This paper stuides numerically the model equation in a one dimensional defective photonic lattice by modifying the potential function to a periodic function. It is found that defect modes (DMs) can be regarded as Bl...This paper stuides numerically the model equation in a one dimensional defective photonic lattice by modifying the potential function to a periodic function. It is found that defect modes (DMs) can be regarded as Bloch modes which are excited from the extended photonie band-gap structure at Bloch wave-numbers with kx = 0. The DMs for both positive and negative defects are considered in this method.展开更多
We address the existence, stability and propagation dynamics of solitons supported by large-scale defects surrounded by the harmonic photonic lattices imprinted in the defocusing saturable nonlinear medium. Several fa...We address the existence, stability and propagation dynamics of solitons supported by large-scale defects surrounded by the harmonic photonic lattices imprinted in the defocusing saturable nonlinear medium. Several families of soliton solutions, including flat-topped, dipole-like, and multipole-like solitons, can be supported by the defected lattices with different heights of defects. The width of existence domain of solitons is determined solely by the saturable parameter. The existence domains of various types of solitons can be shifted by the variations of defect size, lattice depth and soliton order. Solitons in the model are stable in a wide parameter window, provided that the propagation constant exceeds a critical value, which is in sharp contrast to the case where the soliton trains is supported by periodic lattices imprinted in defocusing saturable nonlinear medium. We also find stable solitons in the semi-infinite gap which rarely occur in the defocusing media.展开更多
We report on theoretical investigations of beam control in one-dimensional tri-core photonic lattices (PLs). Linear splitting is illustrated in tri-core PLs; the effect of defect strength on the splitting is discuss...We report on theoretical investigations of beam control in one-dimensional tri-core photonic lattices (PLs). Linear splitting is illustrated in tri-core PLs; the effect of defect strength on the splitting is discussed in depth for single-wavelength light. We reveal that splitting disappears when the defect strength trends to zero, while reoccurring under nonlinearity. Multi-color splitting and active control are also proposed in such photonic structures.展开更多
We demonstrate the coherent interactions of lattice soliton trains, including in-band solitons (IBSs) and gap soliton trains (GSTs), in optically induced two-dimensional photonic lattices with self-defocusing nonl...We demonstrate the coherent interactions of lattice soliton trains, including in-band solitons (IBSs) and gap soliton trains (GSTs), in optically induced two-dimensional photonic lattices with self-defocusing nonlinearity. It is revealed that the π-staggered phase structures of the lattice soliton trains will lead to anomalous interactions. Solely by changing their initial separations, the transition between attractive and repulsive interaction forces or reversion of the energy transfer can be obtained. The ‘negative refraction' effect of the soliton trains on the interaction is also discussed. Moreover, two interacting IBSs can merge into one GST when attraction or energy transfer happens.展开更多
We investigated the Talbot effect in an anti-parity-time(PT)symmetric synthetic photonic lattice composed of two coupled fiber loops.We calculated the band structures and found that with an increase in the gain-loss p...We investigated the Talbot effect in an anti-parity-time(PT)symmetric synthetic photonic lattice composed of two coupled fiber loops.We calculated the band structures and found that with an increase in the gain-loss parameter,the band transitions from a real spectrum to a complex spectrum.We study the influence of phase in the Hermitian operator on the Talbot effect,and the Talbot effect disappears when the period of the input field is N>8.Further study shows that the variation of Talbot distance can also be modulated by non-Hermitian coefficients of gain and loss.This work may find significant applications in pulse repetition-rate multiplication,temporal invisibility,and tunable intensity amplifiers.展开更多
through single-site excitation. By changing the initial to the lattices, periodic oscillations of the localized quadruple state becomes a rotating doubly charged undergo charge-flipping when the rotating direction is ...through single-site excitation. By changing the initial to the lattices, periodic oscillations of the localized quadruple state becomes a rotating doubly charged undergo charge-flipping when the rotating direction is orientation of the incident quadruple beam related quadruple mode may be obtained. The localized optical vortex (DCV) during rotation and should reversed.展开更多
