In this work, the characteristics of the photonic crystal tunneling injection quantum dot vertical cavity surface emitting lasers(Ph C-TIQD-VCSEL) are studied through analyzing a modified modulation transfer functio...In this work, the characteristics of the photonic crystal tunneling injection quantum dot vertical cavity surface emitting lasers(Ph C-TIQD-VCSEL) are studied through analyzing a modified modulation transfer function. The function is based on the rate equations describing the carrier dynamics at different energy levels of dot and injector well. Although the frequency modulation response component associated with carrier dynamics in wetting layer(WL) and at excited state(ES) levels of dots limits the total bandwidth in conventional QD-VCSEL, our study shows that it can be compensated for by electron tunneling from the injector well into the dot in TIQD structure. Carrier back tunneling time is one of the most important parameters, and by increment of that, the bias current dependence of the total bandwidth will be insignificant. It is proved that at high bias current, the limitation of the WL-ES level plays an important role in reducing the total bandwidth and results in rollovers on 3-d B bandwidth-I curves. In such a way, for smaller air hole diameter of photonic crystal, the effect of this reduction is stronger.展开更多
We fabricate photonic crystal slab microcavities embedded with GaAs quantum dots by electron beam lithography and droplet epitaxy. The Purcell effect of exciton emission of the quantum dots is confirmed by the micro p...We fabricate photonic crystal slab microcavities embedded with GaAs quantum dots by electron beam lithography and droplet epitaxy. The Purcell effect of exciton emission of the quantum dots is confirmed by the micro photoluminescence measurement. The resonance wavelengths, widths, and polarization are consistent with numerical simulation results.展开更多
文摘In this work, the characteristics of the photonic crystal tunneling injection quantum dot vertical cavity surface emitting lasers(Ph C-TIQD-VCSEL) are studied through analyzing a modified modulation transfer function. The function is based on the rate equations describing the carrier dynamics at different energy levels of dot and injector well. Although the frequency modulation response component associated with carrier dynamics in wetting layer(WL) and at excited state(ES) levels of dots limits the total bandwidth in conventional QD-VCSEL, our study shows that it can be compensated for by electron tunneling from the injector well into the dot in TIQD structure. Carrier back tunneling time is one of the most important parameters, and by increment of that, the bias current dependence of the total bandwidth will be insignificant. It is proved that at high bias current, the limitation of the WL-ES level plays an important role in reducing the total bandwidth and results in rollovers on 3-d B bandwidth-I curves. In such a way, for smaller air hole diameter of photonic crystal, the effect of this reduction is stronger.
基金supported by a Grant-in-Aid for Scientific Research from the Ministry of Education,Science,Sports,and Culture of Japan under Grant No.20340080.
文摘We fabricate photonic crystal slab microcavities embedded with GaAs quantum dots by electron beam lithography and droplet epitaxy. The Purcell effect of exciton emission of the quantum dots is confirmed by the micro photoluminescence measurement. The resonance wavelengths, widths, and polarization are consistent with numerical simulation results.