The properties of a wave equation for a six-component wave function of a photon are re-analyzed. It is shown that the wave equation presents all the properties required by quantum mechanics, except for the ones that a...The properties of a wave equation for a six-component wave function of a photon are re-analyzed. It is shown that the wave equation presents all the properties required by quantum mechanics, except for the ones that are linked with the definition of the position operator. The situation is contrasted with the three-component formulation based on the Riemann-Silberstein wave function. The inconsistency of the latter with the principles of quantum mechanics is shown to arise from the usual interpretation of the wave function. Finally, the Lorentz invariance of the six-component wave equation is demonstrated explicitly for Lorentz boosts and space inversion.展开更多
A photon structure is advanced based on the experimental evidence and the vector potential quantization at a single photon level. It is shown that the photon is neither a point particle nor an infinite wave but behave...A photon structure is advanced based on the experimental evidence and the vector potential quantization at a single photon level. It is shown that the photon is neither a point particle nor an infinite wave but behaves rather like a local “wave-corpuscle” extended over a wavelength, occupying a minimum quantization volume and guided by a non-local vector potential real wave function. The quantized vector potential oscillates over a wavelength with circular left or right polarization giving birth to orthogonal magnetic and electric fields whose amplitudes are proportional to the square of the frequency. The energy and momentum are carried by the local wave-corpuscle guided by the non-local vector potential wave function suitably normalized.展开更多
We study the photon statistics of pulse-pumped four-wave mixing in fibers with weak coherent signal injection by measuring the intensity correlation functions of individual signal and idler fields. The experimental re...We study the photon statistics of pulse-pumped four-wave mixing in fibers with weak coherent signal injection by measuring the intensity correlation functions of individual signal and idler fields. The experimental results show that the intensity correlation function of individual signal(idler) field g_(s(i))^(2) decreases with the intensity of signal injection. After applying narrow band filter in signal(idler) band, the value of g_(s(i))^(2) decreases from 1.9 ± 0.02(1.9 ± 0.02) to 1.03 ± 0.02(1.05 ± 0.02) when the intensity of signal injection varies from 0 to 120 photons/pulse. The results indicate that the photon statistics changes from Bose–Einstein distribution to Poisson distribution. We calculate the intensity correlation functions by using the multi-mode theory of four-wave mixing in fibers. The theoretical curves well fit the experimental results.Our investigation will be useful for mitigating the crosstalk between quantum and classical channels in a dense wavelength division multiplexing network.展开更多
The features of the band structures of woodpile three-dimensional (3D) photonic crystals composed of plasma and function dielectric constituents, referred to as function plasma photonic crystals (FPPCs), are theor...The features of the band structures of woodpile three-dimensional (3D) photonic crystals composed of plasma and function dielectric constituents, referred to as function plasma photonic crystals (FPPCs), are theoretically studied by a modified plane wave expansion method, and the formulas for computing the band structures are derived. The arrangement for the proposed FPPCs is that the function dielectric columns are surrounded by plasma, and the embedded dielectric columns are stacked according to the woodpile lattices, which are arrayed with facecentered-tetragonal symmetry. The relative permittivity of function dielectric rods depends on the function coefficient and space coordinates. The relationships between the parameters for inserted function dielectric rods and plasma and the band structures are also investigated. The computed results illustrate that the obtained PBG can be tuned by those parameters as mentioned above. Compared to dielectric-air PCs, function dielectric PCs and plasma dielectric PCs with the same topology, a wider bandwidth of the photonic band gap can be observed in the proposed FPPCs. The calculated results also show us another alternative way to realize reconfigurable applications with 3D FPPCs.展开更多