We experimentally study the transport properties of dipolar and fundamental modes on one dimensional(1D) coupled waveguide arrays. By carefully modulating a wide optical beam, we are able to effectively excite dipolar...We experimentally study the transport properties of dipolar and fundamental modes on one dimensional(1D) coupled waveguide arrays. By carefully modulating a wide optical beam, we are able to effectively excite dipolar or fundamental modes to study discrete diffraction(single-site excitation) and gaussian beam propagation(multi-site excitation plus a phase gradient). We observe that dipolar modes experience a larger spreading area due to an effective larger coupling constant, which is found to be more than two times larger than the one for fundamental modes. Additionally, we study the effect of non-diagonal disorder and find that while fundamental modes are already trapped on a weakly disorder array, dipoles are still able to propagate across the system.展开更多
Engineering of the orbital angular momentum(OAM)of light due to interaction with photonic lattices reveals rich physics and motivates potential applications.We report the experimental creation of regularly distributed...Engineering of the orbital angular momentum(OAM)of light due to interaction with photonic lattices reveals rich physics and motivates potential applications.We report the experimental creation of regularly distributed quantized vortex arrays in momentum space by probing the honeycomb and hexagonal photonic lattices with a single focused Gaussian beam.For the honeycomb lattice,the vortices are associated with Dirac points.However,we show that the resulting spatial patterns of vortices are strongly defined by the symmetry of the wave packet evolving in the photonic lattices and not by their topological properties.Our findings reveal the underlying physics by connecting the symmetry and OAM conversion and provide a simple and efficient method to create regularly distributed multiple vortices from unstructured light.展开更多
The optical Bloch oscillation(OBO)is an optical-quantum analogy effect that is significant for light field manipulations,such as light beam localization,oscillation and tunneling.As an intra-band oscillation,OBO was i...The optical Bloch oscillation(OBO)is an optical-quantum analogy effect that is significant for light field manipulations,such as light beam localization,oscillation and tunneling.As an intra-band oscillation,OBO was important for optical investigations in photonic lattices and atomic vapors over an extended period of time.However,OBO in reconfigurable platforms is still an open topic,even though tunability is highly desired in developing modern photonic techniques.Here we theoretically establish and experimentally demonstrate OBO in an electromagnet-ically induced photonic lattice with a ramping refractive index,established in a coherently-prepared three-level 85 Rb atomic vapor under the electromagnetically induced transparency condition.This is achieved by interfering two coupling beams with Gaussian profiles and launching a probe beam that exhibits OBO within the resulting lattice.The induced reconfigurable photonic lattice possesses a transverse gradient,due to the innate edges of Gaussian beams,and sets a new stage for guiding the flow of light in periodic photonic environments.Our results should motivate better understanding of peculiar physical properties of an intriguing quantum-optical analogy in an atomic setting.展开更多
Super-Bloch oscillations(SBOs)are amplified versions of direct current(dc)-driving Bloch oscillations realized under the detuned dc-and alternating current(ac)-driving electric fields.A unique feature of SBOs is the c...Super-Bloch oscillations(SBOs)are amplified versions of direct current(dc)-driving Bloch oscillations realized under the detuned dc-and alternating current(ac)-driving electric fields.A unique feature of SBOs is the coherent oscillation inhibition via the ac-driving renormalization effect,which is dubbed as the collapse of SBOs.However,previous experimental studies on SBOs have only been limited to the weak ac-driving regime,and the collapse of SBOs has not been observed.Here,by harnessing a synthetic temporal lattice in fiber-loop systems,we push the ac-field into a strong-driving regime and observe the collapse of SBOs,which manifests as the oscillation-trajectory localization at specific ac-driving amplitudes and oscillation-direction flip by crossing collapse points.By adopting arbitrary-wave ac-driving fields,we also realize generalized SBOs with engineered collapse conditions.Finally,we exploit the oscillation-direction flip features to design tunable temporal beam routers and splitters.We initiate and demonstrate the collapse of SBOs,which may feature applications in coherent wave localization control for optical communications and signal processing.展开更多
