To understand the male sterility mechanism of photoperiod/thermo-sensitive genic male sterile [P(T)GMS] lines in rice, the research progress on genetics of photoperiod and/or temperature sensitive genic male sterili...To understand the male sterility mechanism of photoperiod/thermo-sensitive genic male sterile [P(T)GMS] lines in rice, the research progress on genetics of photoperiod and/or temperature sensitive genic male sterility in rice was reviewed. A new idea was proposed to explain the sterility mechanism of P(T)GMS rice. The fertility transition from sterile to fertile is the result of cooperative regulation of major-effect sterile genes with photoperiod and/or temperature sensitive genes, but not the so-called pgms gene in P(T)GMS rice. The minor-effect genes, which exhibit accumulative effect on sterility, are the important factors for the critical temperature of sterility transition. The more minor-effect genes the sterile line holds, the lower the critical temperature of sterility transition is. The critical temperature of sterility transition will be invariable if all the minor-effect genes are homozygous. The strategies for breeding P(T)GMS rice were also proposed. The selective indices of critical photoperiod and temperature for sterility transition should be set according to varietal type and ecological region. Imposing selection pressure is a key technology for breeding P(T)GMS rice with lower critical temperature for sterility, and improving the comprehensive performance of the whole traits and combining ability is vital for breeding P(T)GMS rice lines.展开更多
Plant temperature (Tp) and its relations to the microclimate of rice colony and irrigation water were studied using a thermo-sensitive genic male sterile (TGMS) rice line, Pei'ai 64S. Significant differences in t...Plant temperature (Tp) and its relations to the microclimate of rice colony and irrigation water were studied using a thermo-sensitive genic male sterile (TGMS) rice line, Pei'ai 64S. Significant differences in the daily change of temperature were detected between Tp and air temperature at the height of 150 cm (TA). From 8:00 to 20:00, Tp was lower than TA, but they were similar during 21:00 to next 7:00. The maximum Tp occurred one hour earlier than the maximum TA, though they both reached the minimum at 6:00. Tp fluctuated less than TA. At the same height, during 6:00-13:00, Tp was higher than air temperature (Ta), and Tp reached the maximum one hour earlier than Ta. During the rest time on sunny day, Tp was close to or even a little lower than Ta. On overcast day, Tp was higher than Ta in the whole day, and both maximized at the same time. In addition, Tp was regulated by solar radiation, cloudage and wind speed in daytime, and by irrigation water at night. The present study indicated that a TA of 29.6℃ was the critical point, at which Tp was increased or decreased by irrigation water. Tp and the difference between water and air temperatures showed a conic relation. Tp fluctuation was also regulated by the absorption or reflection of solar radiation by leaves during daytime and release of heat energy during nighttime. By analysis on correlation and regression simulation, two models of Tp were established.展开更多
The discovery of thermo-sensitive genic male sterility(TGMS) has led to development of a simple and highly efficient two-line breeding system. In this study, genetic analysis was conducted using three F_2 populations ...The discovery of thermo-sensitive genic male sterility(TGMS) has led to development of a simple and highly efficient two-line breeding system. In this study, genetic analysis was conducted using three F_2 populations derived from crosses between IR68301 S, an indica TGMS rice line, and IR14632(tropical japonica), Supanburi 91062(indica) and IR67966-188-2-2-1(tropical japonica), respectively.Approximately 1:3 ratio between sterile and normal pollen of F_2 plants from the three populations revealed that TGMS is controlled by a single recessive gene. Bulked segregant analysis using simple sequence repeat(SSR) and insertion-deletion(InDel) markers were used to identify markers linked to the tms gene. The linkage analysis based on the three populations indicated that the tms locus was located on chromosome 2 covering the same area. Using IR68301S × IR14632 F_2 population, the results showed that the tms locus was located between SSR marker RM12676 and InDel marker 2gAP0050058. The genetic distance from the tms gene to these two flanking markers were 1.10 and 0.82 cM, respectively.InDel marker 2gAP004045 located between these two markers showed complete co-segregation with the TGMS phenotype. In addition, InDel marker vf0206114052 showed 2.94 cM linked to the tms gene using F_2 populations of IR68301S × Supanburi 91062. These markers are useful tool for developing new TGMS lines by marker-assisted selection. There were ten genes located between the two flanking markers RM12676 and 2gAP0050058. Using quantitative real-time PCR for expression analysis, 7 of the 10 genes showed expression in panicles, and response to temperatures. These genes could be the candidate gene controlling TGMS in IR68301S.展开更多
By using OsRacD cDNA as probe to screen the genomic library of photoperiod sensitive genic male sterile rice line Nongken 58S, a positive clone containing 2 kb promoter and 396 bp coding region of OsRacD was obtained....By using OsRacD cDNA as probe to screen the genomic library of photoperiod sensitive genic male sterile rice line Nongken 58S, a positive clone containing 2 kb promoter and 396 bp coding region of OsRacD was obtained. Compared with the promoter of OsRacD cloned by reverse PCR from normal rice variety Nongken 58 (Nongken 58N), the homology was 99.8%, and the different nucleotides were outside the predicted response elements in promoter, suggesting that the fertility between rice varieties Nongken 58S and Nongken 58N under the long-day conditions was not attributed to the difference in the structure of OsRacD upstream regulation sequences, but to the developmental regulation of gene differential expression.展开更多