Recently, Zhang et al. (Chin. Phys. B 26 024208 (2017)) investigated the band gap structures and semi-Dirac point of two-dimensional function photonic crystals, and the equations for the plane wave expansion metho...Recently, Zhang et al. (Chin. Phys. B 26 024208 (2017)) investigated the band gap structures and semi-Dirac point of two-dimensional function photonic crystals, and the equations for the plane wave expansion method were induced to obtain the band structures. That report shows the band diagrams with the effects of function coefficient k and medium column ra under TE and TM waves. The proposed results look correct at first glance, but the authors made some mistakes in their report. Thus, the calculated results in their paper are incorrect. According to our calculations, the errors in their report are corrected, and the correct band structures also are presented in this paper.展开更多
Assuming the Dirac wavefunction describes the state of a single particle. We propose that the relation derived by Schrödinger, which contains the Zitterbewegung term, is a position equation for an amplitude m...Assuming the Dirac wavefunction describes the state of a single particle. We propose that the relation derived by Schrödinger, which contains the Zitterbewegung term, is a position equation for an amplitude modulated wave. Namely, the elementary constituents are amplitude modulated waves. Indeed, we surmise that a second wave is associated with the particle, which corresponds to a signal. At the same time, we interpret that Broglie’s wave corresponds to a carrier. Furthermore, the quantum object is a recording medium and, like in a hologram, information encoded on its surface. We suggest a description and the cause of the Zitterbewegung heretofore never considered regarding the previous assertions. Hereunder, we shall also apply the quantum amplitude modulation interpretation to the single-photon wave function by Bialynicki-Birula. The predictions are testable, thence providing evidence for the proposed hypothesis.展开更多
光子晶体是由两种或两种以上的透明材料周期排列构成的功能复合材料,它可以完全反射一定频率范围内的电磁波,这个性能称为光带隙。光子晶体将在光通信、数据存储以及光路设计等方面得到广泛的应用。本文设计了一种应变可调的二维光子晶...光子晶体是由两种或两种以上的透明材料周期排列构成的功能复合材料,它可以完全反射一定频率范围内的电磁波,这个性能称为光带隙。光子晶体将在光通信、数据存储以及光路设计等方面得到广泛的应用。本文设计了一种应变可调的二维光子晶体结构,通过基底产生的正应变改变光子晶体的周期性,从而改变其光带隙性能。利用平面波展开法考察了该结构的应变可调性,即其力致变色效应。结果表明,压应变会显著影响横向电波(Transerse electric waves,TE)的传播特性,打开多条光带隙。并且光带隙的宽度也正比于压应变的大小。利用这样的效应可以制成应变传感器或光学开关等器件。展开更多
文摘The properties of a wave equation for a six-component wave function of a photon are re-analyzed. It is shown that the wave equation presents all the properties required by quantum mechanics, except for the ones that are linked with the definition of the position operator. The situation is contrasted with the three-component formulation based on the Riemann-Silberstein wave function. The inconsistency of the latter with the principles of quantum mechanics is shown to arise from the usual interpretation of the wave function. Finally, the Lorentz invariance of the six-component wave equation is demonstrated explicitly for Lorentz boosts and space inversion.
文摘A photon structure is advanced based on the experimental evidence and the vector potential quantization at a single photon level. It is shown that the photon is neither a point particle nor an infinite wave but behaves rather like a local “wave-corpuscle” extended over a wavelength, occupying a minimum quantization volume and guided by a non-local vector potential real wave function. The quantized vector potential oscillates over a wavelength with circular left or right polarization giving birth to orthogonal magnetic and electric fields whose amplitudes are proportional to the square of the frequency. The energy and momentum are carried by the local wave-corpuscle guided by the non-local vector potential wave function suitably normalized.
基金Project supported by the National Natural Science Foundation of China(Grant No.11527808)the State Key Development Program for Basic Research of China(Grant No.2014CB340103)+3 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120032110055)the Natural Science Foundation of Tianjin,China(Grant No.14JCQNJC02300)the Program for Changjiang Scholars and Innovative Research Team in University,Chinathe Program of Introducing Talents of Discipline to Universities,China(Grant No.B07014)
文摘We study the photon statistics of pulse-pumped four-wave mixing in fibers with weak coherent signal injection by measuring the intensity correlation functions of individual signal and idler fields. The experimental results show that the intensity correlation function of individual signal(idler) field g_(s(i))^(2) decreases with the intensity of signal injection. After applying narrow band filter in signal(idler) band, the value of g_(s(i))^(2) decreases from 1.9 ± 0.02(1.9 ± 0.02) to 1.03 ± 0.02(1.05 ± 0.02) when the intensity of signal injection varies from 0 to 120 photons/pulse. The results indicate that the photon statistics changes from Bose–Einstein distribution to Poisson distribution. We calculate the intensity correlation functions by using the multi-mode theory of four-wave mixing in fibers. The theoretical curves well fit the experimental results.Our investigation will be useful for mitigating the crosstalk between quantum and classical channels in a dense wavelength division multiplexing network.
