期刊文献+
共找到50,110篇文章
< 1 2 250 >
每页显示 20 50 100
Comparative analysis of the photosynthetic physiology and transcriptome of a high-yielding wheat variety and its parents 被引量:4
1
作者 Huajie Liu Qidi Zhu +3 位作者 Xinxin Pei Guozhen Xing Xingqi Ou Hua Li 《The Crop Journal》 SCIE CSCD 2020年第6期1037-1048,共12页
Photosynthesis is the fundamental basis of plant growth and development,and the improvement of photosynthetic efficiency can therefore promote increased crop yields.In this study,a comparative analysis of photosynthet... Photosynthesis is the fundamental basis of plant growth and development,and the improvement of photosynthetic efficiency can therefore promote increased crop yields.In this study,a comparative analysis of photosynthetic physiology and transcriptome was conducted between the high photosynthetic efficient variety BN207 and its parents BN64 and ZM16.The higher chlorophyll fluorescence,chlorophyll and carotenoid contents,and Lhcb1 protein accumulation in BN207 improved photosynthetic efficiency by promoting light energy absorption and conversion.Chloroplasts being distributed more closely to the cell membrane and the higher Rubisco enzyme activity of BN207 enhanced carbon assimilation,resulting in more carbohydrate accumulation in BN207.Transcriptome analysis revealed that there were several key genes mediating the high photosynthetic efficiency of BN207:Traes CS5 D02 G364100(chlorophyllase),BGI_novel_G006617(lycopeneε-cyclase),Traes CS4 A02 G034800 and Traes CS4 A02 G035100(Zeaxanthin epoxidase),Traes CS6 B02 G122500(light-harvesting complex II chlorophyll a/b binding protein 1).These genes improved the photosynthetic efficiency of BN207 mainly by reducing chlorophyll degradation,promoting carotenoid synthesis,and increasing Lhcb1 protein accumulation.These findings provide important background information for the cultivation of wheat varieties with high photosynthetic efficiency. 展开更多
关键词 photosynthetic efficiency Chlorophyll and carotenoid Lhcb1 TRANSCRIPTOME Wheat
下载PDF
Study on Growth Rules and Photosynthetic Physiology of Biennial Container Seedlings and Bare Root Seedlings of Phoebe
2
作者 Yongzheng MA Shuhuai HE Yongjun FEI 《Asian Agricultural Research》 2017年第9期59-63,共5页
Transplantation experiment was carried out using biennial container seedlings and bare root seedlings of Phoebe zhennan S. Lee as materials. In the experiment,it measured the growth indicators such as the seedling hei... Transplantation experiment was carried out using biennial container seedlings and bare root seedlings of Phoebe zhennan S. Lee as materials. In the experiment,it measured the growth indicators such as the seedling height,basal diameter,and number of branches and leaves. Besides,it also measured net photosynthetic rate( Pn),transpiration rate( Tr),stomatal conductance( Gs),intercellular CO_2 concentration( Ci) and soluble sugar,soluble protein,malondialdehyde( MDA) content,superoxide dismutase activity and root activity. The results indicated that the growth indicators of the Phoebe container seedlings performed the best in the plant height,basal diameter,and number of branches and leaves; photosynthetic capacity was the strongest,and the fertilization could enhance the photosynthetic capacity of seedlings; soluble sugar,soluble protein content,superoxide dismutase activity and root activity of Phoebe container seedlings were higher than that of bare root seedlings. 展开更多
关键词 Phoebe zhennan S.Lee Growth rules photosynthetic characteristics Physiological characteristics
下载PDF
Effects of thinning on the understory light environment of different stands and the photosynthetic performance and growth of the reforestation species Phoebe bournei 被引量:2
3
作者 Shicheng Su Nianqing Jin Xiaoli Wei 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第1期12-28,共17页
Light levels determine regeneration in stands and a key concern is how to regulate the light environment of different stand types to the requirements of the understory.In this study,we selected three stands typical in... Light levels determine regeneration in stands and a key concern is how to regulate the light environment of different stand types to the requirements of the understory.In this study,we selected three stands typical in south China(a Cryptomeria japonica plantation,a Quercus acutissima plantation,and a mixed stand of both)and three thinning intensities to determine the best understory light environ-ment for 3-year-old Phoebe bournei seedlings.The canopy structure,understory light environment,and photosynthe-sis and growth indicators were assessed following thin-ning.Thinning improved canopy structure and understory light availability of each stand;species composition was the reason for differences in the understory light environ-ment.Under the same thinning intensity,the mixed stand had the greatest light radiation and most balanced spectral composition.P.bournei photosynthesis and growth were closely related to the light environment;all three stands required heavy thinning to create an effective and sustained understory light environment.In a suitable understory light environment,the efficiency of light interception,absorption,and use by seedlings was enhanced,resulting in a higher carbon assimilation the main limiting factor was stomatal conductance.As a shade-avoidance signal,red/far-red radia-tion is a critical factor driving changes in photosynthesis and growth of P.bournei seedlings,and a reduction increased light absorption and use capacity and height:diameter ratios.The growth advantage transformed from diameter to height,enabling seedlings to access more light.Our findings suggest that the regeneration of shade-tolerant species such as P.bournei could be enhanced if a targeted approach to thinning based on stand type was adopted. 展开更多