Two-dimensional vector vortex solitons in harmonic optical lattices are investigated. The stability properties of such solitons are closely connected to the lattice depth V0. For small V0, vector vortex solitons with ...Two-dimensional vector vortex solitons in harmonic optical lattices are investigated. The stability properties of such solitons are closely connected to the lattice depth V0. For small V0, vector vortex solitons with the total zero-angular momentum are more stable than those with the total nonzero-angular momentum, while for large V0, this case is inversed. If V0 is large enough, both the types of such solitons are stable.展开更多
We elucidate the existence, stability and propagation dynamics of multi-spot soliton packets in focusing saturable media. Such solitons are supported by an interface beside which two harmonically photonic lattices wit...We elucidate the existence, stability and propagation dynamics of multi-spot soliton packets in focusing saturable media. Such solitons are supported by an interface beside which two harmonically photonic lattices with different modulation depths are imprinted. We show that the surface model can support stable higher-order structures in the form of asymmetrical surface soliton trains, which is in sharp contrast to homogeneous media or uniform harmonic lattice modulations where stable asymmetrical multi-peaked solitons do not exist. Surface trains can be viewed as higher-order soliton states bound together by several different lowest order solitons with appropriate relative phases. Their existence as stable objects enriches the concept of compact manipulation of several different solitons as a single entity and offers additional freedom to control the shape of solitons by adjusting the modulation depths beside the interface.展开更多
The investigation of discrete solitons in quasi-periodic structure,namely azimuthally modulated Bessel lattices imprinted in photorefractive crystal,is introduced.It is shown that the discrete solitons centralize more...The investigation of discrete solitons in quasi-periodic structure,namely azimuthally modulated Bessel lattices imprinted in photorefractive crystal,is introduced.It is shown that the discrete solitons centralize more energy in the internal layers than the Bessel lattice and moreover,the effect of centralization of discrete solitons in focusing media is stronger than that in defocusing media.The discrete solitons are unstable in some propagation constant windows and they are absolutely stable when the propagation constant is large enough.The stable solitons perform long-distance and periodic oscillation of intensity and shape under the perturbation of intrinsic excitation.展开更多
Bose-Einstein condensate(BEC)exhibits a variety of fascinating and unexpected macroscopic phenomena,and has attracted sustained attention in recent years-particularly in the field of solitons and associated nonlinear ...Bose-Einstein condensate(BEC)exhibits a variety of fascinating and unexpected macroscopic phenomena,and has attracted sustained attention in recent years-particularly in the field of solitons and associated nonlinear phenomena.Meanwhile,optical lattices have emerged as a versatile toolbox for understanding the properties and controlling the dynamics of BEC,among which the realization of bright gap solitons is an iconic result.However,the dark gap solitons are still experimentally unproven,and their properties in more than one dimension remain unknown.In light of this,we describe,numerically and theoretically,the formation and stability properties of gap-type dark localized modes in the context of ultracold atoms trapped in optical lattices.Two kinds of stable dark localized modes-gap solitons and soliton clusters-are predicted in both the one-and two-dimensional geometries.The vortical counterparts of both modes are also constructed in two dimensions.A unique feature is the existence of a nonlinear Bloch-wave background on which all above gap modes are situated.By employing linear-stability analysis and direct simulations,stability regions of the predicted modes are obtained.Our results offer the possibility of observing dark gap localized structures with cutting-edge techniques in ultracold atoms experiments and beyond,including in optics with photonic crystals and lattices.展开更多
It is of great significance to present a photonic crystal lattice structure with a wide photonic bandgap. A two-dimension complex lattice photonic crystal is proposed. The photonic crystal is composed of complex latti...It is of great significance to present a photonic crystal lattice structure with a wide photonic bandgap. A two-dimension complex lattice photonic crystal is proposed. The photonic crystal is composed of complex lattices with triangular structure, and each single cell is surrounded by six scatterers in an hexagon. The photonic band gaps are calculated based on the plane wave expansion (PWE) method. The results indicate that the photonic crystal has tunable large TM polarization band gap, and a gap-midgap ra...展开更多