The broad-spectrum blast resistance gene Pi-1, from donor line BL122, was introduced into a thermo-sensitive genic male sterile rice line GD-8S, which possessed good grain quality but high susceptibility to rice blast...The broad-spectrum blast resistance gene Pi-1, from donor line BL122, was introduced into a thermo-sensitive genic male sterile rice line GD-8S, which possessed good grain quality but high susceptibility to rice blast, by using backcross breeding and molecular marker-assisted selection. Five elite improved male sterile lines, RGD8S-1, RGD8S-2, RGD8S-3, RGD8S-4 and RGD8S-5, were selected based on the results of molecular marker analysis, spikelet sterility, recovery rate of genetic background and agronomic traits. Thirty-three representative blast isolates collected from Guangdong Province, China were used to inoculate the improved lines and the original line GD-8S artificially. The resistance frequencies of the improved lines ranged from 76.47% to 100%, much higher than that of the original line GD-8S (9.09%). On the agronomic characters, there were no significant differences between the improved lines and GD-8S except for flag leaf length and panicle number per plant. The improved lines could be used for breeding hybrid rice with high blast resistance.展开更多
Changes in the pattern of organization of microtubules in the meiotic stages of development of pollen (i.e. from pre-meiotic interphase to more or less metaphase I) of a normal (IR36) and a temperature/photoperiod sen...Changes in the pattern of organization of microtubules in the meiotic stages of development of pollen (i.e. from pre-meiotic interphase to more or less metaphase I) of a normal (IR36) and a temperature/photoperiod sensitive male sterile line (Peiai 64S) of rice were studied using immunofluorescence confocal microscopy. In IR36, from pre-meiotic interphase to metaphase I, the pattern of microtubule distribution in the meiocytes underwent a series of changes. Some new organizational patterns of microtubules (that have not been described before) were observed during microsporogenesis, including the existence of a broad band of perinuclear microtubules at the diakinesis stage of development. The pattern of microtubule distribution in the meiocytes of the male sterile line, Peiai 64S, was quite different front that seen in IR36. In Peiai 64S, the microtubules showed abnormal patterns of distribution from pre-meiotic interphase to metaphase I. For example the broad band of perinuclear microtubules seen at diakinesis in IR36 was much disorganized and loosened in Peiai 64S. The spindles formed were also very abnormal and different from the normal spindle. The appearance of abnormal microtubule distribution in the early stages of microsporogenesis may contribute to the malformation and ultimate abortion of pollen in Peiai 64S.展开更多
Considering the research on classical genetics of photoperiod(therm) sensitive genic male sterile rice, it is important to select the sterile lines and their segregating population controlled by one pair of gene in ma...Considering the research on classical genetics of photoperiod(therm) sensitive genic male sterile rice, it is important to select the sterile lines and their segregating population controlled by one pair of gene in mapping and isolating sterile genes. It is discussed the advantages, disadvantages and the reasons leading to various mapping results of chromosome location of sterile genes through gene marker, isozyme marker and DNA marker techniques. In comparison to isolation of photo(thermo) sensitive sterile genes via various plant gene cloning techniques, it was concluded that map based cloning was acceptable, but it is still difficult to locate the loci of sterile genes within 1cM. On the other hand, “sensitivity to environment”, an important characteristic of sterile lines can be fully utilized by DD PCR and (or) RDA techniques. Therefore, these two techniques were considered as the effective ways to isolate sterile genes.展开更多
Changxuan 3S, a thermo-sensitive genic male sterile (TGMS) rice line with eui gene, is derived from the TGMS rice line Pei'ai 64S by irradiation with 350 Gy of ^60Co γ-ray. To elucidate the uppermost internode elo...Changxuan 3S, a thermo-sensitive genic male sterile (TGMS) rice line with eui gene, is derived from the TGMS rice line Pei'ai 64S by irradiation with 350 Gy of ^60Co γ-ray. To elucidate the uppermost internode elongation of the TGMS line with eui gene, Changxuan 3S and its parent Pei'ai 64S were used to study the effects of temperature on panicle exsertion. At 24℃, the uppermost internode of Changxuan 3S elongated the fastest from the 4^th day before flowering to 0 day (flowering), being 2.1-fold as that of Pei'ai 64S, whereas it elongated slowly during the 12^th day to the 4^th day before flowering and the 1^st to the 3^rd day after flowering. The uppermost internode of Changxuan 3S exserted from the flag leaf sheath at 22℃, 24℃ and 26℃, and the length of elongated uppermost internode increased with the decreasing temperatures. At 28℃, though the panicles of Changxuan 3S were still enclosed in the leaf sheath, the degree of panicle enclosure was significantly lower compared with Pei'ai 64S. Cytological studies on Changxuan 3S showed that the uppermost internode elongation was attributed to the increase of cell number and cell elongation, and the latter was more significant. Moreover, the numbers of outermost and innermost parenchyma cells and the cell length of the uppermost internode reduced with the increasing temperatures.展开更多
To understand the genetic characteristics of a new photoperiod-sensitive genic male sterile line Mian 9S, some reciprocal crosses were made between Mian 9S and six indica rice materials, Yangdao 6, Luhui 602, Shuihui ...To understand the genetic characteristics of a new photoperiod-sensitive genic male sterile line Mian 9S, some reciprocal crosses were made between Mian 9S and six indica rice materials, Yangdao 6, Luhui 602, Shuihui 527, Mianhui 725, Fuhui 838 and Yixiang 1B. Genetic analysis results suggested that the photoperiod-sensitive genic male sterility (PGMS) of Mian 9S was controlled by a single recessive nuclear gene. Thus, the F2 population derived from the cross of Yangdao 6/Mian 9S was used to map the PGMS gene in Mian 9S. By using SSR markers, the PGMS gene of Mian 9S was mapped on one side of the markers, RM6659 and RM1305, on rice chromosome 4, with the genetic distances of 3.0 cM and 3.5 cM, respectively. The gene was a novel PGMS gene and designated tentatively as pms4. In addition, the application of the pms4 gene was discussed.展开更多