关键词 THINNING Understory light environment Phoebe bournei photosynthetic performance Growth performance
下载PDF
Grain Yield,Biomass Accumulation,and Leaf Photosynthetic Characteristics of Rice under Combined Salinity-Drought Stress 被引量:1
4
作者 WEI Huanhe GENG Xiaoyu +7 位作者 ZHANG Xiang ZHU Wang ZHANG Xubin CHEN Yinglong HUO Zhongyang ZHOU Guisheng MENG Tianyao DAI Qigen 《Rice science》 SCIE CSCD 2024年第1期118-128,I0023,共12页
Simultaneous stresses of salinity and drought often coincide during rice-growing seasons in saline lands,primarily due to insufficient water resources and inadequate irrigation facilities.Consequently,combined salinit... Simultaneous stresses of salinity and drought often coincide during rice-growing seasons in saline lands,primarily due to insufficient water resources and inadequate irrigation facilities.Consequently,combined salinity-drought stress poses a major threat to rice production.In this study,two salinity levels(NS,non-salinity;HS,high salinity)along with three drought treatments(CC,control condition;DJ,drought stress imposed at jointing;DH,drought stress imposed at heading)were performed to investigate their combined influences on leaf photosynthetic characteristics,biomass accumulation,and rice yield formation.Salinity,drought,and their combination led to a shortened growth period from heading to maturity,resulting in a reduced overall growth duration.Grain yield was reduced under both salinity and drought stress,with a more substantial reduction under the combined salinity-drought stress.The combined stress imposed at heading caused greater yield losses in rice compared with the stress imposed at jointing.Additionally,the combined salinity-drought stress induced greater decreases in shoot biomass accumulation from heading to maturity,as well as in shoot biomass and nonstructural carbohydrate(NSC)content in the stem at heading and maturity.However,it increased the harvest index and NSC remobilization reserve.Salinity and drought reduced the leaf area index and SPAD value of flag leaves and weakened the leaf photosynthetic characteristics as indicated by lower photosynthetic rates,transpiration rates,and stomatal conductance.These reductions were more pronounced under the combined stress.Salinity,drought,and especially their combination,decreased the activities of ascorbate peroxidase,catalase,and superoxide dismutase,while increasing the contents of malondialdehyde,hydrogen peroxide,and superoxide radical.Our results indicated a more significant yield loss in rice when subjected to combined salinity-drought stress.The individual and combined stresses of salinity and drought diminished antioxidant enzyme activities,inhibited leaf photosynthetic functions,accelerated leaf senescence,and subsequently lowered assimilate accumulation and grain yield. 展开更多
关键词 antioxidant defense system combined salinity-drought stress drought stress photosynthetic characteristics RICE salinity stress
下载PDF
Exogenous calcium enhances the physiological status and photosynthetic capacity of rose under drought stress
5
作者 Xiaojuan Zhao Shang Lin +5 位作者 Shuang Yu Yichang Zhang Lin Su Lifang Geng Chenxia Cheng Xinqiang Jiang 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第3期853-865,共13页
Drought(water shortage)can substantially limit the yield and economic value of rose plants(Rosa spp.).Here,we characterized the effect of exogenous calcium(Ca^(2+))on the antioxidant system and photosynthesis-related ... Drought(water shortage)can substantially limit the yield and economic value of rose plants(Rosa spp.).Here,we characterized the effect of exogenous calcium(Ca^(2+))on the antioxidant system and photosynthesis-related properties of rose under polyethylene glycol 6000(PEG6000)-induced drought stress.Chlorophyll levels,as well as leaf and root biomass,were significantly reduced by drought;drought also had a major effect on the enzymatic antioxidant system and increased concentrations of reactive oxygen species.Application of exogenous Ca^(2+)increased the net photosynthetic rate and stomatal conductance of leaves,enhanced water-use efficiency,and increased the length and width of stomata following exposure to drought.Organ-specific physiological responses were observed under different concentrations of Ca^(2+).Application of 5 mmol·L^(-1)Ca^(2+)promoted photosynthesis and antioxidant activity in the leaves,and application of 10 mmol·L^(-1)Ca^(2+)promoted antioxidant activity in the roots.Application of exogenous Ca^(2+)greatly enhanced the phenotype and photosynthetic capacity of potted rose plants following exposure to drought stress.Overall,our findings indicate that the application of exogenous Ca^(2+)enhances the drought resistance of roses by promoting physiological adaptation and that it could be used to aid the cultivation of rose plants. 展开更多
关键词 Rosa hybrida L. Exogenous calcium Drought stress Physiological index photosynthetic capacity
下载PDF
Photosynthetic response dynamics in the invasive species Tithonia diversifolia and two co-occurring native shrub species under fluctuating light conditions
6
作者 Ju Li Shu-Bin Zhang Yang-Ping Li 《Plant Diversity》 SCIE CAS CSCD 2024年第2期265-273,共9页
