期刊文献+
共找到55,969篇文章
< 1 2 250 >
每页显示 20 50 100
Melatonin Alleviates Abscisic Acid Deficiency Inhibition on Photosynthesis and Antioxidant Systems in Rice under Salt Stress
1
作者 Feiyu Yan Xin Chen +7 位作者 Zhenzhen Wang Yuxuan Xia Dehui Zheng Sirui Xue Hongliang Zhao Zhiwei Huang Yuan Niu Guoliang Zhang 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第7期1421-1440,共20页
Melatonin and abscisic acid,as major plant hormones,play important roles in the physiological and biochemical activities of crops,but the interaction between the two under salt stress is not yet clear.This study inves... Melatonin and abscisic acid,as major plant hormones,play important roles in the physiological and biochemical activities of crops,but the interaction between the two under salt stress is not yet clear.This study investigated the endogenous levels of melatonin and abscisic acid in rice by using exogenous melatonin,abscisic acid,and their synthetic inhibitors,and examined their interactions under salt stress.The research results indicate that melatonin and abscisic acid can improve rice salt tolerance.Melatonin alleviated the salt sensitivity caused by abscisic acid deficiency,increased antioxidant enzyme activity and antioxidant content in rice treated with abscisic acid synth-esis inhibitors,and reduced total reactive oxygen species content and thiobarbituric acid reactive substance accu-mulation.Melatonin also increased the activity of key photosynthetic enzymes and the content of photosynthetic pigments,maintaining the parameters of photosynthetic gas exchange and chlorophyllfluorescence.In summary,melatonin alleviated the effects of abscisic acid deficiency on photosynthesis and antioxidant systems in rice and improved salt tolerance.This study is beneficial for expanding the understanding of melatonin regulation of crop salt tolerance. 展开更多
关键词 MELATONIN abscisic acid salt stress RICE photosynthesis antioxidant system
下载PDF
Effects of potassium deficiency on photosynthesis,chloroplast ultrastructure,ROS,and antioxidant activities in maize(Zea mays L.) 被引量:9
2
作者 DU Qi ZHAO Xin-hua +5 位作者 XIA Le JIANG Chun-ji WANG Xiao-guang HAN Yi WANG Jing YU Hai-qiu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第2期395-406,共12页
Potassium(K)deficiency significantly decreases photosynthesis due to leaf chlorosis induced by accumulation of reactive oxygen species(ROS).But,the physiological mechanism for adjusting antioxidative defense system to... Potassium(K)deficiency significantly decreases photosynthesis due to leaf chlorosis induced by accumulation of reactive oxygen species(ROS).But,the physiological mechanism for adjusting antioxidative defense system to protect leaf function in maize(Zea mays L.)is unknown.In the present study,four maize inbred lines(K-tolerant,90-21-3 and 099;K-sensitive,D937 and 835)were used to analyze leaf photosynthesis,anatomical structure,chloroplast ultrastructure,ROS,and antioxidant activities.The results showed that the chlorophyll content,net photosynthetic rate(P_n),stomatal conductance(G_s),photochemical quenching(q_P),and electron transport rate of PSII(ETR)in 90-21-3 and 099 were higher than those in D937 and 835 under K deficiency treatment.Parameters of leaf anatomical structure in D937 that were significantly changed under K deficiency treatment include smaller thickness of leaf,lower epidermis cells,and vascular bundle area,whereas the vascular bundle area,xylem vessel number,and area in 90-21-3 were significantly larger or higher.D937 also had seriously damaged chloroplasts and PSII reaction centers along with increased superoxide anion(O_2^-·)and hydrogen peroxide(H_2O_2).Activities of antioxidants,like superoxide dismutase(SOD),catalase(CAT),and ascorbate peroxidase(APX),were significantly stimulated in 90-21-3 resulting in lower levels of O_2^-·and H_2O_2.These results indicated that the K-tolerant maize promoted antioxidant enzyme activities to maintain ROS homeostasis and suffered less oxidative damage on the photosynthetic apparatus,thereby maintaining regular photosynthesis under K deficiency stress. 展开更多
关键词 potassium deficiency MAIZE photosynthesis CHLOROPLAST ULTRASTRUCTURE ROS and antioxidant
下载PDF
Photosynthesis, chilling acclimation and the response of antioxidant enzymes to chilling stress in mulberry seedlings 被引量:6
3
作者 Xiaojia Liu Nan Xu +3 位作者 Yining Wu Jinbo li Haixiu Zhong Huihui Zhang 《Journal of Forestry Research》 SCIE CAS CSCD 2019年第6期2021-2029,共9页