We theoretically demonstrate the imaging properties of a complex two-dimensional(2D) face-centered square lattice photonic crystal(PC) made from germanium cylinders in air background. The finitedifference time-domain(...We theoretically demonstrate the imaging properties of a complex two-dimensional(2D) face-centered square lattice photonic crystal(PC) made from germanium cylinders in air background. The finitedifference time-domain(FDTD) method is employed to calculate the band structure and simulate image construction. The band diagram of the complex structure is significantly compressed. Negative refraction occurs in the second energy band with negative phase velocity at a frequency of 0.228(2πc/a), which is lower than results from previous studies. Lower negative refraction frequency leads to higher image resolution. Numerical results show that the spatial resolution of the system reaches 0.7296λ, which is lower than the incident wavelength.展开更多
In this work, we study the photonic band of cumulative Fibonacci lattices, of which the structure is composed of all generated units in a Fibonacci sequence. The results are compared with distributed Bragg reflector(D...In this work, we study the photonic band of cumulative Fibonacci lattices, of which the structure is composed of all generated units in a Fibonacci sequence. The results are compared with distributed Bragg reflector(DBR)structures with the same numbers of layers. Photonic bandgaps are found at two characteristic frequencies, symmetrically separated from the central bandgap in the DBR counterpart. Field amplitude and phase distribution in the Fibonacci lattice indicates an interferential origin of the bandgaps. Fourier transform on the refractive index profile is carried out, and the result confirms a determinate long-range periodicity that agrees well with the photonic band structure.展开更多
Synthetic dimensions(SDs)opened the door for exploring previously inaccessible phenomena in high-dimensional space.However,construction of synthetic lattices with desired coupling properties is a challenging and unint...Synthetic dimensions(SDs)opened the door for exploring previously inaccessible phenomena in high-dimensional space.However,construction of synthetic lattices with desired coupling properties is a challenging and unintuitive task.Here,we use deep learning artificial neural networks(ANNs)to construct lattices in real space with a predesigned spectrum of mode eigenvalues,and thus to validly design the dynamics in synthetic mode dimensions.By employing judiciously chosen perturbations(wiggling of waveguides at desired frequencies),we show resonant mode coupling and tailored dynamics in SDs.Two distinct examples are illustrated:one features uniform synthetic mode coupling,and the other showcases the edge defects that allow for tailored light transport and confinement.Furthermore,we demonstrate morphing of light into a topologically protected edge mode with modified Su-Schrieffer-Heeger photonic lattices.Such an ANN-assisted construction of SDs may advance toward“utopian networks,”opening new avenues for fundamental research beyond geometric limitations as well as for applications in mode lasing,optical switching,and communication technologies.展开更多
A theory of ultrasonic generation via direct interaction of transverse optic (TO) phonons with photons in anharmonic lattice of ionic crystals is presented. There are two methods of supplying light energy for the exci...A theory of ultrasonic generation via direct interaction of transverse optic (TO) phonons with photons in anharmonic lattice of ionic crystals is presented. There are two methods of supplying light energy for the excitation of TO lattice wave as a high frequency ultrasound: (A) incident light comes from the source outside the cavity? fulfilled with ionic crystal medium, (B) photon mode of the cavity possesses the gain of amplification by stimulated radiation of active atoms doping in the medium. More attention is drawn to the case (B). The working system of case (B), as a mixture of lasing action and ultrasonic generation, has the threshold phenomena like usual laser. And the linear stability analysis shows that the nonlineax phonon-photon coupling and the interaction among phonons themselves, both of which reflect the anharmonicity of lattice vibration, are necessary to the stable ultrasonic output. So this laser-ultrasonic generation mixture would be also a measure to investigate the lattice-dynamic nonlinearity and correlated electromagnetic properties of ionic crystals.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10674038 and 10604042)the National Basic Research Program of China (Grant No. 2006CB302901)
文摘This paper stuides numerically the model equation in a one dimensional defective photonic lattice by modifying the potential function to a periodic function. It is found that defect modes (DMs) can be regarded as Bloch modes which are excited from the extended photonie band-gap structure at Bloch wave-numbers with kx = 0. The DMs for both positive and negative defects are considered in this method.