An investigation was carried out with three newly developed temperature sensitive genic male sterile (TGMS) lines for their floral traits, seed production potential and outcrossing ability in ten cross combinations....An investigation was carried out with three newly developed temperature sensitive genic male sterile (TGMS) lines for their floral traits, seed production potential and outcrossing ability in ten cross combinations. In the TGMS lines, fertile pollens had an average diameter of 0.89 mm while the sterile pollens was with 0.02 mm diameter.TS-29-150GY produced the biggest fertile pollens with 0.92 mm and other two lines produced relatively smaller pollens with 0.91 and 0.85 ram. Pollen fertility during the fertility reversion period was an average of 60.7%. TS-29-150GY had the maximum of 66.9% spikelet fertility whereas other two lines (TNAU18S and TNAU60S) had relatively lower spikelet fertility of 27.8% and 26.7%, respectively. Average of 17.00 g of seed yield was obtained in the TGMS lines during the fertility reversion period. TS-29- 150GY had the highest value of 21.20 g of seed yield while TNAU18S and TNAU60S produced 16.6 g and 13.2 g of seed yield, respectively. The low seed production ability of these three TGMS lines was attributed only to the environmental conditions prevailing during the period. All three TGMS lines had considerable outcrossing potential of 41.2%, 24.6% and 25.0%, respectively. The cross combinations viz. TNAU18S/IET21508 (36 g/plant), TNAU18S/IET21044 (13 g/plant), TNAU18S/IET21009 (26.5 g/plant), TNAU60S/CB-09-106 (26.2 g/plant), TNAU60S/IET21009 (14 g/plant) and TS29-150-GY/DRR 3306 (39.2 g/plant) showed perfect synchronization with acceptable hybrid seed yield, indicating suitability of TGMS system under Indian condition. Based on the outcrossing related traits viz. panicle exertion, angle of glume opening, stigma length and pollen size, TNAU18S was identified as the best, followed by TS-29-150GY.展开更多
The forecast of sterile alteration for the temperature-sensitive genic male sterile (TGMS) line in two-line hybrid rice seed production was traditionally based on screen temperature determined by weather station. Th...The forecast of sterile alteration for the temperature-sensitive genic male sterile (TGMS) line in two-line hybrid rice seed production was traditionally based on screen temperature determined by weather station. The article put forward a new approach based on plant temperature, which was more exact and direct than the traditional method. The result of the simulation of the self-seeded setting rate of a widely used TGMS line, Peiai64S, by several temperature parameters and durations, showed that the fertility was directly affected by the plant temperature at a height of 20 cm or the air temperature around it in three days duration. Using the stem temperature of three days at a height of 20 cm as the simulation parameter, the fertility of Peiai64S had the maximum, minimum and optimum temperatures as 22.8, 21.7 and 22.5℃, respectively, whereas 23.2, 21.5 and 21.8℃ when using the air temperature of three days around the height of 20 cm as the parameter. Such temperature indices can be used to conclude the sterile alteration of TGMS for safeguarding seed production of twoline hybrid rice. The article also established a statistic model to conclude plant temperature by water temperatures at inflow and outflow, and air temperature and cloudage from weather station.展开更多
For the two-line hybrid rice system, pol en sterility is regulated by recessive gene that responds to temperature. The recessive gene controlling thermo-sensitive genetic male sterility (TGMS) is expressed when the ...For the two-line hybrid rice system, pol en sterility is regulated by recessive gene that responds to temperature. The recessive gene controlling thermo-sensitive genetic male sterility (TGMS) is expressed when the plants are grown in conditions with higher or lower critical temperatures. To transfer tgms gene(s) control ing TGMS to Thai rice cultivars by backcross breeding method, a male sterile line was used as a donor parent while Thai rice cultivars ChaiNat 1, PathumThani 1, and SuphanBuri 1 were used as recurrent parents. The BC2F2 lines were developed from backcrossing and selfing. Moreover, the simple sequence repeat (SSR) markers were developed for identifying tgms gene and the linked marker was used for assisting selection in backcrossing. The identification lines were confirmed by pol en observation. The results showed the success of introgression of the tgms gene into Thai rice cultivars. These lines will be tested for combining ability and used as female parent in hybrid rice production in Thailand.展开更多
The major male sterile genes in a new photo/thermo-sensitive genie male sterile (PTGMS) line B06S of rice were analyzed by the manipulation of mixture distribution theory. The results indicated that a pair of major ma...The major male sterile genes in a new photo/thermo-sensitive genie male sterile (PTGMS) line B06S of rice were analyzed by the manipulation of mixture distribution theory. The results indicated that a pair of major male sterile nuclear genes with large effects were responsible for controlling the male sterility of B06S.展开更多
Using photo-thermo sensitive genie male rice (PTGMS) Pei' ai 64S, W7415S, W6154S, N26S, Annong S, Nongken 58S, 7001S and 5088S as female parents and conventional indica lines 8258 and U89 as male parents, the fact...Using photo-thermo sensitive genie male rice (PTGMS) Pei' ai 64S, W7415S, W6154S, N26S, Annong S, Nongken 58S, 7001S and 5088S as female parents and conventional indica lines 8258 and U89 as male parents, the factors affecting outcrossed seed-setting were analyzed. The PTGMS had obstacles in outcrossed seed setting influenced by inheritance and environment at varying degrees. Environmental temperature was regarded as the main factor that resulted in the outcrossed seed-setting obstacles. The sensitive stage was at the early stage of grain filling for outcrossed seed setting. There existed remarkable differences at the sensitivity stage, the duration of sensitive period, the sensitive level and the effective level of outcrossed seed-setting obstacles caused by environmental temperature among different PTGMS lines. Therefore, attention should be paid to outcrossed seed-setting obstacles in selection and utilization of PTGMS lines.展开更多