This study investigates the effects of cold-acclimation in conferring chilling tolerance in seedlings of the mulberry(Morus alba) variety ‘Qiuyu’. Changes in photosynthesis and antioxidant enzymes in chilling acclim... This study investigates the effects of cold-acclimation in conferring chilling tolerance in seedlings of the mulberry(Morus alba) variety ‘Qiuyu’. Changes in photosynthesis and antioxidant enzymes in chilling acclimatized(CA), and non-acclimatized(NA) seedlings were recorded during chilling stress(3 °C) and a recovery period(25 °C) each for 3 days. The results showed that CA plants had higher net photosynthetic rates(P_n), stomatal conductance(G_s), and maximum photochemical efficiency of photosystem Ⅱ(F_v/F_m) in response to chilling stress compared to NA. The seedlings maintained the same trends during the recovery stage. The responses of Q_A reduction degree (1-q_P) and prime electronic transfer rates(F_o) were lower in acclimatized than in non-acclimatized seedlings. Low-temperature acclimation and chilling stress also caused an increase in leaf proline and soluble sugar contents. Leaf malondialdehyde levels were significantly lower while ascorbate peroxidase(APX) activity was significantly higher in acclimatized seedlings, suggesting that elevated osmolytes and APX confer resistance to chilling temperatures. In this study on the response of mulberry seedlings to chilling stress, we also looked at the recovery process. The response to chilling determines whether mulberry leaves can survive under cold temperatures, while the recovery process determines whether photosynthesis can recover as soon as possible to avoid any secondary damage. 展开更多
关键词 antioxidant ENZYME CHILLING ACCLIMATION CHILLING tolerance MULBERRY photosynthesis
下载PDF
Photosynthesis, Growth and Antioxidant Metabolism in Mustard (Brassica juncea L.) Cultivars Differing in Cadmium Tolerance 被引量:8
4
作者 Noushina Iqbal Asim Masood +2 位作者 Rahat Nazar Shabina Syeed Nafees A Khan 《Agricultural Sciences in China》 CAS CSCD 2010年第4期519-527,共9页
Two mustard (Brassica juncea L. Czern and Coss.) cultivars, Pusa Jai Kisan and SS2 differing in cadmium (Cd) tolerance were treated with 0, 25 and 50 umol L-1 Cd to study the physiological basis of difference in C... Two mustard (Brassica juncea L. Czern and Coss.) cultivars, Pusa Jai Kisan and SS2 differing in cadmium (Cd) tolerance were treated with 0, 25 and 50 umol L-1 Cd to study the physiological basis of difference in Cd tolerance. Cultivar SS2 (Cd sensitive) accumulated greater Cd in leaves than Pusa Jai Kisan (Cd tolerant). Further, SS2 also exhibited higher contents of thiobarbituric acid reactive substances (TBARS) and H2O2 and electrolyte leakage. However, the activities of antioxidant enzymes, catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reduetase (DHAR), and glutathione reductase (GR) were higher in Pusa Jai Kisan than those in SS2. Contrarily, the activity of superoxide dismutase (SOD) was higher in SS2 than that in Pusa Jai Kisan and was the greatest at 25 umol L-1 Cd. Treatment of 25 umol L-1 Cd induced the maximum activity of enzymes. However, the activity of GR increased up to 50 umol L-1 Cd in both the cultivars. The non-enzymatic antioxidants ascorbate (AsA) and glutathione (GSH) were higher in Pusa Jai Kisan than that in SS2, whereas dehydroascorbate (DHA) and oxidized glutathione (GSSG) were higher in SS2. Photosynthesis and growth were adversely and maximally decreased by 50 umol L-1 Cd treatment in both the cultivars, but SS2 exhibited greater reductions. The protection of photosynthesis and growth and lesser reduction in Pusa Jai Kisan were associated with its capacity to restrict accumulation of Cd in leaves resulting in lower level of TBARS and H2O2 and electrolyte leakage. Moreover, Pusa Jai Kisan exhibited efficient antioxidant metabolism for removal of Cd-induced reactive oxygen species. 展开更多
关键词 antioxidant metabolism CADMIUM oxidative stress photosynthesis
下载PDF
Exogenous Nitric Oxide Alleviated the Inhibition of Photosynthesis and Antioxidant Enzyme Activities in Iron-Deficient Chinese Cabbage (Brassica chinensis L.) 被引量:4
5
作者 DING Fei WANG Xiu-feng SHI Qing-hua WANG Mei-ling YANG Feng-juan GAO Qing-hai 《Agricultural Sciences in China》 CAS CSCD 2008年第2期168-179,共12页
The effects of exogenous nitric oxide (NO) on plant growth, chlorophyll contents, photosynthetic and chlorophyll fluorescence parameters as well as lipid peroxidation and activities of antioxidant enzymes were inves... The effects of exogenous nitric oxide (NO) on plant growth, chlorophyll contents, photosynthetic and chlorophyll fluorescence parameters as well as lipid peroxidation and activities of antioxidant enzymes were investigated in Chinese cabbage plants exposed to iron (Fe) deficiency. Iron deficiency led to serious chlorosis in Chinese cabbage leaves, and resulted in significant decrease in plant growth, photosynthetic pigments, net photosynthetic rate, Fv/Fm, Ф ps Ⅱ and activities of antioxidant enzymes, and increase in lipid peroxidation. While treatment with SNP, a NO donor, it could revert the iron deficiency symptoms, increased photosynthetic rate as well as activities of antioxidant enzymes, and protected membrane from lipid peroxidation, as a result, the growth inhibition of Chinese cabbage by Fe deficiency was alleviated. 展开更多
