narrowband photon pairs produced in nonlinear crystals, and especially in atomic ensembles. In atomic ensembles, "write-read" process in pulse mode and spontaneous four-wave mixing process (SFWM) in continuous mode are two popular photon pair generation schemes. We specifically discuss the experimental works with continuous SFWM scheme in cold atomic ensembles. Photon pairs produced in these systems are characteristic of controllable long coherence time, and therefore are accessible with direct temporal modulation. We elaborate on the recent techniques on modulation and waveform reshaping of narrow-band paired photons.展开更多
We analyze the ground-state properties and the excitation spectrum of Bose-Einstein condensates of photons and PPs in a two-dimensional optical microcavity. First, using the variational method, we discuss the ground-s...We analyze the ground-state properties and the excitation spectrum of Bose-Einstein condensates of photons and PPs in a two-dimensional optical microcavity. First, using the variational method, we discuss the ground-state phase transition of the two-component system. We also investigate the energy gap between the ground state and the first excited state. Moreover, by investigating the excitation spectrum, we also illustrate how the superfluid behavior of photons and PPs can be associated with the phase transition of the system.展开更多
We demonstrate the generation of non-classical photon pairs in a warm S-Rb atomic vapor ('ell with no buffer gas or polarization preserving coatings via spontaneous four-wave mixing. We obtain the photon pairs with ...We demonstrate the generation of non-classical photon pairs in a warm S-Rb atomic vapor ('ell with no buffer gas or polarization preserving coatings via spontaneous four-wave mixing. We obtain the photon pairs with a 1/e correlation time of 40 ns and the violation of Cauchy-Sehwartz inequality by a factor of 23 - 3. This provides a convenient and efficient method to generate photon pair sources based on an atomic ensemble.展开更多
The single photon scattering properties in a pair of waveguides coupled by a whispering-gallery resonator in- teracting with a semiconductor quantum dot are investigated theoretically. The two waveguides support four ...The single photon scattering properties in a pair of waveguides coupled by a whispering-gallery resonator in- teracting with a semiconductor quantum dot are investigated theoretically. The two waveguides support four possible ports for an incident single photon. The quantum dot is considered a V-type system. The incident direction-dependent single photon scattering properties are studied and equal-output probability from the four ports for a single photon incident is discussed. The influences of backscattering between the two modes of the whispering-gallery resonator for incident direction-dependent single photon scattering properties are also pre- sented.展开更多
This is a rotating charge loop model of an electron which explains the electron’s de Broglie base frequency to an accuracy of over 6 decimal places. The model also predicts the magnetic moment of the electron to over...This is a rotating charge loop model of an electron which explains the electron’s de Broglie base frequency to an accuracy of over 6 decimal places. The model also predicts the magnetic moment of the electron to over 6 decimal places and helps explain the transition from a purely electromagnetic photon to a fermion state of matter. The model also explains how charge and spin are conserved in the transition. Finally, this concept might be extended to explain the muon and tau higher energy states of the electron as well.展开更多
A theoretical and numerical model of photon and electron–positron pair production in strong-field quantum electrodynamics(QED) is described. Two processes are contained in our QED theoretical model, one is photon e...A theoretical and numerical model of photon and electron–positron pair production in strong-field quantum electrodynamics(QED) is described. Two processes are contained in our QED theoretical model, one is photon emission in the interaction of ultra-intense laser with relativistic electron(or positron), and the other is pair production by a gamma-ray photon interacting with the laser field.This model has been included in a PIC/MCC simulation code named BUMBLEBEE 1 D, which is used to simulate the laser plasma interaction. Using this code, the evolutions of electron–positron pair and gamma-ray photon production in ultra-intense laser interaction with aluminum foil target are simulated and analyzed. The simulation results revealed that more positrons are moved in the opposite direction to the incident direction of the laser under the charge separation field.展开更多
基金supported by the National High Technology Research and Development Program of China (Grant No. 2009AA03Z405)the National Natural Science Foundation of China (Grant Nos. 60908028, 60971068, and 10979065)+1 种基金the Program for New Century Excellent Talents in University (Grant No. NTCE-10-0261)the Chinese Universities Scientific Fund (Grant No. 2011RC0402)
文摘We investigate theoretically two photon entanglement processes in a photonic-crystal cavity embedding a quantum dot in tile strong-coupling regime. The model proposed by Johne et al. (Johne R, Gippius N A, Pavlovic G, Solnyshkov D D, Shelykh I A and Malpuech G 2008 Phys. Rev. Lett. 100 240404), and by Robert et al. (Robert J, Gippius N A and Malpuech G 2009 Phys. Rev. B 79 155317) is modified by considering irreversible dissipation and incoherent continuous pumping for the quantum dot, which is necessary to connect the realistic experiment. The dynamics of tile system is analysed by employing the Born Markov master equation, through which the spectra for the system are computed as a fnnction of various parameters. By means of this analysis the photon-reabsorption process in the strong- coupling regime is first observed and analysed from the perspective of radiation spectrum and the optimal parameters for observing energy-entangled photon pairs are identified.