To determine the invasiveness of invasive plants,many studies have compared photosynthetic traits or strategies between invasive and native species.However,few studies have compared the photosynthetic dynamics between... To determine the invasiveness of invasive plants,many studies have compared photosynthetic traits or strategies between invasive and native species.However,few studies have compared the photosynthetic dynamics between invasive and native species during light fluctuations.We compared photosynthetic induction,relaxation dynamics and leaf traits between the invasive species,Tithonia diversifolia and two native species,Clerodendrum bungei and Blumea balsamifera,in full-sun and shady habitats.The photosynthetic dynamics and leaf traits differed among species.T.diversifolia showed a slower induction speed and stomatal opening response but had higher average intrinsic water-use efficiency than the two native species in full-sun habitats.Thus,the slow induction response may be attributed to the longer stomatal length in T.diversifolia.Habitat had a significant effect on photosynthetic dynamics in T.diversifolia and B.balsamifera but not in C.bungei.In shady habitat,T.diversifolia had a faster photosynthetic induction response than in full-sun habitat,leading to a higher average stomatal conductance during photosynthetic induction in T.diversifolia than in the two native species.In contrast,B.balsamifera had a larger stomatal length and slower photosynthetic induction and relaxation response in shady habitat than in full-sun habitat,resulting in higher carbon gain during photosynthetic relaxation.Nevertheless,in both habitats,T.diversifolia had an overall higher carbon gain during light fluctuations than the two native species.Our results indicated that T.diversifolia can adopt more effective response strategies under fluctuating light environments to maximize carbon gain,which may contribute to its successful invasion. 展开更多
关键词 Invasive plant photosynthetic induction photosynthetic relaxation Carbon gain Stomatal traits Tithonia diversifolia
下载PDF
Boxing Practitioners Physiology Review: 3. Dietary Supplementation, Weight Control, Recovery and Altitude
7
作者 André Mukala Nsengu Tshibangu 《Open Journal of Molecular and Integrative Physiology》 2024年第1期1-29,共29页
The preceding parts of the review concerned kinanthropometric parameters, skeletal muscle recruitment, ergometry, systemic responses and adaptations. Main teachings of this third part of the whole review follow. At th... The preceding parts of the review concerned kinanthropometric parameters, skeletal muscle recruitment, ergometry, systemic responses and adaptations. Main teachings of this third part of the whole review follow. At the 1996 Atlanta Olympic Game, most vitamin users (91 percent) were boxers. After 18 days of endurance training at the altitude of 1800 m, in boxers, 1) erythropoietin and reticulocytes values increased, 2) remained unchanged parameters of iron metabolism and maximal oxygen uptake values, 3) iron supplementation decreased total body hemoglobin values. Zinc supplementation and/or regularity while boxing influenced plasma levels of calcium, copper, iron, magnesium, phosphorus and zinc in boxers. Sodium bicarbonate ingestion increased punches frequency and time to fatigue in boxers. Boxing-induced thermal dehydration yielded 1) body and muscle masses decrease compensated by increased neural input to muscle, to maintain muscle strength, but 2) a 26.8 percent performance fall. In boxers, fluid and food intake restriction 1) changed neither blood vitamin status nor plasma glutathione levels, 2) yielded a) a negative mood profile and a performance decrease, when resulted in body mass fall by 5.16 percent but b) no performance decrease when fall was by three percent. Diet protein or protein and caloric components decrease increased, in boxers, protein catabolism and, for the same submaximal workload, heart rate and oxygen intake. In food-restricted boxers, myoprotein catabolism increased with decreasing meal intake frequency. Competition and no-competition boxers utilize massage. Massage increased perceptions of recovery after a whole boxing performance. High level of cardiorespiratory fitness accelerates recovery process between boxing rounds. 展开更多
关键词 BOXING Integrative physiology Martial Arts Molecular physiology Musculoskeletal physiology
下载PDF
Corrigendum:Disentangling brain PrPC proteoforms and their roles in physiology and disease
8
《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1695-1695,共1页
In the article titled“Disentangling brain PrPC proteoforms and their roles in physiology and disease”,published on pages 963-965,Issue 5,Volume 19 of Neural Regeneration Research(Vanni and Romolo,2024;doi:10.4103/16... In the article titled“Disentangling brain PrPC proteoforms and their roles in physiology and disease”,published on pages 963-965,Issue 5,Volume 19 of Neural Regeneration Research(Vanni and Romolo,2024;doi:10.4103/1673-5374.385302),the name of the second author appears incorrectly.The correct name is Romolo Nonno. 展开更多
关键词 REGENERATION PRPC physiology
下载PDF
Effects of dense planting patterns on photosynthetic traits of different vertical layers and yield of wheat under different nitrogen rates
9
作者 Cuicun Wang Ke Zhang +9 位作者 Qing Liu Xiufeng Zhang Zhikuan Shi Xue Wang Caili Guo Qiang Cao Yongchao Tian Yan Zhu Xiaojun Liu Weixing Cao 《The Crop Journal》 SCIE CSCD 2024年第2期594-604,共11页