关键词 antioxidant enzyme Chinese cabbage iron deficiency nitric oxide photosynthesis
下载PDF
Low Root Zone Temperature Exacerbates the Ion Imbalance and Photosynthesis Inhibition and Induces Antioxidant Responses in Tomato Plants Under Salinity 被引量:9
6
作者 HE Yong YANG Jing +1 位作者 ZHU Biao ZHU Zhu-jun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第1期89-99,共11页
The combined effects of salinity with low root zone temperature (RZT) on plant growth and photosynthesis were studied in tomato (Solanum lycopersicum) plants. The plants were exposed to two different root zone tem... The combined effects of salinity with low root zone temperature (RZT) on plant growth and photosynthesis were studied in tomato (Solanum lycopersicum) plants. The plants were exposed to two different root zone temperatures (28/20℃, 12/8℃, day/night temperature) in combination with two NaC1 levels (0 and 100 mmol L-l). After 2 wk of treatment, K+ and Na~ concentration, leaf photosynthetic gas exchange, chlorophyll fluorescence and leaf antioxidant enzyme activities were measured. Salinity significantly decreased plant biomass, net photosynthesis rate, actual quantum yield of photosynthesis and concentration of K+, but remarkably increased the concentration of Na+. These effects were more pronounced when the salinity treatments were combined with the treatment of low RZT conditions. Either salinity or low RZT individually did not affect maximal efficiency of PSII photochemistry (Fv/Fm), while a combination of these two stresses decreased Fv/Fm considerably, indicating that the photo-damage occurred under such conditions. Non-photochemical quenching was increased by salt stress in accompany with the enhancement of the de-epoxidation state of the xanthophyll cycle, in contrast, this was not the case with low RZT applied individually. Salinity stress individually increased the activities of SOD, APX, GPOD and GR, and decreased the activities of DHAR. Due to the interactive effects of salinity with low RZT, these five enzyme activities increased sharply in the combined stressed plants. These results indicate that low RZT exacerbates the ion imbalance, PSII damage and photosynthesis inhibition in tomato plants under salinity. In response to the oxidative stress under salinity in combination with low RZT, the activities of antioxidant enzymes SOD, APX, GPOD, DHAR and GR were clearly enhanced in tomato plants. 展开更多
关键词 antioxidant enzyme chlorophyll fluorescence ion concentration low root zone temperature PSII SALINITY
下载PDF
Effects of Waterlogging on Photosynthesis and Antioxidant Enzyme Activities of Six Barley Genotypes with Different Waterlogging Tolerance 被引量:4
7
作者 XIAOYu-ping WEIKang +2 位作者 CHENJin-xin ZHOUMei-xue ZHANGGuo-ping 《Agricultural Sciences in China》 CAS CSCD 2005年第4期310-316,共7页
A field experiment was carried out to study genotypic difference in the effect of waterlogging on photosynthesis, chlorophyll content and antioxidative enzyme activities in barley. Waterlogging caused a rapid decline ... A field experiment was carried out to study genotypic difference in the effect of waterlogging on photosynthesis, chlorophyll content and antioxidative enzyme activities in barley. Waterlogging caused a rapid decline in net photosynthetic rate (Pn) and stomatal conductance (gs), and little change in chlorophyll content during early days of the treatment. A dramatic increase in malondialdehyde (MDA) content, superoxide dismutase (SOD) and peroxidase (POD) in waterlogged plants in the early days of the experiment was found, indicating the occurrence of oxidative stress in barley plants exposed to waterlogging. There was a highly significant difference in the changed extent of all these parameters among genotypes. Franklin and Yongjiahong Liuleng Damai, which were relatively sensitive to waterlogging in terms of growth, photosynthesis and chlorophyll content, accumulated much more MDA than the other two relatively tolerant genotypes (93-3143 and QS). After removal of waterlogging, the genotypic difference became much greater in recovering of these examined parameters. Yongjiahong Liuleng Damai showed higher recovery, while Franklin only recovered to 50% of the control at the 14 day after waterlogging removal. It may be concluded that it is the difference in anti-oxidative stress caused by waterlogging that account for the major difference in photosynthesis among barley genotypes. 展开更多
关键词 Barley (Hordeum vulgare L.) WATERLOGGING photosynthesis Oxidative stress
下载PDF
Responses of antioxidant enzyme and photosynthesis in rape seedling to the combined stresses of acid rain and ultraviolet-B radiation 被引量:3
8
作者 LIANG Chan-juan HUANG Xiao-hua +1 位作者 TAO Wen-yi ZHOU Qing 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第6期1038-1041,共4页