文摘Bohm’s variation of the Einstein-Podolsky-Rosen thought experiment may be used to reveal the path a photon travels in Young’s experiment without destroying the observed interference pattern. Photons emitted by a light-source with zero spin are incident on a screen with two narrow slits separated by a small distance, with antiparallel polarized photonic spin filters placed in front of both slits. It follows that the slit through which an incident photon passed to form an interference pattern can be determined by performing an intermediate delayed choice measurement. This experimental probe is ideal for penetrating the shroud of mystery surrounding the wave-particle duality exhibited by quantum phenomena.
基金supported by the National Natural Science Foundation of China (Nos.12074283,91836302,11874279,and 62305240)
文摘We report the generation of polarization-entangled photon pairs in the 1550 nm band by pumping an uneven nonlinear interferometer loop with two orthogonally polarized counterpropagating pump pulses.The uneven nonlinear interferometer,providing a more ideal interference pattern due to the elimination of secondary maxima,consists of four pieces of dispersion-shifted fibers sandwiched with three pieces of standard single-mode fibers,and the lengths of the nonlinear fibers follow the binomial distribution.The mode number of the photon pairs deduced from the measured joint spectrum is∼1.03.The collection efficiency of the photon pairs is found to be∼94%(after background noise correction).The directly measured visibility of two-photon interference of the polarization-entangled photon pairs is∼92%,while no interference is observed in the direct detection of either the signal or idler photons.
基金Project supported by the National Key Research and Development Program of China(Grant No.2019YFA0705000)Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301500)+1 种基金Leading-edge Technology Program of Jiangsu Natural Science Foundation(Grant No.BK20192001)the National Natural Science Foundation of China(Grant Nos.51890861 and 11974178).
文摘Broadband photon pairs are highly desirable for quantum metrology,quantum sensing,and quantum communication.Such sources are usually designed through type-0 phase-matching spontaneous parametric down-conversion(SPDC)that makes the photon pairs hard to separate in the frequency-degenerate case and thus limits their applications.In this paper,we design a broadband frequency-degenerate telecom-band photon pair source via the type-II SPDC in a dispersion-engineered thin-film lithium niobate waveguide,where the polarization modes of photon pairs are orthogonal and thus are easily separated deterministically.With a 5-mm-long waveguide,our design can achieve a bandwidth of 5.56 THz(44.8 nm),which is 8.6 times larger than that of the bulk lithium niobate,and the central wavelength can be flexibly adjusted.Our design is a promising approach towards high-quality integrated photon sources and may have wide applications in photonic quantum technologies.
基金supported financially by the National Key R&D Program of China(Nos.2019YFA0705000,2017YFA0303800,2017YFA0303700,2019YFA0308700,and 2020YFA0309500)the National Natural Science Foundation of China(Nos.12074197,12074196,11774183,and 11922406)。
文摘Reliable generation of single photons is of key importance for fundamental physical experiments and quantum protocols.The periodically poled lithium niobate[LN]waveguide has shown promise for an integrated quantum source due to its large spectral tunability and high efficiency,benefiting from the quasi-phase-matching.Here we demonstrate photon-pair sources based on an LN waveguide periodically poled by a tightly focused femtosecond laser beam.The pair coincidence rate reaches~8000 counts per second for average pump power of 3.2 m W[peak power is 2.9 k W).Our results prove the possibility of application of the nonlinear photonics structure fabricated by femtosecond laser to the integrated quantum source.This method can be extended to three-dimensional domain structures,which provide a potential platform for steering the spatial degree of freedom of the entangled two-photon states.
