Photosystem Ⅱ(PSⅡ)is a large membrane protein(∼700 kDa)complex,harboring P680+,the strongest oxidant known in biological systems,which is responsible for driving tyrosine oxidation and ultimately O_(2) generation.W...Photosystem Ⅱ(PSⅡ)is a large membrane protein(∼700 kDa)complex,harboring P680+,the strongest oxidant known in biological systems,which is responsible for driving tyrosine oxidation and ultimately O_(2) generation.While the enhancement and expansion of PSⅡ functions through genetic engineering would be beneficial for driving challenging chemical reactions,this has proven difficult due to its enormous complexity.Here,we report a genetically encoded,27 kDa photosensitizer protein(PSP3)that recapitulates the initial photoinduced key properties of PSⅡ.Through the genetic incorporation of benzophenone-alanine(BpA)into a fluorescent protein coupled with femtosecond transient absorption measurement,we show that photoinduced electron transfer from residue Tyr203 to the PSP3 chromophore occurs very rapidly(∼1 ps),which is comparable with that of the first electron transfer step in PSII.Since PSP3 can be overexpressed in high yield in Escherichia coli and genetically engineered easily,it might facilitate challenging oxidation and reduction reactions in vitro and in vivo.展开更多
基金financially supported by the National Key Research and Development Program of China under award nos.2016YFA0501502 and 2017YFA0503704the National Science Foundation of China under award nos.91940306,21837005,21890743,21961142014,21750003,91527302,and 21827803+2 种基金pilot project of CAS under award no.XDB37040203the Sanming Project of Medicine in Shenzhen(no.Y8KF351001)the Youth Innovation Promotion Association CAS.
文摘Photosystem Ⅱ(PSⅡ)is a large membrane protein(∼700 kDa)complex,harboring P680+,the strongest oxidant known in biological systems,which is responsible for driving tyrosine oxidation and ultimately O_(2) generation.While the enhancement and expansion of PSⅡ functions through genetic engineering would be beneficial for driving challenging chemical reactions,this has proven difficult due to its enormous complexity.Here,we report a genetically encoded,27 kDa photosensitizer protein(PSP3)that recapitulates the initial photoinduced key properties of PSⅡ.Through the genetic incorporation of benzophenone-alanine(BpA)into a fluorescent protein coupled with femtosecond transient absorption measurement,we show that photoinduced electron transfer from residue Tyr203 to the PSP3 chromophore occurs very rapidly(∼1 ps),which is comparable with that of the first electron transfer step in PSII.Since PSP3 can be overexpressed in high yield in Escherichia coli and genetically engineered easily,it might facilitate challenging oxidation and reduction reactions in vitro and in vivo.