A two-year field experiment was conducted to measure the effects of densification methods on photosynthesis and yield of densely planted wheat.Inter-plant and inter-row distances were used to define ratefixed pattern(... A two-year field experiment was conducted to measure the effects of densification methods on photosynthesis and yield of densely planted wheat.Inter-plant and inter-row distances were used to define ratefixed pattern(RR)and row-fixed pattern(RS)density treatments.Meanwhile,four nitrogen(N)rates(0,144,192,and 240 kg N ha-1,termed N0,N144,N192,and N240)were applied with three densities(225,292.5,and 360×10^(4)plants ha^(-1),termed D225,D292.5,and D360).The wheat canopy was clipped into three equal vertical layers(top,middle,and bottom layers),and their chlorophyll density(Ch D)and photosynthetically active radiation interception(FIPAR)were measured.Results showed that the response of Ch D and FIPAR to N rate,density,and pattern varied with different layers.N rate,density,and pattern had significant interaction effects on Ch D.The maximum values of whole-canopy Ch D in the two seasons appeared in N240 combined with D292.5 and D360 under RR,respectively.Across two growing seasons,FIPAR values of RR were higher than those of RS by 29.37%for the top layer and 5.68%for the middle layer,while lower than those of RS by 20.62%for the bottom layer on average.With a low N supply(N0),grain yield was not significantly affected by density for both patterns.At N240,increasing density significantly increased yield under RR,but D360 of RS significantly decreased yield by 3.72%and 9.00%versus D225 in two seasons,respectively.With an appropriate and sufficient N application,RR increased the yield of densely planted wheat more than RS.Additionally,the maximum yield in two seasons appeared in the combination of D360 with N144 or N192 rather than of D225 with N240 under both patterns,suggesting that dense planting combined with an appropriate N-reduction application is feasible to increase photosynthesis capacity and yield. 展开更多
关键词 Chlorophyll density Densification method Nitrogen photosynthetically active radiation INTERCEPTION WHEAT
下载PDF
Effects of thinning and understory removal on water use efficiency of Pinus massoniana:evidence from photosynthetic capacity and stable carbon isotope analyses
10
作者 Ting Wang Qing Xu +4 位作者 Beibei Zhang Deqiang Gao Ying Zhang Jing Jiang Haijun Zuo 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第2期42-53,共12页
Understanding the relationship between forest management and water use efficiency(WUE)is important for evaluating forest adaptability to climate change.However,the effects of thinning and understory removal on WUE and... Understanding the relationship between forest management and water use efficiency(WUE)is important for evaluating forest adaptability to climate change.However,the effects of thinning and understory removal on WUE and its key controlling processes are not well understood,which limits our comprehension of the physiological mechanisms of various management practices.In this study,four forest management measures(no thinning:NT;understory removal:UR;light thinning:LT;and heavy thinning:HT)were carried out in Pinus massoniana plantations in a subtropical region of China.Photosynthetic capacity and needle stable carbon isotope composition(δ^(13)C)were measured to assess instantaneous water use efficiency(WUE_(inst))and long-term water use efficiency(WUE_(i)).Multiple regression models and structural equation modelling(SEM)identified the effects of soil properties and physiological performances on WUE_(inst)and WUE_(i).The results show that WUE_(inst)values among the four treatments were insignificant.However,compared with the NT stand(35.8μmol·mol^(-1)),WUE_(i)values significantly increased to 41.7μmol·mol^(-1)in the UR,50.1μmol·mol^(-1)in the LT and 46.6μmol·mol^(-1)in HT treatments,largely explained by photosynthetic capacity and soil water content.Understory removal did not change physiological performance(needle water potential and photosynthetic capacity).Thinning increased the net photosynthetic rate(A_n)but not stomatal conductance(g_s)or predawn needle water potential(ψ_(pd)),implying that the improvement in water use efficiency for thinned stands was largely driven by radiation interception than by soil water availability.In general,thinning may be an appropriate management measure to promote P.massoniana WUE to cope with seasonal droughts under future extreme climates. 展开更多
关键词 Stable carbon isotope Water use efficiency THINNING Understory removal photosynthetic capacity Needle water potential
下载PDF
One-time application of controlled-release bulk blending fertilizer enhances yield,quality and photosynthetic efficiency in late japonica rice
11
作者 Canping Dun Rui Wang +6 位作者 Kailiang Mi Yuting Zhang Haipeng Zhang Peiyuan Cui Yanle Guo Hao Lu Hongcheng Zhang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第11期3672-3691,共20页
Controlled-release urea(CRU)releases nitrogen(N)at the same pace that rice takes it up,which can effectively improve N use efficiency,increase rice yield and improve rice quality.However,few studies have described the... Controlled-release urea(CRU)releases nitrogen(N)at the same pace that rice takes it up,which can effectively improve N use efficiency,increase rice yield and improve rice quality.However,few studies have described the effects of CRU application on the photosynthetic rate and endogenous enzyme activities of rice.Accordingly,a twoyear field trial was conducted with a total of seven treatments:CK,no N fertilizer;BBF,regular blended fertilizer;RBBF,20%N-reduced regular blended fertilizer;CRF1,70%CRU+30%regular urea one-time base application;CRF2,60%CRU+40%regular urea one-time base application;RCRF1,CRF1 treatment with 20%N reduction;and RCRF2,CRF2 treatment with 20%N reduction.Each treatment was conducted in triplicate.The results showed that the N recovery efficiency(NRE)of the controlled-release bulk blending fertilizer(CRBBF)treatments was significantly greater over the two years.There were significant yield increases of 4.1–5.9%under the CRF1treatment and 5.6–7.6%under the CRF2 