基金supported by the National Natural Science Foundation of China (Grant No. 10704067)the Natural Science Foundation of Zhejiang Province,China (Grant No. Y6100381)
文摘We address the existence, stability and propagation dynamics of solitons supported by large-scale defects surrounded by the harmonic photonic lattices imprinted in the defocusing saturable nonlinear medium. Several families of soliton solutions, including flat-topped, dipole-like, and multipole-like solitons, can be supported by the defected lattices with different heights of defects. The width of existence domain of solitons is determined solely by the saturable parameter. The existence domains of various types of solitons can be shifted by the variations of defect size, lattice depth and soliton order. Solitons in the model are stable in a wide parameter window, provided that the propagation constant exceeds a critical value, which is in sharp contrast to the case where the soliton trains is supported by periodic lattices imprinted in defocusing saturable nonlinear medium. We also find stable solitons in the semi-infinite gap which rarely occur in the defocusing media.
基金Project supported by the State Key Program for Basic Research of China (Grant Nos.2013CB632703 and 2010CB934101)the National Natural Science Foundation of China (Grant Nos.10904078 and 60908002)+4 种基金the International Science & Technology Cooperation Program of China (Grant No.2011DFA52870)the International Cooperation Program of Tianjin (Grant No.11ZGHHZ01000)the "111"Project (Grant No.B07013)the Program for New Century Excellent Talents in University of China (Grant No.NCET-10-0507)the Specialized Research Fund for the Doctorial Program of Higher Education of China (Grant No.20120031120031)
文摘We report on theoretical investigations of beam control in one-dimensional tri-core photonic lattices (PLs). Linear splitting is illustrated in tri-core PLs; the effect of defect strength on the splitting is discussed in depth for single-wavelength light. We reveal that splitting disappears when the defect strength trends to zero, while reoccurring under nonlinearity. Multi-color splitting and active control are also proposed in such photonic structures.
基金Project supported by the Northwestern Polytechnical University (NPU) Foundation for Fundamental Research and the Doctorate Foundation of NPU (Grant No.CX200914)
文摘We demonstrate the coherent interactions of lattice soliton trains, including in-band solitons (IBSs) and gap soliton trains (GSTs), in optically induced two-dimensional photonic lattices with self-defocusing nonlinearity. It is revealed that the π-staggered phase structures of the lattice soliton trains will lead to anomalous interactions. Solely by changing their initial separations, the transition between attractive and repulsive interaction forces or reversion of the energy transfer can be obtained. The ‘negative refraction' effect of the soliton trains on the interaction is also discussed. Moreover, two interacting IBSs can merge into one GST when attraction or energy transfer happens.
基金supported by the National Key Research and Development Program of China(Nos.2022YFA1404800 and 2019YFA0705000)the National Natural Science Foundation of China(Nos.12104272,12274270,91950104,12192254,92250304,and 11974218)the Local Science and Technology Development Project of the Central Government(No.YDZX20203700001766)。
文摘We investigated the Talbot effect in an anti-parity-time(PT)symmetric synthetic photonic lattice composed of two coupled fiber loops.We calculated the band structures and found that with an increase in the gain-loss parameter,the band transitions from a real spectrum to a complex spectrum.We study the influence of phase in the Hermitian operator on the Talbot effect,and the Talbot effect disappears when the period of the input field is N>8.Further study shows that the variation of Talbot distance can also be modulated by non-Hermitian coefficients of gain and loss.This work may find significant applications in pulse repetition-rate multiplication,temporal invisibility,and tunable intensity amplifiers.
基金supported by the National"973"Program of China(Nos.2013CB632703 and 2013CB328702)the National Natural Science Foundation of China(Nos.60908002 and 10904078)+4 种基金the International S&T Cooperation Program of China(No.2011DFA52870)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20120031120031)the International Cooperation Program of Tianjin(No.11ZGHHZ01000)the"111"Project(No.B07013)the Program for New Century Excellent Talents in University(No.NCET-10-0507)
文摘through single-site excitation. By changing the initial to the lattices, periodic oscillations of the localized quadruple state becomes a rotating doubly charged undergo charge-flipping when the rotating direction is orientation of the incident quadruple beam related quadruple mode may be obtained. The localized optical vortex (DCV) during rotation and should reversed.