Effects of the simulated acid rain(AR) and ultraviolet-B(UV-B, 280-320 nm) radiation with a single or two ways simultaneously (AR + UV-B) on the antioxidant enzyme and photosynthesis of the rape seedlings were ... Effects of the simulated acid rain(AR) and ultraviolet-B(UV-B, 280-320 nm) radiation with a single or two ways simultaneously (AR + UV-B) on the antioxidant enzyme and photosynthesis of the rape seedlings were investigated by the hydroponic culture. The results of static experiment indicated that the tolerance of rape seedling to single stress(AR or UV-B) is stronger than that to dual stresses(AR + UV-B). Furthermore, the dual stresses had additive effect on catalase activity, and a synergistic effect on MDA content, net photosynthesis rate, water use efficiency as well as intercellular CO2 concentration. Meanwhile, it has an independent effect on chlorophyll content, stomatal conductance, and transpiration rate as well as membrane permeability. During 64 h restoration course, the dynamic change in the curves of physiological and biochemical indices were not identical, and none of them show a simple linear variation. According to the static and dynamic experiments, it was found that a responsive sequence of catalase activity, membrane permeability, MDA content and photosynthetic characteristics to the above-mentioned stresses was as follows: AR + UV-B 〉 UV-B 〉 AR. 展开更多
关键词 combined stresses elevated UV-B radiation simulated acid rain rape seedling CAT activity photosynthesis
下载PDF
Effects of Different Vermicompost Rates on Growth,2-Acetyl-1-Pyrroline,Photosynthesis and Antioxidant Responses of Fragrant Rice(Oryza sativa L.)Seedling
9
作者 Shaoyi Ruan Haowen Luo +3 位作者 Xiaoyan Zeng Runhao Wen Feida Wu Xiangru Tang 《Phyton-International Journal of Experimental Botany》 SCIE 2021年第4期1273-1283,共11页
Vermicompost is an organic fertilizer contains multiple nutrient elements.However,the application of vermicompost in fragrant rice production is rarely reported.In order to study the effects of vermicompost applicatio... Vermicompost is an organic fertilizer contains multiple nutrient elements.However,the application of vermicompost in fragrant rice production is rarely reported.In order to study the effects of vermicompost application on fragrant rice(Oryza sativa L.)seedling performances,present study was conducted with two fragrant rice cultivars and four vermicompost rate treatments(0(CK),2.5(Wo1),5.0(Wo2)and 10.0(Wo3)g kg−1).The results showed that vermicompost treatments significantly increased dry weight of fragrant rice seedling by 8.31–32.56%compared with CK.21.10–59.13%higher net photosynthetic rates and 10.66–59.16%higher chlorophyll contents(chlorophyll a,chlorophyll b and total chlorophyll)were recorded in vermicompost treatments than CK.Application of vermicompost also significantly increased 2-acetyl-1-pyrroline(2-AP,the key compound of fragrant rice aroma)content and reduced the transcript level of gene BADH2 which related to 2-AP biosynthesis in fragrant rice seedling.Moreover,compared with CK,vermicompost treatments enhanced activities of superoxide dismutase,peroxidase,catalase by 24.42–28.66%,24.98–25.73%and 22.45–23.57%,respectively.11.54–40.53%lower malonaldehyde contents were recorded in vermicompost treatments in related to CK.In conclusion,vermicompost improved growth,increased 2-AP content and might enhance stress resistant of fragrant rice seedling. 展开更多
关键词 2-acetyl-1-pyrroline fragrant rice gene expression photosynthesis VERMICOMPOST
下载PDF
Effects of Thallium Stress on Photosynthesis, Chlorophyll Fluorescence Parameters and Antioxidant Enzymes Activities of Coix Lacryma-jobi
10
作者 Gaozhong Pu Denan Zhang +2 位作者 Danjuan Zeng Guangping Xu Yuqing Huang 《Journal of Environmental Science and Engineering(A)》 2017年第1期15-21,共7页
Levels of T1 (Thallium) in soil from 0 (control) to 50 μg/L through 0.2, 0.5, 1 and 2.5μg/L were directly and positively correlated to levels of T1 in plant tissue, the accumulation being maximum in roots, inter... Levels of T1 (Thallium) in soil from 0 (control) to 50 μg/L through 0.2, 0.5, 1 and 2.5μg/L were directly and positively correlated to levels of T1 in plant tissue, the accumulation being maximum in roots, intermediate in leaves and minimum in stems. Thallium, especially at higher concentrations, adversely affected photosynthesis (as judged based on chlorophyll fluorescence parameters), suggesting inhibition of photo-activation of PSII (Photosystems II), and also decreased the rate of photosynthesis, the rate of transpiration and stomatal conductivity drastically. Exposure to TI also increased the activity of CAT (Catalase) (except at 1 μg/L) and POD (Peroxidase) (except at 0.2 μg/L), suggesting that the antioxidant systems in Coix lacryma-jobi were the main contributors of CAT and SOD (Superoxide Dismutase) and that the tolerance of C. lacryma-jobi to T1 is mainly due to this induced antioxidant machinery. 展开更多
关键词 antioxidant enzyme Coix lacryma-jobi L. chlorophyll fluorescence THALLIUM wetland.