treatment compared to the BBF treatment,but the differences between the reduced-N treatments RBBF and RCRF2 were not significant.Photosynthetic rates under the CRF1 and CRF2treatments were significantly higher than under the other treatments,and they had significantly greater RuBPCase,RuBisCO,glutamate synthase(GOGAT)and glutamine synthetase(GS)enzyme activities.Additionally,the soil NH_(4)^(+)-N and NO_(3)^(–)-N contents under the CRBBF treatments were significantly higher at the late growth stage of rice,which was more in-line with the fertilizer requirements of rice throughout the reproductive period.CRBBF also led to some improvement in rice quality.Compared with the BBF and RBBF treatments,the protein contents under the CRBBF treatments were reduced but the milling,appearance,eating and cooking qualities of the rice were improved.These results showed that the application of CRBBF can improve the NRE,photosynthetic rate and endogenous enzyme activities of rice,ensuring sufficient N nutrition and photosynthetic material production during rice growth and thereby achieving improved rice yield and quality. 展开更多
关键词 controlled-release bulk blending fertilizer yield QUALITY photosynthetic rate endogenous enzyme activity
下载PDF
Physiology of medicinal and aromatic plants under drought stress
12
作者 Zohreh Emami Bistgani Allen V.Barker Masoud Hashemi 《The Crop Journal》 SCIE CSCD 2024年第2期330-339,共10页
Drought poses a significant challenge,restricting the productivity of medicinal and aromatic plants.The strain induced by drought can impede vital processes like respiration and photosynthesis,affecting various aspect... Drought poses a significant challenge,restricting the productivity of medicinal and aromatic plants.The strain induced by drought can impede vital processes like respiration and photosynthesis,affecting various aspects of plants’growth and metabolism.In response to this adversity,medicinal plants employ mechanisms such as morphological and structural adjustments,modulation of drought-resistant genes,and augmented synthesis of secondary metabolites and osmotic regulatory substances to alleviate the stress.Extreme water scarcity can lead to leaf wilting and may ultimately result in plant death.The cultivation and management of medicinal plants under stress conditions often differ from those of other crops.This is because the main goal with medicinal plants is not only to increase the yield of the above-ground parts but also to enhance the production of active ingredients such as essential oils.To elucidate these mechanisms of drought resistance in medicinal and aromatic plants,the current review provides a summary of recent literature encompassing studies on the morphology,physiology,and biochemistry of medicinal and aromatic plants under drought conditions. 展开更多
关键词 Drought stress Medicinal and aromatic plants PHYTOCHEMISTRY physiology
下载PDF
The photosynthetic oxygen evolution does not exclude the important role and contribution of bicarbonate photolysis
13
作者 Yanyou Wu Shaogang Guo 《Acta Geochimica》 EI CAS CSCD 2024年第1期174-179,共6页
Photosynthesis is the most important biochemical reaction on Earth. It has co-evolved and developed with the Earth, driving the biogeochemical cycle of all elements on the planet and serving as the only chemical proce... Photosynthesis is the most important biochemical reaction on Earth. It has co-evolved and developed with the Earth, driving the biogeochemical cycle of all elements on the planet and serving as the only chemical process in nature that can convert light energy into chemical energy. Some heavy oxygen isotopic(^(18)O) labeling experiments have"conclusively" demonstrated that the oxygen released by photosynthesis comes only from water and are written into textbooks. However, it is not difficult to find that bicarbonate has never been excluded from the direct substrate of photosynthesis from beginning to end during the history of photosynthesis research. No convincing mechanism can be used to explain photosynthetic oxygen evolution solely from water photolysis. The bicarbonate effect, the Dole effect, the thermodynamic convenience of bicarbonate photolysis, the crystal structure characteristics of photosystem Ⅱ, and the reinterpretation of heavy oxygen isotopic labeling(^(18)O)experiments all indicate that the photosynthetic oxygen evolution does not exclude the important role and contribution of bicarbonate photolysis. The recently proposed view that bicarbonate photolysis is the premise of water photolysis, bicarbonate photolysis and water photolysis work together with a 1:1(mol/mol) stoichiometric relationship, and the stoichiometric relationship between oxygen and carbon dioxide released during photosynthetic oxygen evolution is also 1:1, has excellent applicability and objectivity, which can logically and reasonably explain the precise coordination between light and dark reactions during photosynthesis, the bicarbonate effect, the Dole effect, the Kok cycle and the neutrality of water and carbon in nature.This is of great significance for constructing the bionic artificial photosynthetic reactors and scientifically answering the question of the source of elemental stoichiometric relationships in nature. 展开更多
关键词 Bicarbonate effect Dole effect Kok cycle Heavy oxygen isotope Artificial photosynthetic reactor
下载PDF
Effect of Various Citrus Rootstock-scion Combinations on Tree Growth,Fruit Quality,and Photosynthetic Characteristics under Red Loam Soil Conditions
14
作者 Liying GUO Yanjun GUO +5 位作者 Wenxia WU Xiaohua LI Haiyan JIANG Ying YUAN Guochan HUANG Qianhua JI 《Asian Agricultural Research》 2024年第10期41-49,共9页