基金supported in part by Program ICM(RC130001)FONDECYT(1151444)+1 种基金the Deutsche Forschungsgemeinschaft(462/6–1,SZ 276/7–1,SZ276/9–1,BL 574/13–1)the German Ministry of Education and Research(Center for Innovation Competence Program,03Z1HN31)
文摘We experimentally study the transport properties of dipolar and fundamental modes on one dimensional(1D) coupled waveguide arrays. By carefully modulating a wide optical beam, we are able to effectively excite dipolar or fundamental modes to study discrete diffraction(single-site excitation) and gaussian beam propagation(multi-site excitation plus a phase gradient). We observe that dipolar modes experience a larger spreading area due to an effective larger coupling constant, which is found to be more than two times larger than the one for fundamental modes. Additionally, we study the effect of non-diagonal disorder and find that while fundamental modes are already trapped on a weakly disorder array, dipoles are still able to propagate across the system.
基金supported by the National Key R&D Program of China(Grant Nos.2018YFA0307500 and 2023YFA1407100)the Key Scientific and Technological Innovation Team of Shaanxi Province(Grant No.2021TD-56)+7 种基金the National Natural Science Foundation of China(Grant Nos.12074303,62022066,12074306,and 11804267)the IBS Young Scientist Fellowship(Grant No.IBS-R024-Y3)the Basis Foundation(Grant No.21-1-3-30-1)the support of the European Union’s Horizon 2020 program,through an FET Open research and innovation action(Grant No.964770)(Topo Light)he ANR projects Labex Ga NEXT(Grant No.ANR-11-LABX0014)“NEWAVE”(Grant No.ANR-21-CE24-0019)the ANR program“Investissements d’Avenir”through the IDEX-ISITE initiative 16-IDEX-0001(Grant No.CAP 20-25)support by the Russian Science Foundation(Grant No.22-12-00144)
文摘Engineering of the orbital angular momentum(OAM)of light due to interaction with photonic lattices reveals rich physics and motivates potential applications.We report the experimental creation of regularly distributed quantized vortex arrays in momentum space by probing the honeycomb and hexagonal photonic lattices with a single focused Gaussian beam.For the honeycomb lattice,the vortices are associated with Dirac points.However,we show that the resulting spatial patterns of vortices are strongly defined by the symmetry of the wave packet evolving in the photonic lattices and not by their topological properties.Our findings reveal the underlying physics by connecting the symmetry and OAM conversion and provide a simple and efficient method to create regularly distributed multiple vortices from unstructured light.
基金This work was supported by National Key R&D Program of China(Grants No.2018YFA0307500,2017YFA0303703)National Natural Science Foundation of China(Grants No.62022066,12074306,61975159,and 12074308)Work in Qatar is supported by the NPRP 11S-1126-170033 project from the Qatar National Research Fund.
文摘The optical Bloch oscillation(OBO)is an optical-quantum analogy effect that is significant for light field manipulations,such as light beam localization,oscillation and tunneling.As an intra-band oscillation,OBO was important for optical investigations in photonic lattices and atomic vapors over an extended period of time.However,OBO in reconfigurable platforms is still an open topic,even though tunability is highly desired in developing modern photonic techniques.Here we theoretically establish and experimentally demonstrate OBO in an electromagnet-ically induced photonic lattice with a ramping refractive index,established in a coherently-prepared three-level 85 Rb atomic vapor under the electromagnetically induced transparency condition.This is achieved by interfering two coupling beams with Gaussian profiles and launching a probe beam that exhibits OBO within the resulting lattice.The induced reconfigurable photonic lattice possesses a transverse gradient,due to the innate edges of Gaussian beams,and sets a new stage for guiding the flow of light in periodic photonic environments.Our results should motivate better understanding of peculiar physical properties of an intriguing quantum-optical analogy in an atomic setting.
基金supported by the National Natural Science Foundation of China(Grant Nos.12374305,12204185,11974124,62305122,62375097,and 12021004)the Natural Science Foundation of Hubei Province(Grant Nos.2022CFB036 and 2023AFB822)the Hubei Key Laboratory of Optical Information and Pattern Recognition,Wuhan Institute of Technology(Grant No.202202)
文摘Super-Bloch oscillations(SBOs)are amplified versions of direct current(dc)-driving Bloch oscillations realized under the detuned dc-and alternating current(ac)-driving electric fields.A unique feature of SBOs is the coherent oscillation inhibition via the ac-driving renormalization effect,which is dubbed as the collapse of SBOs.However,previous experimental studies on SBOs have only been limited to the weak ac-driving regime,and the collapse of SBOs has not been observed.Here,by harnessing a synthetic temporal lattice in fiber-loop systems,we push the ac-field into a strong-driving regime and observe the collapse of SBOs,which manifests as the oscillation-trajectory localization at specific ac-driving amplitudes and oscillation-direction flip by crossing collapse points.By adopting arbitrary-wave ac-driving fields,we also realize generalized SBOs with engineered collapse conditions.Finally,we exploit the oscillation-direction flip features to design tunable temporal beam routers and splitters.We initiate and demonstrate the collapse of SBOs,which may feature applications in coherent wave localization control for optical communications and signal processing.