下载PDF
A comparison study on structure-function relationship of polysaccharides obtained from sea buckthorn berries using different methods:antioxidant and bile acid-binding capacity 被引量:5
11
作者 Qiaoyun Li Zuman Dou +5 位作者 Qingfei Duan Chun Chen Ruihai Liu Yueming Jiang Bao Yang Xiong Fu 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期494-505,共12页
In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic... In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic(HRP-U),acid(HRP-C)and alkali(HRP-A)assisted extraction methods were investigated.The results demonstrated that extraction methods had significant effects on extraction yield,monosaccharide composition,molecular weight,particle size,triple-helical structure,and surface morphology of HRPs except for the major linkage bands.Thermogravimetric analysis showed that HRP-U with filamentous reticular microstructure exhibited better thermal stability.The HRP-A with the lowest molecular weight and highest arabinose content possessed the best antioxidant activities.Moreover,the rheological analysis indicated that HRPs with higher galacturonic acid content and molecular weight showed higher viscosity and stronger crosslinking network(HRP-C,HRP-W and HRP-U),which exhibited stronger bile acid binding capacity.The present findings provide scientific evidence in the preparation technology of sea buckthorn polysaccharides with good antioxidant and bile acid binding capacity which are related to the structure affected by the extraction methods. 展开更多
关键词 Sea buckthorn Extraction method STRUCTURE Rheological properties antioxidant activity Bile acid binding capacity
下载PDF
Molecular Mechanism and Molecular Design of Lubricating Oil Antioxidants 被引量:1
12
作者 Su Shuo Long Jun +2 位作者 Duan Qinghua Zhou Han Zhao Yi 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第2期135-145,共11页
To overcome the limitations of traditional experimental“trial and error”methods in lubricant additive design,a new molecular design method based on molecular structure parameters is established here.The molecular me... To overcome the limitations of traditional experimental“trial and error”methods in lubricant additive design,a new molecular design method based on molecular structure parameters is established here.The molecular mechanism of the antioxidant reaction of hindered phenol,diphenylamine,and alkyl sulfide are studied via molecular simulations.Calculation results show that the strong electron-donating ability and high hydrogen-donating activity of the antioxidant molecule and the low hydrogen-abstracting activity of free radicals formed after dehydrogenation are the internal molecular causes of the shielding of phenol and diphenylamine from scavenging peroxy free radicals,and the strong electron-donating ability is the internal molecular cause of the high activity of thioether in decomposing alkyl hydrogen peroxide.Based on this antioxidant molecular mechanism,a molecular design rule of antioxidant is proposed,namely“high EHOMO,large Q(S),low bond dissociation energy BDE(O—H)and BDE(N—H)”.Two new antioxidants,PAS-I and PAS-II,are designed and prepared by chemical bonding of hindered phenol,diphenylamine,and sulfur atoms.Experimental results show that these antioxidants both have excellent antioxidant effects in lubricating oil,and that PAS-II is the superior antioxidant,consistent with theoretical predictions. 展开更多
关键词 lubricating oil antioxidant molecular mechanism molecular design antioxidant performance
下载PDF
Growth,leaf anatomy,and photosynthesis of cotton(Gossypium hirsutum L.)seedlings in response to four light-emitting diodes and high pressure sodium lamp 被引量:1
13
作者 ZHANG Yichi LIAO Baopeng +3 位作者 LI Fangjun ENEJI AEgrinya DU Mingwei TIAN Xiaoli 《Journal of Cotton Research》 CAS 2024年第1期79-89,共11页
Background Light is a critical factor in plant growth and development,particularly in controlled environments.Light-emitting diodes(LEDs)have become a reliable alternative to conventional high pressure sodium(HSP)lamp... Background Light is a critical factor in plant growth and development,particularly in controlled environments.Light-emitting diodes(LEDs)have become a reliable alternative to conventional high pressure sodium(HSP)lamps because they are more efficient and versatile in light sources.In contrast to well-known specialized LED light spectra for vegetables,the appropriate LED lights for crops such as cotton remain unknown.Results In this growth chamber study,we selected and compared four LED lights with varying percentages(26.44%–68.68%)of red light(R,600–700 nm),combined with other lights,for their effects on growth,leaf anatomy,and photosynthesis of cotton seedlings,using HSP lamp as a control.The total photosynthetic photon flux density(PPFD)was(215±2)μmol·m-2·s-1 for all LEDs and HSP lamp.The results showed significant differences in all tested parameters among lights,and the percentage of far red(FR,701–780 nm)within the range of 3.03%–11.86%was positively correlated with plant growth(characterized by leaf number and area,plant height,stem diameter,and total biomass),palisade layer thickness,photosynthesis rate(Pn),and stomatal conductance(Gs).The ratio of R/FR(4.445–11.497)negatively influenced the growth of cotton seedlings,and blue light(B)suppressed stem elongation but increased palisade cell length,chlorophyll content,and Pn.Conclusion The LED 2 was superior to other LED lights and HSP lamp.It had the highest ratio of FR within the total PPFD(11.86%)and the lowest ratio of R/FR(4.445).LED 2 may therefore be used to replace HPS lamp under controlled environments for the study of cotton at the seedling stage. 展开更多