Peiai 64S is a photoperiod- and thermo- sensitive genic male sterile (PTSGMS) line of rice, which is male sterile at long day/high temperature and partial fertile at short day/low temperature. A cDNA array representin...Peiai 64S is a photoperiod- and thermo- sensitive genic male sterile (PTSGMS) line of rice, which is male sterile at long day/high temperature and partial fertile at short day/low temperature. A cDNA array representing 3328 unique rice genes was used to profile the gene expression patterns in the young panicles of Peiai 64S under these two condi- tions. The statistical data showed that up to 14.60% of genes exhibited up-or down-regulated expressions in the plants at long day/high temperature compared with plants at short day/low temperature. Only four genes were up-regulated while 482 genes down-regulated. Real-time PCR with all the up-regulated and 9 randomly selected down-regulated genes confirmed the differential expressions detected by the array, indicating that the constructed cDNA array is reliable. These differently expressed genes participated in almost all cell biological responses. Analysis of up- and down-regulated genes revealed distinctive changes between the mRNA abundances of MMK1 and MMK2, both of which are analogs ofMAPK, and significant down-regulation of several transcription factors. It was suggested that changes that occurred in the MAPK signal transduction path- way might disturb the transcription control necessary for morphogenesis of pollens and corresponding phys- iological functions.展开更多
With the cDNA suppression subtraction hybridization method, a spikelet-specific cDNA library was constructed that expressed at meiosis stage in rice. A total of 121 cDNA fragments were selected from the library and us...With the cDNA suppression subtraction hybridization method, a spikelet-specific cDNA library was constructed that expressed at meiosis stage in rice. A total of 121 cDNA fragments were selected from the library and used as EST (expressed se-quence tags) markers to detect the polymorphism between Annong N, a normal fertile Indica rice line and Annong S-1, its spontaneous mutant with thermo-sensitive genic male sterility, using the RFLP (restriction fragment length polymorphism) technique. HN57, one of the EST probes, could detect poly-morphism between them. The results of segregation analysis with the F2 population developed from An-nong S-1 and Annong N indicate that HN57 co-seg- regates with the thermo-sensitive genic male-sterility controlled by tms5, the recessive gene in Annong S-1. This marker is located on the 31.2-cM region of the chromosome 2 of RGP (rice genome research pro-gram) genetic map. To further determine the location of tms5, 80 SSR (simple sequence repeat) markers around this region were developed, and 12 of them were polymorphic. And finally, the tms5 was mapped within region of 181 kb by using these new markers.展开更多
In order to develop a detailed physical map of the thermo-sensitive genie male-sterile (TGMS) gene-encompassing region and finally clone the TGMS gene, a high-quality rice bacterial artificial chromosome (BAC) library...In order to develop a detailed physical map of the thermo-sensitive genie male-sterile (TGMS) gene-encompassing region and finally clone the TGMS gene, a high-quality rice bacterial artificial chromosome (BAC) library from TGMS rice 5460S was constructed. The method of constructing BAC library was examined and optimized. The 5460S library consists of 19 584 BAC clones with an average insert size of 110 kb, which represents about 5 times rice haploid genome equivalents. Rice inserts of up to 140 kb and 250 kb were isolated and appeared stable after 100 generations of serial growth. Hybridization of BAC clones with mitochondria! and chloroplastic genes as probes demonstrated that this library has no organellar contamination. The 5460S library was screened with 3 molecular markers linked to tms 1 gene as probes and at least 1 BAC clone was identified with each probe. The insert ends of positive clones were successfully isolated using thermal asymmetric interlaced PCR (TAIL-PCR) technique.展开更多
The differentially expressed cDNA fragments have been obtained by differential screening with cDNA-RAPD technique in photoperiod sensitive genic male sterile (PGMS) rice. Some of them have been reassessed with Norther...The differentially expressed cDNA fragments have been obtained by differential screening with cDNA-RAPD technique in photoperiod sensitive genic male sterile (PGMS) rice. Some of them have been reassessed with Northern blot hybridization, from which a PGMS-related positive fragment, RPG43, has been identified. Further analysis on RPG43 with Southern blot and RAPD indicates that the fragment is a single-copy sequence and its mRNA has been processed after transcription. Sequence analysis reveals that RPG43 is 744 bp in length and contains a 60 bp region (from 126th to 185th bp) showing 72% homology to a human DNA sequence, pac pDJ-356d6, on chromosome 11. So it is a new sequence found in plant and its GenBank access number is AF126027. In addition, RPG43 has been mapped to a position 3.8 cM away from RFLP marker R1553 on chromosome 5 of rice.展开更多
Photoperiod and temperature-sensitive genetic male sterility (PGMS and TGMS) plants have a number of desirable characteristics for hybrid production. Two-line hybrids developed using the PGMS/TGMS system now account f...Photoperiod and temperature-sensitive genetic male sterility (PGMS and TGMS) plants have a number of desirable characteristics for hybrid production. Two-line hybrids developed using the PGMS/TGMS system now account for a large proportion of rice production in China. In this paper, we summarize recent advances on molecular regulation mechanisms and genetics of PGMS/TGMS in rice. We suggest that temperature-sensitive splicing, an important posttranscriptional regulatory mechanism in modulating gene expression and eventually development and differentiation, is also an important molecular regulation mechanism of TGMS in rice. We review those factors involved in temperature-sensitive splicing like cis splice site, snRNA, trans premRNA splicing protein and SR proteins, and delineate that splicing could be regulated by a complex cell signaling pathway. These might shed light on other unknown molecular PGMS/TGMS mechanisms.展开更多