基金funded by the Postdoctoral Foundation of Jiangsu Province (No. 1501016A)China Postdoctoral Science Foundation (No. 2015M581790)the Special Grade China Postdoctoral Science Foundation (No. 2016T90455)
文摘The features of the band structures of woodpile three-dimensional (3D) photonic crystals composed of plasma and function dielectric constituents, referred to as function plasma photonic crystals (FPPCs), are theoretically studied by a modified plane wave expansion method, and the formulas for computing the band structures are derived. The arrangement for the proposed FPPCs is that the function dielectric columns are surrounded by plasma, and the embedded dielectric columns are stacked according to the woodpile lattices, which are arrayed with facecentered-tetragonal symmetry. The relative permittivity of function dielectric rods depends on the function coefficient and space coordinates. The relationships between the parameters for inserted function dielectric rods and plasma and the band structures are also investigated. The computed results illustrate that the obtained PBG can be tuned by those parameters as mentioned above. Compared to dielectric-air PCs, function dielectric PCs and plasma dielectric PCs with the same topology, a wider bandwidth of the photonic band gap can be observed in the proposed FPPCs. The calculated results also show us another alternative way to realize reconfigurable applications with 3D FPPCs.
基金Project supported by the Special Grade of the Financial Support from the China Postdoctoral Science Foundation(Grant No.2016T90455)the China Postdoctoral Science Foundation(Grant No.2015M581790)the Chinese Jiangsu Planned Projects for Postdoctoral Research Funds,China(Grant No.1501016A)
文摘Recently, Zhang et al. (Chin. Phys. B 26 024208 (2017)) investigated the band gap structures and semi-Dirac point of two-dimensional function photonic crystals, and the equations for the plane wave expansion method were induced to obtain the band structures. That report shows the band diagrams with the effects of function coefficient k and medium column ra under TE and TM waves. The proposed results look correct at first glance, but the authors made some mistakes in their report. Thus, the calculated results in their paper are incorrect. According to our calculations, the errors in their report are corrected, and the correct band structures also are presented in this paper.
文摘Assuming the Dirac wavefunction describes the state of a single particle. We propose that the relation derived by Schrödinger, which contains the Zitterbewegung term, is a position equation for an amplitude modulated wave. Namely, the elementary constituents are amplitude modulated waves. Indeed, we surmise that a second wave is associated with the particle, which corresponds to a signal. At the same time, we interpret that Broglie’s wave corresponds to a carrier. Furthermore, the quantum object is a recording medium and, like in a hologram, information encoded on its surface. We suggest a description and the cause of the Zitterbewegung heretofore never considered regarding the previous assertions. Hereunder, we shall also apply the quantum amplitude modulation interpretation to the single-photon wave function by Bialynicki-Birula. The predictions are testable, thence providing evidence for the proposed hypothesis.
文摘光子晶体是由两种或两种以上的透明材料周期排列构成的功能复合材料,它可以完全反射一定频率范围内的电磁波,这个性能称为光带隙。光子晶体将在光通信、数据存储以及光路设计等方面得到广泛的应用。本文设计了一种应变可调的二维光子晶体结构,通过基底产生的正应变改变光子晶体的周期性,从而改变其光带隙性能。利用平面波展开法考察了该结构的应变可调性,即其力致变色效应。结果表明,压应变会显著影响横向电波(Transerse electric waves,TE)的传播特性,打开多条光带隙。并且光带隙的宽度也正比于压应变的大小。利用这样的效应可以制成应变传感器或光学开关等器件。