关键词 Cotton seedling Light-emitting diodes BIOMASS Palisade cell photosynthesis
下载PDF
Synergistic effects of carbon cycle metabolism and photosynthesis in Chinese cabbage under salt stress 被引量:1
14
作者 Hao Liang Qiling Shi +8 位作者 Xing Li Peipei Gao Daling Feng Xiaomeng Zhang Yin Lu Jingsen Yan Shuxing Shen Jianjun Zhao Wei Ma 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第2期461-472,共12页
Chinese cabbage(Brassica rapa ssp. pekinensis) has a long cultivation history and is one of the vegetable crops with the largest cultivation area in China. However, salt stress severely damages photosynthesis and horm... Chinese cabbage(Brassica rapa ssp. pekinensis) has a long cultivation history and is one of the vegetable crops with the largest cultivation area in China. However, salt stress severely damages photosynthesis and hormone metabolism, nutritional balances, and results in ion toxicity in plants. To better understand the mechanisms of salt-induced growth inhibition in Chinese cabbage, RNA-seq and physiological index determination were conducted to explore the impacts of salt stress on carbon cycle metabolism and photosynthesis in Chinese cabbage. Here, we found that the number of thylakoids and grana lamellae and the content of starch granules and chlorophyll in the leaves of Chinese cabbage under salt stress showed a time-dependent response, first increasing and then decreasing. Chinese cabbage increased the transcript levels of genes related to the photosynthetic apparatus and carbon metabolism under salt stress, probably in an attempt to alleviate damage to the photosynthetic system and enhance CO_(2) fixation and energy metabolism. The transcription of genes related to starch and sucrose synthesis and degradation were also enhanced;this might have been an attempt to maintain intracellular osmotic pressure by increasing soluble sugar concentrations. Soluble sugars could also be used as potential reactive oxygen species(ROS) scavengers, in concert with peroxidase(POD)enzymes, to eliminate ROS that accumulate during metabolic processes. Our study characterizes the synergistic response network of carbon metabolism and photosynthesis under salt stress. 展开更多
关键词 Chinese cabbage Salt stress Carbon metabolism photosynthesis CHLOROPLAST
下载PDF
Comparison of photosynthesis and antioxidative protection in Sophora moorcroftiana and Caragana maximovicziana under water stress 被引量:9
15
作者 QiQiang GUO WenHui ZHANG HuiE LI 《Journal of Arid Land》 SCIE CSCD 2014年第5期637-645,共9页
This study aims to investigate the protective roles of photosynthetic characteristics and antioxidative systems in the desiccation tolerance of Sophora moorcroftiana and Caragana maximovicziana as they adapt to arid e... This study aims to investigate the protective roles of photosynthetic characteristics and antioxidative systems in the desiccation tolerance of Sophora moorcroftiana and Caragana maximovicziana as they adapt to arid environments. A variety of physiological and biochemical parameters in the leaves of two Leguminosae species were monitored for 1, 7, 14, 21 and 28 d of drought stress. Soil water content decreased from 38.58% to 7.33% after exposure to 28 d of water stress. The photosynthetic carbon-assimilation rates of the two Leguminosae plants decreased for non-stomatal limitation with processing water stress. The malondialdehyde content and cell membrane relative conductivity of the two species increased significantly from 1 to 21 d and then decreased. S. moorcroftiana showed higher superoxide dismutase and peroxidase activities than C. maximovicziana during the 28 d treatment period. However, the catalase activities and proline content of C. maximovicziana were higher than those of S. moorcroftiana before the water stress treatment reached 21 d. Nine physiological and biochemical parameters were selected to comprehensively evaluate the two species' drought-resistance by the membership function values(MFV). The mean MFV indicated that S. moorcroftiana has a relatively stronger drought defense capability than C. maximovicziana. S. moorcroftiana mainly uses carbon-assimilation rate and osmotic adjustment to combat water deficiency. 展开更多
关键词 Sophora moorcroftiana Caragana maximovicziana photosynthesis characteristic antioxidative protection drought stress
下载PDF
Responses of growth performance,antioxidant function,small intestinal morphology and mRNA expression of jejunal tight junction protein to dietary iron in yellow-feathered broilers 被引量:1
16
作者 Kaiwen Lei Hao Wu +4 位作者 Jerry W Spears Xi Lin Xi Wang Xue Bai Yanling Huang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1329-1337,共9页