基金Supported by the National Natural Science Foundation of China under Grant No 10274078.
文摘Two-dimensional vector vortex solitons in harmonic optical lattices are investigated. The stability properties of such solitons are closely connected to the lattice depth V0. For small V0, vector vortex solitons with the total zero-angular momentum are more stable than those with the total nonzero-angular momentum, while for large V0, this case is inversed. If V0 is large enough, both the types of such solitons are stable.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10704067)
文摘We elucidate the existence, stability and propagation dynamics of multi-spot soliton packets in focusing saturable media. Such solitons are supported by an interface beside which two harmonically photonic lattices with different modulation depths are imprinted. We show that the surface model can support stable higher-order structures in the form of asymmetrical surface soliton trains, which is in sharp contrast to homogeneous media or uniform harmonic lattice modulations where stable asymmetrical multi-peaked solitons do not exist. Surface trains can be viewed as higher-order soliton states bound together by several different lowest order solitons with appropriate relative phases. Their existence as stable objects enriches the concept of compact manipulation of several different solitons as a single entity and offers additional freedom to control the shape of solitons by adjusting the modulation depths beside the interface.
基金supported by the National Natural Science Foundation of China (Grant No. 61144004)
文摘The investigation of discrete solitons in quasi-periodic structure,namely azimuthally modulated Bessel lattices imprinted in photorefractive crystal,is introduced.It is shown that the discrete solitons centralize more energy in the internal layers than the Bessel lattice and moreover,the effect of centralization of discrete solitons in focusing media is stronger than that in defocusing media.The discrete solitons are unstable in some propagation constant windows and they are absolutely stable when the propagation constant is large enough.The stable solitons perform long-distance and periodic oscillation of intensity and shape under the perturbation of intrinsic excitation.
基金This work was supported,in part,by the National Natural Science Foundation of China(Project Nos.61690224 and 61690222)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Project No.2016357).
文摘Bose-Einstein condensate(BEC)exhibits a variety of fascinating and unexpected macroscopic phenomena,and has attracted sustained attention in recent years-particularly in the field of solitons and associated nonlinear phenomena.Meanwhile,optical lattices have emerged as a versatile toolbox for understanding the properties and controlling the dynamics of BEC,among which the realization of bright gap solitons is an iconic result.However,the dark gap solitons are still experimentally unproven,and their properties in more than one dimension remain unknown.In light of this,we describe,numerically and theoretically,the formation and stability properties of gap-type dark localized modes in the context of ultracold atoms trapped in optical lattices.Two kinds of stable dark localized modes-gap solitons and soliton clusters-are predicted in both the one-and two-dimensional geometries.The vortical counterparts of both modes are also constructed in two dimensions.A unique feature is the existence of a nonlinear Bloch-wave background on which all above gap modes are situated.By employing linear-stability analysis and direct simulations,stability regions of the predicted modes are obtained.Our results offer the possibility of observing dark gap localized structures with cutting-edge techniques in ultracold atoms experiments and beyond,including in optics with photonic crystals and lattices.
基金supported by the Special Foundation for Harb-in Young Scientists (Grant Number 2008RFQXG031)the Ba-sic Research Foundation of Harbin Engineering University.
文摘It is of great significance to present a photonic crystal lattice structure with a wide photonic bandgap. A two-dimension complex lattice photonic crystal is proposed. The photonic crystal is composed of complex lattices with triangular structure, and each single cell is surrounded by six scatterers in an hexagon. The photonic band gaps are calculated based on the plane wave expansion (PWE) method. The results indicate that the photonic crystal has tunable large TM polarization band gap, and a gap-midgap ra...