The main problems about research and application of two-line hybrid rice were reviewed, including the confusing nomenclature and male sterile lines classification, the unclear characteristics of photoperiod and temper...The main problems about research and application of two-line hybrid rice were reviewed, including the confusing nomenclature and male sterile lines classification, the unclear characteristics of photoperiod and temperature responses and the unsuitable site selection for male sterile line and hybrid dce seed production. In order to efficiently and accurately use dual-purpose genic male sterile lines, four types, including PTGMS (photo-thermo-sensitive genic male sterile rice), TGMS (thermo-sensitive genic male sterile rice), reverse PTGMS and reverse TGMS, were proposed. A new idea for explaining the mechanism of sterility in dual-purpose hybrid rice was proposed. The transition from sterile to fertile was involved in the cooperative regulation of major-effect sterile genes and photoperiod and/or temperature sensitive ones. The minor-effect genes with accumulative effect on sterility were important factors that affected the critical temperature of sterility transfer. In order to make better use of dual-purpose lines, the characterization of responses to photoperiod and temperature of PTGMS should be made and the identification method for the characterization of photoperiod and temperature responses of PTGMS should also be put forward. The optimal ecological site for seed production could be determined according to the historical climate data and the requirements for the meteorological conditions during the different periods of seed production.展开更多
基金supported by the National High Technology Research and Development Program of China (Grant No.2006AA100101)the Natural Science Foundation of Hunan Province of China (Grant Nos.03JJY3033 and 08JJ1003)
文摘To understand the male sterility mechanism of photoperiod/thermo-sensitive genic male sterile [P(T)GMS] lines in rice, the research progress on genetics of photoperiod and/or temperature sensitive genic male sterility in rice was reviewed. A new idea was proposed to explain the sterility mechanism of P(T)GMS rice. The fertility transition from sterile to fertile is the result of cooperative regulation of major-effect sterile genes with photoperiod and/or temperature sensitive genes, but not the so-called pgms gene in P(T)GMS rice. The minor-effect genes, which exhibit accumulative effect on sterility, are the important factors for the critical temperature of sterility transition. The more minor-effect genes the sterile line holds, the lower the critical temperature of sterility transition is. The critical temperature of sterility transition will be invariable if all the minor-effect genes are homozygous. The strategies for breeding P(T)GMS rice were also proposed. The selective indices of critical photoperiod and temperature for sterility transition should be set according to varietal type and ecological region. Imposing selection pressure is a key technology for breeding P(T)GMS rice with lower critical temperature for sterility, and improving the comprehensive performance of the whole traits and combining ability is vital for breeding P(T)GMS rice lines.
基金supported by the National Natural Science Foundation of China (Grant No. 30370830)
文摘Plant temperature (Tp) and its relations to the microclimate of rice colony and irrigation water were studied using a thermo-sensitive genic male sterile (TGMS) rice line, Pei'ai 64S. Significant differences in the daily change of temperature were detected between Tp and air temperature at the height of 150 cm (TA). From 8:00 to 20:00, Tp was lower than TA, but they were similar during 21:00 to next 7:00. The maximum Tp occurred one hour earlier than the maximum TA, though they both reached the minimum at 6:00. Tp fluctuated less than TA. At the same height, during 6:00-13:00, Tp was higher than air temperature (Ta), and Tp reached the maximum one hour earlier than Ta. During the rest time on sunny day, Tp was close to or even a little lower than Ta. On overcast day, Tp was higher than Ta in the whole day, and both maximized at the same time. In addition, Tp was regulated by solar radiation, cloudage and wind speed in daytime, and by irrigation water at night. The present study indicated that a TA of 29.6℃ was the critical point, at which Tp was increased or decreased by irrigation water. Tp and the difference between water and air temperatures showed a conic relation. Tp fluctuation was also regulated by the absorption or reflection of solar radiation by leaves during daytime and release of heat energy during nighttime. By analysis on correlation and regression simulation, two models of Tp were established.
基金supported by Center for Agricultural Biotechnology, Kasetsart University, Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDOCHE)Agricultural Research Development Agency (ARDA)National Science and Technology Development Agency, Thailand
文摘The discovery of thermo-sensitive genic male sterility(TGMS) has led to development of a simple and highly efficient two-line breeding system. In this study, genetic analysis was conducted using three F_2 populations derived from crosses between IR68301 S, an indica TGMS rice line, and IR14632(tropical japonica), Supanburi 91062(indica) and IR67966-188-2-2-1(tropical japonica), respectively.Approximately 1:3 ratio between sterile and normal pollen of F_2 plants from the three populations revealed that TGMS is controlled by a single recessive gene. Bulked segregant analysis using simple sequence repeat(SSR) and insertion-deletion(InDel) markers were used to identify markers linked to the tms gene. The linkage analysis based on the three populations indicated that the tms locus was located on chromosome 2 covering the same area. Using IR68301S × IR14632 F_2 population, the results showed that the tms locus was located between SSR marker RM12676 and InDel marker 2gAP0050058. The genetic distance from the tms gene to these two flanking markers were 1.10 and 0.82 cM, respectively.InDel marker 2gAP004045 located between these two markers showed complete co-segregation with the TGMS phenotype. In addition, InDel marker vf0206114052 showed 2.94 cM linked to the tms gene using F_2 populations of IR68301S × Supanburi 91062. These markers are useful tool for developing new TGMS lines by marker-assisted selection. There were ten genes located between the two flanking markers RM12676 and 2gAP0050058. Using quantitative real-time PCR for expression analysis, 7 of the 10 genes showed expression in panicles, and response to temperatures. These genes could be the candidate gene controlling TGMS in IR68301S.