This study aimed to investigate the dose-effect of iron on growth performance,antioxidant function.intestinal morphology,and mRNA expression of jejunal tight junction protein in 1-to21-d-old yellow-feathered broilers.... This study aimed to investigate the dose-effect of iron on growth performance,antioxidant function.intestinal morphology,and mRNA expression of jejunal tight junction protein in 1-to21-d-old yellow-feathered broilers.A total of 7201-d-old yellow-feathered maleb roilers were allocated to 9 treatments with 8 replicate cages of 10 birds per cage.The dietary treatments were consisted of a basal diet(contained 79.6 mg Fe kg^(-1))supplemented with 0,20,40,60,80,160,320,640,and 1,280 mg Fe kg^(-1)in the form of FeSO_(4)·7H_(2)O.Compared with the birds in the control group,birds supplemented with 20mg Fe kg^(-1)had higher average daily gain(ADG)(P<0.0001).Adding 640 and 1,280 mg Fe kg^(-1)significantly decreased ADG(P<0.0001)and average daily feed intake(ADFI)(P<0.0001)compared with supplementation of 20mg Fe kg^(-1).Malondialdehyde(MDA)concentration in plasma and duodenum increased linearly(P<0.0001),but MDA concentration in liver and jejunum increased linearly(P<0.05)or quadratically(P<0.05)with increased dietary Fe concentration.The villus height(VH)in duodenum and jejunum,and the ratio of villus height to crypt depth(V/C)in duodenum decreased linearly(P?0.05)as dietary Feincreased.As dietary Fe increased,the jejunal relative mRNA abundance of claudin-1 decreased linearly(P=0.001),but the jejunal relative mRNA abundance of zona occludens-1(ZO-1)and occludin decreased linearly(P?0.05)or quadratically(P?0.05).Compared with the supplementation of 20 mg Fe kg^(-1),the supplementation of640 mg Fe kg^(-1)or higher increased(P?0.05)MDA concentrations in plasma,duodenum,and jejunum,decreased VH in the duodenum and jejunum,and the addition of 1,280 mg Fe kg^(-1)reduced(P?0.05)the jejunal tight junction protein(claudin-1,ZO-1,occludin)mRNA abundance.In summary,640 mg of supplemental Fe kg^(-1)or greater was associated with decreased growth performance,increased oxidative stress,disrupted intestinal morphology,and reduced mRNA expression of jejunal tight junction protein. 展开更多
关键词 IRON yellow-feathered broiler antioxidant function intestinal morphology tight junction protein
下载PDF
Selenium Differentially Regulates Flavonoid Accumulation and Antioxidant Capacities in Sprouts of Twenty Diverse Mungbean(Vigna radiata(L.)Wilczek)Genotypes 被引量:1
17
作者 Fenglan Zhao Jizhi Jin +4 位作者 Meng Yang Franklin Eduardo Melo Santiago Jianping Xue Li Xu Yongbo Duan 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第3期611-625,共15页
Seed germination with selenium(Se)is promising for producing Se-biofortified foods.Mungbean(Vigna radiata(L.)Wilczek)sprout is freshly eaten as a salad dressed with sauce,making it superior for Se biofortification.Since... Seed germination with selenium(Se)is promising for producing Se-biofortified foods.Mungbean(Vigna radiata(L.)Wilczek)sprout is freshly eaten as a salad dressed with sauce,making it superior for Se biofortification.Since the Se safety range for the human body is extremely narrow,it is imperative to evaluate the genotypic responses of mungbean sprouts to Se.This study evaluated the Se enrichment capacity and interaction withflavonoids and antioxidant systems in sprouts of 20 mungbean germplasms.Selenium treatment was done by immersing mung-bean seeds in 20μM sodium selenite solution for 8 h.Afterward,the biomass,Se amounts,flavonoid(particularly vitexin and isovitexin)contents,antioxidant capacity,and key biosynthetic gene expressions were measured.Sprout Se content was 2.0-7.0μg g^(-1) DW among the 20 mungbean germplasms.Selenium treatment differentially affected the biomass,totalflavonoid,vitexin,isovitexin,antioxidant enzyme activities,and antioxidant capacities of the mungbean germplasms.Eight germplasms showed increased biomass(p<0.05),the highest increasing by 127%,but 13 did not phenotypically respond to Se treatment.Seven and six germplasms showed varied levels of vitexin and isovitexin increment after Se treatment,the highest measuring 2.67-and 2.87-folds for vitexin and isovitexin,respectively.Two mungbeanflavonoid biosynthesis genes,chalcone synthase(VrCHS)and chalcone isomerase(VrCHI)were significantly up-regulated in the germplasms with increased vitexin and isovitexin levels(p<0.05).Moreover,Se enrichment capacity was significantly correlated with the vitexin,isovitexin,and antiox-idant capacities.In conclusion,mungbean sprouts could be a useful Se-biofortified food,but the Se enrichment capacity and nutritional response must be determined for each germplasm before commercialization. 展开更多
关键词 antioxidant capacity gene expression genotypic variation isovitexin VITEXIN SELENIUM
下载PDF
Emulsifying property,antioxidant activity,and bitterness of soybean protein isolate hydrolysate obtained by Corolase PP under high hydrostatic pressure 被引量:1
18
作者 Haining Guan Chunmei Feng +3 位作者 Min Ren Xiaojun Xu Dengyong Liu Xiaoqin Diao 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1271-1278,共8页