[Objectives]To investigate the effects of 15 distinct citrus rootstock-scion combinations on tree growth,fruit quality,and photosynthetic characteristics under red loam soil conditions and provide a theoretical founda... [Objectives]To investigate the effects of 15 distinct citrus rootstock-scion combinations on tree growth,fruit quality,and photosynthetic characteristics under red loam soil conditions and provide a theoretical foundation for the selection of appropriate citrus rootstock-scion combinations in the Zhaoqing region.[Methods]A total of 15 citrus rootstock-scion combinations were utilized as test materials for a comprehensive analysis of their phenological periods(budding,flowering,and fruiting),tree growth indicators(tree height,crown diameter,and growth),and fruit quality(appearance quality and intrinsic quality).The photosynthetic characteristics of the test materials,including the net photosynthetic rate(Pn),transpiration rate(Tr),water use efficiency(WUE),apparent quantum yield(AQY),and carboxylation efficiency(CE),were analyzed to determine their significance.Additionally,the leaf photosynthetic physiological indicators,such as soluble protein,specific leaf weight,chlorophyll,and carotenoids,were evaluated.[Results]There were notable differences observed in the phenological period,growth potential of trees,fruit quality,and photosynthetic characteristics among various citrus rootstock-scion combinations.The phenological periods exhibited variation contingent on the grafting varieties.In terms of tree growth potential,the Citrus tangerina Tanaka‘Hongju’and C.haniana Hort.‘Suanju’rootstocks demonstrated greater tree height,crown growth,and overall tree strength;however,they were also prone to excessive growth.Conversely,the C.limonia Osbeck‘Hongningmeng’and C.sinensis×P.trifoliata‘Zhicheng’rootstocks displayed medium growth potential,while the Poncirus trifoliate(L)Raf.‘Zhike’rootstock resulted in shorter trees.In terms of fruit quality,the single fruit weight of C.flamea Hort.‘Shatangju’ranged from 33 to 50 g,exhibiting a flat and round shape.The total soluble solids and titratable acid content of‘Shatangju’grafted onto the‘Zhike’rootstock were notably high.In contrast,the single fruit weight of C.haniana Hort.‘Chuntianju’varied between 65 and 81 g,characterized by a high flat round shape.The‘Suanju’rootstock demonstrated a higher sugar and acid content compared to other rootstocks.Additionally,the single fruit weight of C.nobilis Lour.‘Gonggan’ranged from 62 to 145 g,with the fruit shape being either round or oval.The soluble sugar and total soluble solids content associated with the‘Zhike’rootstock was also elevated.In relation to photosynthetic characteristics,the photosynthetic performance of the‘Shatangju’variety was superior when grafted onto the‘Zhike’and‘Hongju’rootstocks.Similarly,the‘Chuntianju’variety exhibited enhanced photosynthetic performance on the‘Zhike’,‘Zhicheng’,and‘Hongju’rootstocks.Furthermore,the‘Gonggan’variety demonstrated improved photosynthetic performance when grafted onto the‘Zhike’and‘Suanju’rootstocks.[Conclusions]Based on the characteristics of the red loam soil in the Zhaoqing region,the rootstocks‘Zhike’and‘Hongju’are conducive to the cultivation of the‘Shatangju’variety.Additionally,the rootstocks‘Zhike’,‘Zhicheng’,and‘Hongju’are optimal for the growth of the‘Chuntianju’variety,while the rootstocks‘Zhike’and‘Suanju’are appropriate for the growth of the‘Gonggan’variety. 展开更多
关键词 CITRUS Rootstock-scion Tree growth Fruit quality photosynthetic characteristics
下载PDF
Effects of Inoculation with Phosphate Solubilizing Bacteria on the Physiology,Biochemistry,and Expression of Genes Related to the Protective Enzyme System of Fritillaria taipaiensis P.Y.Li
15
作者 Zhifen Shi Fumei Pan +6 位作者 Xiaotian Kong Jiaqi Lang Mingyan Ye Qian Wu Guangzhi Wang Liang Han Nong Zhou 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第2期247-260,共14页
Fritillaria taipaiensis P.Y.Li is a widely used medicinal herb in treating pulmonary diseases.In recent years,its wild resources have become scarce,and the demand for efficient artificial cultivation has significantly... Fritillaria taipaiensis P.Y.Li is a widely used medicinal herb in treating pulmonary diseases.In recent years,its wild resources have become scarce,and the demand for efficient artificial cultivation has significantly increased.This article is the first to apply phosphate solubilizing bacteria isolated from the rhizosphere soil of F.taipaiensis P.Y.Li to the cultivation process of F.taipaiensis P.Y.Li.The aim is to identify suitable reference strains for the artificial cultivation and industrial development of F.taipaiensis P.Y.Li by examining the effects of various phosphate solubilizing bacteria and their combinations on photosynthesis,physiological and biochemical properties,and gene expression related to the protective enzyme system in F.taipaiensis P.Y.Li.The experiment,conducted in pots at room temperature,included a control group(CK)and groups inoculated with inorganic phosphorussolubilizing bacteria:W1(Bacillus cereus),W2(Serratia plymuthica),W12(Bacillus cereus and Serratia plymuthica),and groups inoculated with organophosphorus-solubilizing bacteria:Y1(Bacillus cereus),Y2(Bacillus cereus),Y12(Bacillus cereus and Bacillus cereus),totaling seven groups.Compared to CK,most growth indices in the bacterial addition groups showed significant differences,with W12 achieving the highest values in all indices except the leaf area index.The content of photosynthetic pigments,photosynthetic parameters,and osmoregulatory substances increased variably in each bacterial treatment group.W12 