文摘By using OsRacD cDNA as probe to screen the genomic library of photoperiod sensitive genic male sterile rice line Nongken 58S, a positive clone containing 2 kb promoter and 396 bp coding region of OsRacD was obtained. Compared with the promoter of OsRacD cloned by reverse PCR from normal rice variety Nongken 58 (Nongken 58N), the homology was 99.8%, and the different nucleotides were outside the predicted response elements in promoter, suggesting that the fertility between rice varieties Nongken 58S and Nongken 58N under the long-day conditions was not attributed to the difference in the structure of OsRacD upstream regulation sequences, but to the developmental regulation of gene differential expression.
基金supported by the grants from the High-Tech Research and Development Program of China (Grant No. 2001AA241011 and No. 2003AA212052)the Major Sci-Tech Program of Guangdong Province, China (Grant No. 2003A2010101 and No. 2006A2020201)the Agricultural Scientific Program of Guangdong Province, China (Grant No. 2005B20101006)
文摘The broad-spectrum blast resistance gene Pi-1, from donor line BL122, was introduced into a thermo-sensitive genic male sterile rice line GD-8S, which possessed good grain quality but high susceptibility to rice blast, by using backcross breeding and molecular marker-assisted selection. Five elite improved male sterile lines, RGD8S-1, RGD8S-2, RGD8S-3, RGD8S-4 and RGD8S-5, were selected based on the results of molecular marker analysis, spikelet sterility, recovery rate of genetic background and agronomic traits. Thirty-three representative blast isolates collected from Guangdong Province, China were used to inoculate the improved lines and the original line GD-8S artificially. The resistance frequencies of the improved lines ranged from 76.47% to 100%, much higher than that of the original line GD-8S (9.09%). On the agronomic characters, there were no significant differences between the improved lines and GD-8S except for flag leaf length and panicle number per plant. The improved lines could be used for breeding hybrid rice with high blast resistance.
文摘Changes in the pattern of organization of microtubules in the meiotic stages of development of pollen (i.e. from pre-meiotic interphase to more or less metaphase I) of a normal (IR36) and a temperature/photoperiod sensitive male sterile line (Peiai 64S) of rice were studied using immunofluorescence confocal microscopy. In IR36, from pre-meiotic interphase to metaphase I, the pattern of microtubule distribution in the meiocytes underwent a series of changes. Some new organizational patterns of microtubules (that have not been described before) were observed during microsporogenesis, including the existence of a broad band of perinuclear microtubules at the diakinesis stage of development. The pattern of microtubule distribution in the meiocytes of the male sterile line, Peiai 64S, was quite different front that seen in IR36. In Peiai 64S, the microtubules showed abnormal patterns of distribution from pre-meiotic interphase to metaphase I. For example the broad band of perinuclear microtubules seen at diakinesis in IR36 was much disorganized and loosened in Peiai 64S. The spindles formed were also very abnormal and different from the normal spindle. The appearance of abnormal microtubule distribution in the early stages of microsporogenesis may contribute to the malformation and ultimate abortion of pollen in Peiai 64S.
文摘Considering the research on classical genetics of photoperiod(therm) sensitive genic male sterile rice, it is important to select the sterile lines and their segregating population controlled by one pair of gene in mapping and isolating sterile genes. It is discussed the advantages, disadvantages and the reasons leading to various mapping results of chromosome location of sterile genes through gene marker, isozyme marker and DNA marker techniques. In comparison to isolation of photo(thermo) sensitive sterile genes via various plant gene cloning techniques, it was concluded that map based cloning was acceptable, but it is still difficult to locate the loci of sterile genes within 1cM. On the other hand, “sensitivity to environment”, an important characteristic of sterile lines can be fully utilized by DD PCR and (or) RDA techniques. Therefore, these two techniques were considered as the effective ways to isolate sterile genes.
文摘Changxuan 3S, a thermo-sensitive genic male sterile (TGMS) rice line with eui gene, is derived from the TGMS rice line Pei'ai 64S by irradiation with 350 Gy of ^60Co γ-ray. To elucidate the uppermost internode elongation of the TGMS line with eui gene, Changxuan 3S and its parent Pei'ai 64S were used to study the effects of temperature on panicle exsertion. At 24℃, the uppermost internode of Changxuan 3S elongated the fastest from the 4^th day before flowering to 0 day (flowering), being 2.1-fold as that of Pei'ai 64S, whereas it elongated slowly during the 12^th day to the 4^th day before flowering and the 1^st to the 3^rd day after flowering. The uppermost internode of Changxuan 3S exserted from the flag leaf sheath at 22℃, 24℃ and 26℃, and the length of elongated uppermost internode increased with the decreasing temperatures. At 28℃, though the panicles of Changxuan 3S were still enclosed in the leaf sheath, the degree of panicle enclosure was significantly lower compared with Pei'ai 64S. Cytological studies on Changxuan 3S showed that the uppermost internode elongation was attributed to the increase of cell number and cell elongation, and the latter was more significant. Moreover, the numbers of outermost and innermost parenchyma cells and the cell length of the uppermost internode reduced with the increasing temperatures.
基金the Crop Breeding Program of Sichuan Province (Grant No. 2006YZGG01)Pre-grant from Youth Science & Technology Foundation of Sichuan Province (Grant No. 07ZQ026-126)
文摘To understand the genetic characteristics of a new photoperiod-sensitive genic male sterile line Mian 9S, some reciprocal crosses were made between Mian 9S and six indica rice materials, Yangdao 6, Luhui 602, Shuihui 527, Mianhui 725, Fuhui 838 and Yixiang 1B. Genetic analysis results suggested that the photoperiod-sensitive genic male sterility (PGMS) of Mian 9S was controlled by a single recessive nuclear gene. Thus, the F2 population derived from the cross of Yangdao 6/Mian 9S was used to map the PGMS gene in Mian 9S. By using SSR markers, the PGMS gene of Mian 9S was mapped on one side of the markers, RM6659 and RM1305, on rice chromosome 4, with the genetic distances of 3.0 cM and 3.5 cM, respectively. The gene was a novel PGMS gene and designated tentatively as pms4. In addition, the application of the pms4 gene was discussed.
