A novel diffractive optical element, named phase zone photon sieve (PZPS), is presented. There are three kinds of phase plates in PZPSs: PZPS1, PZPS2, and PZPS3. Each of the PZPSs has its own structure and is made ...A novel diffractive optical element, named phase zone photon sieve (PZPS), is presented. There are three kinds of phase plates in PZPSs: PZPS1, PZPS2, and PZPS3. Each of the PZPSs has its own structure and is made on quartz substrate by etching. The three PZPSs have stronger diffraction peak intensity than a photon sieve (PS) when the margin pinhole and zone line width are kept the same. The PZPS3 can produce a smaller central diffractive spot than the ordinary PS with the same number of zones on the Fresnel zone plate. We have given the design method for and the simulation of PZPS and PS. PZPS has potential applications in optical maskless lithography.展开更多
基金Project supported by the National Key Basic Research Special Foundation of China (Grant No 2007CB935302)the National Natural Science Foundation of China (Grant No 60825403)
文摘A novel diffractive optical element, named phase zone photon sieve (PZPS), is presented. There are three kinds of phase plates in PZPSs: PZPS1, PZPS2, and PZPS3. Each of the PZPSs has its own structure and is made on quartz substrate by etching. The three PZPSs have stronger diffraction peak intensity than a photon sieve (PS) when the margin pinhole and zone line width are kept the same. The PZPS3 can produce a smaller central diffractive spot than the ordinary PS with the same number of zones on the Fresnel zone plate. We have given the design method for and the simulation of PZPS and PS. PZPS has potential applications in optical maskless lithography.