exhibited the highest content of chlorophyll a and soluble protein,while W1 had the highest free proline content.The activities of peroxidase(POD),superoxide dismutase(SOD),and catalase(CAT)in all inoculated groups were higher than in CK,with significant changes in SOD and CAT activities.The malondialdehyde(MDA)content in all inoculated groups was lower than in CK,with Y12 being the lowest,at approximately 30%of CK.Gene expression corresponding to these three enzymes also increased variably,with POD expression in Y2 being the highest at 2.73 times that of CK.SOD and CAT expression in Y12 were the highest,at 1.84 and 4.39 times that of CK,respectively.These results indicate that inoculating phosphate solubilizing bacteria can enhance the growth of F.taipaiensis P.Y.Li,with the mixed inoculation groups W12 and Y12 demonstrating superior effects.This lays a theoretical foundation for selecting bacterial fertilizers in the cultivation process of F.taipaiensis P.Y.Li. 展开更多
关键词 Fritillaria taipaiensis P.Y.Li phosphate solubiliozing bacteria photosynthesis physiology and biochemistry protective enzymes
下载PDF
Post Cryopreservation Growth Kinetic and Photosynthetic Assessment of an Acid Tolerant Strain of Stichococcus bacillaris
16
作者 Marzia Licata Luigi Marra +5 位作者 Nunzia Nappi Elena Aurino Feliciana Oliva Antonino De Natale Donato Giovannelli Antonino Pollio 《Natural Resources》 2024年第5期130-148,共19页
Preserving microbial diversity has become a strategic undertaking. Thus, ex situ microalgal culture conservation results in strategic and functional resource in both biodiversity protection and application domains. Cr... Preserving microbial diversity has become a strategic undertaking. Thus, ex situ microalgal culture conservation results in strategic and functional resource in both biodiversity protection and application domains. Cryopreservation of microalgae has been practiced since the 1960s and is now considered the optimal preservation strategy. Furthermore, the overall monitoring during growth of cultures after freezing/thawing protocols was hardly investigated and there is poor evaluation related to preserve especially the photosystem apparatus. The present study focuses on Stichococcus bacillaris as case study for short-term cryopreservation at −80 °C storage. Various freezing pretreatments using cryoprotective agents, and two thawing methods were compared introducing a novel variable to evaluate viability recovery and assessing growth kinetics of cultures immediately after thawing and after a series batch cultivation. Photosynthetic rate and pigments assessment were proposed to evaluate hidden metabolic cell damage. Results underline cryoprotective agents can increase the kinetic recovery of preserved cells in terms of reduction of lag phase during batch cultivation tests: the use of dimethyl sulfoxide and glycerol granted a growth comparable to unpreserved cells when sudden thawing occurs after 24 hours of storage, but recovery after preservation is less sensitive to cryoprotective agents when gradual thawing and 1 month of storage is considered. However, cells are always able to restore their physiological pathways even without agents, so their kinetic effect has been proved and quantified. Interestingly, both the photosynthetic efficiency and the ratio between total chlorophyll and carotenoids are comparable (0.75 F<sub>v</sub>/F<sub>m</sub>, 2.2 ± 0.25 g/g) to unpreserved cells and they are unsensitive to chosen agents, but the ratio between chlorophyll a and chlorophyll b was clearly altered (up to 10 times), suggesting that photoactive pigments relative proportions can result in similar growth kinetic performances. Long-term studies will be carried out to assess whether the differences found could cause chronic damage to photosystem efficiency of S. bacillaris cultures. 展开更多
关键词 MICROALGAE Stichococcus bacillaris CRYOPRESERVATION Growth Kinetic photosynthetic Rate
下载PDF
成熟度和温度对芙蓉李贮藏期间生理生化特性及蜡质结构的影响
17
作者 周丹蓉 叶新福 +1 位作者 方智振 林炎娟 《核农学报》 CAS 北大核心 2025年第1期128-139,共12页
为研究成熟度和温度对芙蓉李贮藏期间生理生化特性和果皮蜡质结构的影响,本研究选择2个成熟度(F:约六成熟;S:约八成熟)的芙蓉李,于4、25℃条件下进行试验,分析16个生理生化指标的差异,采用正交偏最小二乘判别法(OPLS-DA)筛选不同成熟度... 为研究成熟度和温度对芙蓉李贮藏期间生理生化特性和果皮蜡质结构的影响,本研究选择2个成熟度(F:约六成熟;S:约八成熟)的芙蓉李,于4、25℃条件下进行试验,分析16个生理生化指标的差异,采用正交偏最小二乘判别法(OPLS-DA)筛选不同成熟度芙蓉李在不同温度贮藏期间的主要差异性指标,检测芙蓉李贮藏前后蜡质结构的变化并分析其贮藏效应。结果表明,4℃条件下F与S之间的主要差异性指标为可溶性固形物含量(SS)、果肉硬度(FF)、果皮色度值a^(*)(PC-a^(*))、花色苷(AC)含量、可滴定酸(TA)含量、果皮硬度(PF),25℃时为SS、超氧化物歧化酶(SOD)活性、PC-a^(*)、果皮色度值b*(PC-b*)。不同成熟度果实的SS含量、PC-a^(*)、AC含量均随贮藏天数增加而逐渐上升(S贮藏28 d除外),同一贮藏天数下AC含量在25℃时显著高于4℃时,同一温度同一贮藏天数时S中的SS含量、PC-a^(*)显著高于F;PF、FF和TA含量随贮藏天数的延长而逐渐下降,4℃和F有利于FF和PF的保持,而25℃下TA含量下降更快;SOD活性随贮藏天数的延长先升高后下降,且在25℃和S中下降更显著。芙蓉李蜡质主要以直立片状晶体和颗粒状结晶的形式存在;两种晶体数量和形态的变化可能影响水分的流失,从而影响细胞壁结构的稳定性,进而影响贮藏性。本研究可为芙蓉李的采收和贮藏保鲜提供技术参考。 展开更多
关键词 芙蓉李 成熟度 贮藏温度 生理生化特性 蜡质结构
下载PDF
Preliminary Study on the Photosynthetic Characteristics of Super Hybrid Rice P88S/0389 被引量:4
18
作者 张吉贞 孟卫东 +1 位作者 曹赛 邓晓峰 《Agricultural Science & Technology》 CAS 2008年第4期21-24,38,共5页