文摘An investigation was carried out with three newly developed temperature sensitive genic male sterile (TGMS) lines for their floral traits, seed production potential and outcrossing ability in ten cross combinations. In the TGMS lines, fertile pollens had an average diameter of 0.89 mm while the sterile pollens was with 0.02 mm diameter.TS-29-150GY produced the biggest fertile pollens with 0.92 mm and other two lines produced relatively smaller pollens with 0.91 and 0.85 ram. Pollen fertility during the fertility reversion period was an average of 60.7%. TS-29-150GY had the maximum of 66.9% spikelet fertility whereas other two lines (TNAU18S and TNAU60S) had relatively lower spikelet fertility of 27.8% and 26.7%, respectively. Average of 17.00 g of seed yield was obtained in the TGMS lines during the fertility reversion period. TS-29- 150GY had the highest value of 21.20 g of seed yield while TNAU18S and TNAU60S produced 16.6 g and 13.2 g of seed yield, respectively. The low seed production ability of these three TGMS lines was attributed only to the environmental conditions prevailing during the period. All three TGMS lines had considerable outcrossing potential of 41.2%, 24.6% and 25.0%, respectively. The cross combinations viz. TNAU18S/IET21508 (36 g/plant), TNAU18S/IET21044 (13 g/plant), TNAU18S/IET21009 (26.5 g/plant), TNAU60S/CB-09-106 (26.2 g/plant), TNAU60S/IET21009 (14 g/plant) and TS29-150-GY/DRR 3306 (39.2 g/plant) showed perfect synchronization with acceptable hybrid seed yield, indicating suitability of TGMS system under Indian condition. Based on the outcrossing related traits viz. panicle exertion, angle of glume opening, stigma length and pollen size, TNAU18S was identified as the best, followed by TS-29-150GY.
文摘The forecast of sterile alteration for the temperature-sensitive genic male sterile (TGMS) line in two-line hybrid rice seed production was traditionally based on screen temperature determined by weather station. The article put forward a new approach based on plant temperature, which was more exact and direct than the traditional method. The result of the simulation of the self-seeded setting rate of a widely used TGMS line, Peiai64S, by several temperature parameters and durations, showed that the fertility was directly affected by the plant temperature at a height of 20 cm or the air temperature around it in three days duration. Using the stem temperature of three days at a height of 20 cm as the simulation parameter, the fertility of Peiai64S had the maximum, minimum and optimum temperatures as 22.8, 21.7 and 22.5℃, respectively, whereas 23.2, 21.5 and 21.8℃ when using the air temperature of three days around the height of 20 cm as the parameter. Such temperature indices can be used to conclude the sterile alteration of TGMS for safeguarding seed production of twoline hybrid rice. The article also established a statistic model to conclude plant temperature by water temperatures at inflow and outflow, and air temperature and cloudage from weather station.
文摘For the two-line hybrid rice system, pol en sterility is regulated by recessive gene that responds to temperature. The recessive gene controlling thermo-sensitive genetic male sterility (TGMS) is expressed when the plants are grown in conditions with higher or lower critical temperatures. To transfer tgms gene(s) control ing TGMS to Thai rice cultivars by backcross breeding method, a male sterile line was used as a donor parent while Thai rice cultivars ChaiNat 1, PathumThani 1, and SuphanBuri 1 were used as recurrent parents. The BC2F2 lines were developed from backcrossing and selfing. Moreover, the simple sequence repeat (SSR) markers were developed for identifying tgms gene and the linked marker was used for assisting selection in backcrossing. The identification lines were confirmed by pol en observation. The results showed the success of introgression of the tgms gene into Thai rice cultivars. These lines will be tested for combining ability and used as female parent in hybrid rice production in Thailand.
文摘The major male sterile genes in a new photo/thermo-sensitive genie male sterile (PTGMS) line B06S of rice were analyzed by the manipulation of mixture distribution theory. The results indicated that a pair of major male sterile nuclear genes with large effects were responsible for controlling the male sterility of B06S.
文摘Using photo-thermo sensitive genie male rice (PTGMS) Pei' ai 64S, W7415S, W6154S, N26S, Annong S, Nongken 58S, 7001S and 5088S as female parents and conventional indica lines 8258 and U89 as male parents, the factors affecting outcrossed seed-setting were analyzed. The PTGMS had obstacles in outcrossed seed setting influenced by inheritance and environment at varying degrees. Environmental temperature was regarded as the main factor that resulted in the outcrossed seed-setting obstacles. The sensitive stage was at the early stage of grain filling for outcrossed seed setting. There existed remarkable differences at the sensitivity stage, the duration of sensitive period, the sensitive level and the effective level of outcrossed seed-setting obstacles caused by environmental temperature among different PTGMS lines. Therefore, attention should be paid to outcrossed seed-setting obstacles in selection and utilization of PTGMS lines.