文摘We theoretically demonstrate the imaging properties of a complex two-dimensional(2D) face-centered square lattice photonic crystal(PC) made from germanium cylinders in air background. The finitedifference time-domain(FDTD) method is employed to calculate the band structure and simulate image construction. The band diagram of the complex structure is significantly compressed. Negative refraction occurs in the second energy band with negative phase velocity at a frequency of 0.228(2πc/a), which is lower than results from previous studies. Lower negative refraction frequency leads to higher image resolution. Numerical results show that the spatial resolution of the system reaches 0.7296λ, which is lower than the incident wavelength.
基金National Natural Science Foundation of China(NSFC)(11574166)Science and Technology Foundation for Youth Talents of the Educational Commission of Hubei Province of China(Q2015002)
文摘In this work, we study the photonic band of cumulative Fibonacci lattices, of which the structure is composed of all generated units in a Fibonacci sequence. The results are compared with distributed Bragg reflector(DBR)structures with the same numbers of layers. Photonic bandgaps are found at two characteristic frequencies, symmetrically separated from the central bandgap in the DBR counterpart. Field amplitude and phase distribution in the Fibonacci lattice indicates an interferential origin of the bandgaps. Fourier transform on the refractive index profile is carried out, and the result confirms a determinate long-range periodicity that agrees well with the photonic band structure.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1404800)the National Natural Science Foundation of China(Grant Nos.12134006,12274242,11922408,and 12204252)+7 种基金the China Postdoctoral Science Foundation(Grant Nos.BX2021134 and 2021M701790)the Natural Science Foundation of Tianjin for Distinguished Young Scholars(Grant No.21JCJQJC00050)PCSIRT(Grant No.IRT_13R29)the 111 Project(Grant No.B23045)in Chinasupport from the Croatian-Chinese bilateral project funded by the Ministry of Science and Education in Croatia and the Ministry of Science and Technology in Chinasupport from the project“Implementation of cutting-edge research and its application as part of the Scientific Center of Excellence for Quantum and Complex Systems,and Representations of Lie Algebras,”European UnionEuropean Regional Development Fundsupport from the Canada Research Chair program and from NSERC via the Discovery Grant program
文摘Synthetic dimensions(SDs)opened the door for exploring previously inaccessible phenomena in high-dimensional space.However,construction of synthetic lattices with desired coupling properties is a challenging and unintuitive task.Here,we use deep learning artificial neural networks(ANNs)to construct lattices in real space with a predesigned spectrum of mode eigenvalues,and thus to validly design the dynamics in synthetic mode dimensions.By employing judiciously chosen perturbations(wiggling of waveguides at desired frequencies),we show resonant mode coupling and tailored dynamics in SDs.Two distinct examples are illustrated:one features uniform synthetic mode coupling,and the other showcases the edge defects that allow for tailored light transport and confinement.Furthermore,we demonstrate morphing of light into a topologically protected edge mode with modified Su-Schrieffer-Heeger photonic lattices.Such an ANN-assisted construction of SDs may advance toward“utopian networks,”opening new avenues for fundamental research beyond geometric limitations as well as for applications in mode lasing,optical switching,and communication technologies.
基金This work is supported by the National Nature Science Foundation of China!(No. 69678003)
文摘A theory of ultrasonic generation via direct interaction of transverse optic (TO) phonons with photons in anharmonic lattice of ionic crystals is presented. There are two methods of supplying light energy for the excitation of TO lattice wave as a high frequency ultrasound: (A) incident light comes from the source outside the cavity? fulfilled with ionic crystal medium, (B) photon mode of the cavity possesses the gain of amplification by stimulated radiation of active atoms doping in the medium. More attention is drawn to the case (B). The working system of case (B), as a mixture of lasing action and ultrasonic generation, has the threshold phenomena like usual laser. And the linear stability analysis shows that the nonlineax phonon-photon coupling and the interaction among phonons themselves, both of which reflect the anharmonicity of lattice vibration, are necessary to the stable ultrasonic output. So this laser-ultrasonic generation mixture would be also a measure to investigate the lattice-dynamic nonlinearity and correlated electromagnetic properties of ionic crystals.