[Objective] The aim of this study is to understand the high yield often photosynthetic mechanism of super hybrid rice P88S/0389.[Method] Chlorophyll and carotenoid contents were measured via the method of Wellburn and... [Objective] The aim of this study is to understand the high yield often photosynthetic mechanism of super hybrid rice P88S/0389.[Method] Chlorophyll and carotenoid contents were measured via the method of Wellburn and Lichtenthaler,and the photosynthetic rate and chlorophyll fluorescence parameters were measured using portable photosynthesis system.Through comparison of above measured indices between P88S/0389 and its parents,the photosynthetic characteristics were obtained.[Result] The pigment content of P88S/0389 lied between their parents,and detailedly was closer to its female parent at earlier growth stage and to its male parent at latter stage,respectively.The Pn,Fv/Fo,Fv/Fm and qP of the flag leaf of P88S/0389 were all higher than those of its parents,while the degradation rates of these parameters were slower than those of its parents.The qN of flag leaf was lower than those of its parents,and the increasing rate of qN of P88S/0389 was also slower than those of its parents,indicating the great heterosis of P88S/0389 to its parents in photosynthetic capacity.The data show that P88S/0389 is endowed with stronger capacities in light energy absorption,transformation and carbon fixation compared to its parents.[Conclusion] The light energy absorbed by hybrid mainly contributes to photochemical reaction,and little for heat dissipation.For ensuring high yield,the rice cultivars selected for production should synchronously possess higher photosynthetic rate and longer high value duration. 展开更多
关键词 NET photosynthetic rate CHLOROPHYLL FLUORESCENCE characteristics CHLOROPHYLL FLUORESCENCE QUENCHING
下载PDF
Physiology and Ultrastructure of Azolla imbricata as Affected by Hg 2+ and Cd 2+ Toxicity 被引量:27
19
作者 施国新 徐勤松 +5 位作者 解凯彬 徐楠 张小兰 曾晓敏 周红卫 朱蕾 《Acta Botanica Sinica》 CSCD 2003年第4期437-444,共8页
The toxic effects of different gradient concentrations of Hg2+ and Cd2+ on chlorophyll content, chlorophyll a/b value, photosynthetic O-2 evolution, respiration rate, anti-oxidase system (superoxide dismulase (SOD), c... The toxic effects of different gradient concentrations of Hg2+ and Cd2+ on chlorophyll content, chlorophyll a/b value, photosynthetic O-2 evolution, respiration rate, anti-oxidase system (superoxide dismulase (SOD), catalase (CAT), peroxidase (POD)) and ultrastructure of the cells of Azolla imbricata (Roxb.) Nakai were studied. The results showed that with Hg2+ and Cd2+ increase, chlorophyll content and chlorophyll a/b value, photosynthetic O-2 evolution decreased drastically; respiration rate peaked at 2 mg/L pollutant and declined afterwards. The activities of SOD, CAT and POD increased first and decreased afterwards except the activity of POD, which decreased with the increasing of Cd2+ concentration. Ultrastructural observation showed that the extent of ultrastructural damage was much more serious with higher pollutant concentration and longer time of stress. This resulted in swelling of chloroplast, disruption and disappearance of chloroplast membrane and disintegration of chloroplasts; swelling of cristae of mitochondria, deformation and vacuolization of mitochondria; condensation of chromatin in nucleus, dispersion of nucleolus and disruption of nuclear membrane. The experimental results showed: (1) Hg2+ and Cd2+ pollution not only destroyed physiological activities, but also caused irreversible damage to its ultrastructure, thus leading the cells to death; (2) With increase in the stress of Hg2+ and Cd2+, ultrastructural damage was related to the changes of plant physiology; (3) The toxic symptoms of plant showed an evident correlation between dose and effect; (4) The toxicity of Cd2+ on A. imbricata is heavier than that of Hg2+ under the same treatment time and concentration. The lethal concentration of Hg2+ to A. imbricata ranged from 3.5 to 4 mg/L, and that of Cd2+ ranged from 3 to 3.5 mg/L. The damage of cell ultrastructure on Anabaena azollae Strasburger was observed. The results indicated that tolerance of Azolla imbricata for Hg2+ and Cd2+ was higher than that of A. imbricata. 展开更多
关键词 Azolla imbricata Hg2+ Cd2+ physiology ULTRASTRUCTURE
下载PDF
Effects of Heavy Metals and Saline-alkali on Growth,Physiology and Biochemistry of Orychophragmus violaceus 被引量:6
20
作者 张小艾 汪志辉 +2 位作者 张新全 李名扬 左静 《Agricultural Science & Technology》 CAS 2012年第7期1478-1483,1508,共7页
[Objective] The aim was to study on effects of heavy metals and saline-alkali on growth, physiology and biochemistry of Orychophragmus violaceus. [Method] Taken Orychophragmus violaceus as materials, growth, physiolog... [Objective] The aim was to study on effects of heavy metals and saline-alkali on growth, physiology and biochemistry of Orychophragmus violaceus. [Method] Taken Orychophragmus violaceus as materials, growth, physiology and biochemistry were explored under stress of saline-alkali and heavy metals (light, moderate and severe saline-alkali, Pb, Pb + Cd, light saline-alkali + Pb, moderate saline-alkali + Pb, severe saline-alkali + Pb, light saline-alkali + Pb + Cd, moderate saline-alkali + Pb + Cd and severe saline-alkali + Pb + Cd) with control group set. [Result] Light stress of saline-alkali had little effect on membrane permeability, as follows: MDA contents in leaves and root systems declined by 25.6% and 9.0% compared with control group; Pb (500 mg/L) stress promoted synthetization of photosynthetic pigments, as follows: chlorophyll a and b and carotenoid increased by 0.86%, 0.69% and 6.25% than those of control group; combined stresses of Pb and Cd destroyed synthetization of photosynthetic pigments, among which carotenoid was more sensitive; under combined stresses of saline-alkali, Pb and Cd, POD and SOD activities, soluble saccharides and Pro content all increased and activities of POD and SOD in root system were both higher than those in leaves. [Conclusion] Orychophragmus violaceus is with resistance against light combined stresses of saline-alkali and Pb (500 mg/L). 展开更多
关键词 Orychophragmus violaceus SALINE-ALKALI Heavy metal GROWTH Property of physiology and biochemistry
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部