文摘Peiai 64S is a photoperiod- and thermo- sensitive genic male sterile (PTSGMS) line of rice, which is male sterile at long day/high temperature and partial fertile at short day/low temperature. A cDNA array representing 3328 unique rice genes was used to profile the gene expression patterns in the young panicles of Peiai 64S under these two condi- tions. The statistical data showed that up to 14.60% of genes exhibited up-or down-regulated expressions in the plants at long day/high temperature compared with plants at short day/low temperature. Only four genes were up-regulated while 482 genes down-regulated. Real-time PCR with all the up-regulated and 9 randomly selected down-regulated genes confirmed the differential expressions detected by the array, indicating that the constructed cDNA array is reliable. These differently expressed genes participated in almost all cell biological responses. Analysis of up- and down-regulated genes revealed distinctive changes between the mRNA abundances of MMK1 and MMK2, both of which are analogs ofMAPK, and significant down-regulation of several transcription factors. It was suggested that changes that occurred in the MAPK signal transduction path- way might disturb the transcription control necessary for morphogenesis of pollens and corresponding phys- iological functions.
文摘With the cDNA suppression subtraction hybridization method, a spikelet-specific cDNA library was constructed that expressed at meiosis stage in rice. A total of 121 cDNA fragments were selected from the library and used as EST (expressed se-quence tags) markers to detect the polymorphism between Annong N, a normal fertile Indica rice line and Annong S-1, its spontaneous mutant with thermo-sensitive genic male sterility, using the RFLP (restriction fragment length polymorphism) technique. HN57, one of the EST probes, could detect poly-morphism between them. The results of segregation analysis with the F2 population developed from An-nong S-1 and Annong N indicate that HN57 co-seg- regates with the thermo-sensitive genic male-sterility controlled by tms5, the recessive gene in Annong S-1. This marker is located on the 31.2-cM region of the chromosome 2 of RGP (rice genome research pro-gram) genetic map. To further determine the location of tms5, 80 SSR (simple sequence repeat) markers around this region were developed, and 12 of them were polymorphic. And finally, the tms5 was mapped within region of 181 kb by using these new markers.
基金Project supported by the Rockefeller Foundation and China National High-Tech Program.
文摘In order to develop a detailed physical map of the thermo-sensitive genie male-sterile (TGMS) gene-encompassing region and finally clone the TGMS gene, a high-quality rice bacterial artificial chromosome (BAC) library from TGMS rice 5460S was constructed. The method of constructing BAC library was examined and optimized. The 5460S library consists of 19 584 BAC clones with an average insert size of 110 kb, which represents about 5 times rice haploid genome equivalents. Rice inserts of up to 140 kb and 250 kb were isolated and appeared stable after 100 generations of serial growth. Hybridization of BAC clones with mitochondria! and chloroplastic genes as probes demonstrated that this library has no organellar contamination. The 5460S library was screened with 3 molecular markers linked to tms 1 gene as probes and at least 1 BAC clone was identified with each probe. The insert ends of positive clones were successfully isolated using thermal asymmetric interlaced PCR (TAIL-PCR) technique.
文摘The differentially expressed cDNA fragments have been obtained by differential screening with cDNA-RAPD technique in photoperiod sensitive genic male sterile (PGMS) rice. Some of them have been reassessed with Northern blot hybridization, from which a PGMS-related positive fragment, RPG43, has been identified. Further analysis on RPG43 with Southern blot and RAPD indicates that the fragment is a single-copy sequence and its mRNA has been processed after transcription. Sequence analysis reveals that RPG43 is 744 bp in length and contains a 60 bp region (from 126th to 185th bp) showing 72% homology to a human DNA sequence, pac pDJ-356d6, on chromosome 11. So it is a new sequence found in plant and its GenBank access number is AF126027. In addition, RPG43 has been mapped to a position 3.8 cM away from RFLP marker R1553 on chromosome 5 of rice.
基金Supported by the National Key Basic Research and Development Program of China (Grant No. 2007CB108705)the National Natural Science Foundation of China (Grant No. 30700448)
文摘Photoperiod and temperature-sensitive genetic male sterility (PGMS and TGMS) plants have a number of desirable characteristics for hybrid production. Two-line hybrids developed using the PGMS/TGMS system now account for a large proportion of rice production in China. In this paper, we summarize recent advances on molecular regulation mechanisms and genetics of PGMS/TGMS in rice. We suggest that temperature-sensitive splicing, an important posttranscriptional regulatory mechanism in modulating gene expression and eventually development and differentiation, is also an important molecular regulation mechanism of TGMS in rice. We review those factors involved in temperature-sensitive splicing like cis splice site, snRNA, trans premRNA splicing protein and SR proteins, and delineate that splicing could be regulated by a complex cell signaling pathway. These might shed light on other unknown molecular PGMS/TGMS mechanisms.
基金supported by the National High Technology Research and Development Program of (Grant No.2010AA101304)the Transformation Fund for Agricultural Science and Technology Achievements (Grant No.2007GB2D200226)the Natural Science Foundation of Hunan Province,China(Grant No. 10JJ4012)
文摘The main problems about research and application of two-line hybrid rice were reviewed, including the confusing nomenclature and male sterile lines classification, the unclear characteristics of photoperiod and temperature responses and the unsuitable site selection for male sterile line and hybrid dce seed production. In order to efficiently and accurately use dual-purpose genic male sterile lines, four types, including PTGMS (photo-thermo-sensitive genic male sterile rice), TGMS (thermo-sensitive genic male sterile rice), reverse PTGMS and reverse TGMS, were proposed. A new idea for explaining the mechanism of sterility in dual-purpose hybrid rice was proposed. The transition from sterile to fertile was involved in the cooperative regulation of major-effect sterile genes and photoperiod and/or temperature sensitive ones. The minor-effect genes with accumulative effect on sterility were important factors that affected the critical temperature of sterility transfer. In order to make better use of dual-purpose lines, the characterization of responses to photoperiod and temperature of PTGMS should be made and the identification method for the characterization of photoperiod and temperature responses of PTGMS should also be put forward. The optimal ecological site for seed production could be determined according to the historical climate data and the requirements for the meteorological conditions during the different periods of seed production.