文摘We investigate the Bose-Einstein condensation of photons and photon pairs in a two-dimension optical microcavity. We find that in the paraxial approximation, the mixed gas of photons and photon pairs is formally equivalent to a two dimension system of massive bosons with non-vanishing chemical potential, which implies the existence of two possible condensate phase. We also discuss the quantum phase transition of the system and obtain the critical point analytically. Moreover, we find that the quantum phase transition of the system can be interpreted as second harmonic generation.
文摘In this article, we review on narrowband photon pairs produced in nonlinear crystals, and especially in atomic ensembles. In atomic ensembles, "write-read" process in pulse mode and spontaneous four-wave mixing process (SFWM) in continuous mode are two popular photon pair generation schemes. We specifically discuss the experimental works with continuous SFWM scheme in cold atomic ensembles. Photon pairs produced in these systems are characteristic of controllable long coherence time, and therefore are accessible with direct temporal modulation. We elaborate on the recent techniques on modulation and waveform reshaping of narrow-band paired photons.
文摘We analyze the ground-state properties and the excitation spectrum of Bose-Einstein condensates of photons and PPs in a two-dimensional optical microcavity. First, using the variational method, we discuss the ground-state phase transition of the two-component system. We also investigate the energy gap between the ground state and the first excited state. Moreover, by investigating the excitation spectrum, we also illustrate how the superfluid behavior of photons and PPs can be associated with the phase transition of the system.
基金supported by the Fundamental Research Funds for the Central Universitiesthe National Natural Science Foundation of China(Nos.11774286,11374238,11574247,11374008,and 11534008)
文摘We demonstrate the generation of non-classical photon pairs in a warm S-Rb atomic vapor ('ell with no buffer gas or polarization preserving coatings via spontaneous four-wave mixing. We obtain the photon pairs with a 1/e correlation time of 40 ns and the violation of Cauchy-Sehwartz inequality by a factor of 23 - 3. This provides a convenient and efficient method to generate photon pair sources based on an atomic ensemble.
基金Supported by the National Natural Science Foundation of China under Grant No 11105001the Anhui Provincial Natural Science Foundation under Grant Nos 1408085QA22 and 1608085MA09
文摘The single photon scattering properties in a pair of waveguides coupled by a whispering-gallery resonator in- teracting with a semiconductor quantum dot are investigated theoretically. The two waveguides support four possible ports for an incident single photon. The quantum dot is considered a V-type system. The incident direction-dependent single photon scattering properties are studied and equal-output probability from the four ports for a single photon incident is discussed. The influences of backscattering between the two modes of the whispering-gallery resonator for incident direction-dependent single photon scattering properties are also pre- sented.
文摘This is a rotating charge loop model of an electron which explains the electron’s de Broglie base frequency to an accuracy of over 6 decimal places. The model also predicts the magnetic moment of the electron to over 6 decimal places and helps explain the transition from a purely electromagnetic photon to a fermion state of matter. The model also explains how charge and spin are conserved in the transition. Finally, this concept might be extended to explain the muon and tau higher energy states of the electron as well.
基金supported by Fundamental Research Funds for the Central Universities(Grant Nos.ZYGX2016J065 and ZYGX2016J066)
文摘A theoretical and numerical model of photon and electron–positron pair production in strong-field quantum electrodynamics(QED) is described. Two processes are contained in our QED theoretical model, one is photon emission in the interaction of ultra-intense laser with relativistic electron(or positron), and the other is pair production by a gamma-ray photon interacting with the laser field.This model has been included in a PIC/MCC simulation code named BUMBLEBEE 1 D, which is used to simulate the laser plasma interaction. Using this code, the evolutions of electron–positron pair and gamma-ray photon production in ultra-intense laser interaction with aluminum foil target are simulated and analyzed. The simulation results revealed that more positrons are moved in the opposite direction to the incident direction of the laser under the charge separation field.