Enzymatic hydrolysis of proteins can enhance their emulsifying properties and antioxidant activities.However,the problem related to the hydrolysis of proteins was the generation of the bitter taste.Recently,high hydro... Enzymatic hydrolysis of proteins can enhance their emulsifying properties and antioxidant activities.However,the problem related to the hydrolysis of proteins was the generation of the bitter taste.Recently,high hydrostatic pressure(HHP)treatment has attracted much interest and has been used in several studies on protein modification.Hence,the study aimed to investigate the effects of enzymatic hydrolysis by Corolase PP under different pressure treatments(0.1,100,200,and 300 MPa for 1-5 h at 50℃)on the emulsifying property,antioxidant activity,and bitterness of soybean protein isolate hydrolysate(SPIH).As observed,the hydrolysate obtained at 200 MPa for 4 h had the highest emulsifying activity index(47.49 m^(2)/g)and emulsifying stability index(92.98%),and it had higher antioxidant activities(44.77%DPPH free radical scavenging activity,31.12%superoxide anion radical scavenging activity,and 61.50%copper ion chelating activity).At the same time,the enhancement of emulsion stability was related to the increase of zeta potential and the decrease of mean particle size.In addition,the hydrolysate obtained at 200 MPa for 4 h had a lower bitterness value and showed better palatability.This study has a broad application prospect in developing food ingredients and healthy foods. 展开更多
关键词 Soybean protein isolate High hydrostatic pressure EMULSIFICATION antioxidant Bitter taste
下载PDF
Application of Polygonum minus Extract in Enhancing Drought Tolerance in Maize by Regulating Osmotic and Antioxidant System
19
作者 Mingzhao Han Susilawati Kasim +4 位作者 Zhongming Yang Xi Deng Md Kamal Uddin Noor Baity Saidi Effyanti Mohd Shuib 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第2期213-226,共14页
Drought stress is a major factor affecting plant growth and crop yield production.Plant extracts as natural biostimulants hold great potential to strengthen plants to overcome drought impacts.To explore the effect of ... Drought stress is a major factor affecting plant growth and crop yield production.Plant extracts as natural biostimulants hold great potential to strengthen plants to overcome drought impacts.To explore the effect of Polygonum minus extract(PME)in enhancing drought tolerance in plants,a study was set up in a glasshouse environment using 10 different treatment combinations.PME foliar application were designed in CRD and effects were closely observed related to the growth,physiology,and antioxidant system changes in maize(Zea mays L.)under well-watered and drought conditions.The seaweed extract(SWE)was used as a comparison.Plants subjected to drought stress exhibited a significant reduction in fresh weight,dry weight,relative water content(RWC),and soluble sugar,but they stimulated the phenolic,flavonoid,proline,glutathione(GSH),malondialdehyde(MDA)and antioxidant enzyme(catalase,CAT;peroxidase,POD;superoxide dismutase,SOD)activities.Foliar application of PME improved fresh and dry weight(FW:33.1%~41.4%;DW:48.0%~43.1%),chlorophyll content(Chl b:87.9%~100.76%),soluble sugar(23.6%~49.3%),and soluble protein(48.6%~56.9%)as well as antioxidant enzyme activities(CAT and POD)compared to CK under drought conditions.while decreasing the level of MDA.Notably,the mitigating effect of PME application with high concentration was more effective than those of SWE.Our study reveals that PME could alleviate drought stress by regulating osmoprotectant content and antioxidant defense system and can be used as an economical and environmentally friendly biostimulants for promoting maize growth under drought stress. 展开更多
关键词 Drought biostimulants photosynthesis OSMOPROTECTANTS antioxidantS MAIZE
下载PDF
Double-stranded DNA-nucleic acid dye complex-sensitized biocatalytic photosynthesis:Base pairing-switched regeneration of nicotinamide cofactor
20
作者 Zhen Dong Yanying Wang +1 位作者 Dan Li Peng Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期618-624,共7页
Photo-biocatalysis,the combination of photosensitization and biocatalysis,is an emerging solution for sunlight-based renewable energy.It is thus important to develop light antennas with both good light har-vesting and... Photo-biocatalysis,the combination of photosensitization and biocatalysis,is an emerging solution for sunlight-based renewable energy.It is thus important to develop light antennas with both good light har-vesting and efficient electron transfer.Herein,the intriguing electrical conductivity of dsDNA and its host effect(for nucleic acid dyes to harvest light)were explored simultaneously to develop a dsDNA-based light antenna for photo-biocatalysis.With SYBR Green I(SG)as the example of the nucleic acid dye,the proposed SG-dsDNA system was found to be capable for visible-light-driven reduced nicotinamide adenine dinucleotide(NADH)regeneration,and the turnover frequency of which(1.35 min^(-1))exceeded most of the existing photocatalytic systems.Since SG can only be hosted by dsDNA,meanwhile dsDNA can be formed through hybridization between single strand DNA and its complementary strand,the pro-posed system adds an extra control of the photocatalytic activity(DNA base pairing-based switch).When integrating the SG-dsDNA system with NADH-dependent horse liver alcohol dehydrogenase(HLADH),successful synthesis of 2-phenylpropanol(a crucial intermediates of profens manufacturing)was achieved. 展开更多
关键词 photosynthesis DSDNA SYBRGreenI TICT 2-phenylpropanol
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部