期刊文献+
共找到30,180篇文章
< 1 2 250 >
每页显示 20 50 100
Role of foliar spray of plant growth regulators in improving photosynthetic pigments and metabolites in Plantago ovata (Psyllium) under salt stress–A field appraisal 被引量:1
1
作者 ABDUL SAMAD KANVAL SHAUKAT +7 位作者 MAHMOOD-UR-REHMAN ANSARI MEREEN NIZAR NOREEN ZAHRA AMBREEN NAZ HAFIZ MUHAMMAD WALEED IQBAL ALI RAZA VLADAN PESIC IVICA DJALOVIC 《BIOCELL》 SCIE 2023年第3期523-532,共10页
Salinity is one of the major abiotic factors that limit the growth and productivity of plants.Foliar application of plant growth regulators(PGRs)may help plants ameliorate the negative impacts of salinity.Thus,a field... Salinity is one of the major abiotic factors that limit the growth and productivity of plants.Foliar application of plant growth regulators(PGRs)may help plants ameliorate the negative impacts of salinity.Thus,a field experiment was conducted at the Botanical Garden University of Balochistan,Quetta,to explore the potential role of PGRs,i.e.,moringa leaf extract(MLE;10%),proline(PRO;1μM),salicylic acid(SA;250μM),and thiourea(TU;10 mM)in ameliorating the impacts of salinity(120 mM)on Plantago ovata,an important medicinal plant.Salinity hampered plant photosynthetic pigments and metabolites but elevated oxidative parameters.However,foliar application of PGRs enhanced photosynthetic pigments,including Chl b(21.11%),carotenoids(57.87%)except Chl a,activated the defense mechanisms by restoring and enhancing the metabolites,i.e.,soluble sugars(49.68%),soluble phenolics(33.34%),and proline(31.47%),significantly under salinity stress.Furthermore,foliar supplementation of PGRs under salt stress led to a decrease of about 43.02%and 43.27%in hydrogen peroxide and malondialdehyde content,respectively.Thus,PGRs can be recommended for improved photosynthetic efficiency and metabolite content that can help to get better yield under salt stress,with the best and most effective treatments being those of PRO and MLE to predominately ameliorate the harsh impacts of salinity. 展开更多
关键词 Abiotic stress PROLINE photosynthetic pigments THIOUREA Salinity Salicylic acid
下载PDF
Effects of thinning on the understory light environment of different stands and the photosynthetic performance and growth of the reforestation species Phoebe bournei 被引量:2
2
作者 Shicheng Su Nianqing Jin Xiaoli Wei 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第1期12-28,共17页
Light levels determine regeneration in stands and a key concern is how to regulate the light environment of different stand types to the requirements of the understory.In this study,we selected three stands typical in... Light levels determine regeneration in stands and a key concern is how to regulate the light environment of different stand types to the requirements of the understory.In this study,we selected three stands typical in south China(a Cryptomeria japonica plantation,a Quercus acutissima plantation,and a mixed stand of both)and three thinning intensities to determine the best understory light environ-ment for 3-year-old Phoebe bournei seedlings.The canopy structure,understory light environment,and photosynthe-sis and growth indicators were assessed following thin-ning.Thinning improved canopy structure and understory light availability of each stand;species composition was the reason for differences in the understory light environ-ment.Under the same thinning intensity,the mixed stand had the greatest light radiation and most balanced spectral composition.P.bournei photosynthesis and growth were closely related to the light environment;all three stands required heavy thinning to create an effective and sustained understory light environment.In a suitable understory light environment,the efficiency of light interception,absorption,and use by seedlings was enhanced,resulting in a higher carbon assimilation the main limiting factor was stomatal conductance.As a shade-avoidance signal,red/far-red radia-tion is a critical factor driving changes in photosynthesis and growth of P.bournei seedlings,and a reduction increased light absorption and use capacity and height:diameter ratios.The growth advantage transformed from diameter to height,enabling seedlings to access more light.Our findings suggest that the regeneration of shade-tolerant species such as P.bournei could be enhanced if a targeted approach to thinning based on stand type was adopted. 展开更多
关键词 THINNING Understory light environment Phoebe bournei photosynthetic performance Growth performance
下载PDF
Differences between two wheat genotypes in the development of floret primordia and contents of pigments and hormones
3
作者 Liangyun Wen Yaqun Liu +6 位作者 Bingjin Zhou Wan Sun Xuechen Xiao Zhimin Wang Zhencai Sun Zhen Zhang Yinghua Zhang 《The Crop Journal》 SCIE CSCD 2024年第4期1196-1207,共12页
Promoting more floret primordia within a spike to acquire fertile potential during the differentiation and pre-dimorphism phases is critical for increasing the number of fertile florets per spike(NFFs).However,it is y... Promoting more floret primordia within a spike to acquire fertile potential during the differentiation and pre-dimorphism phases is critical for increasing the number of fertile florets per spike(NFFs).However,it is yet unknown the physiological mechanism regulating the complex and dynamic process.This study aimed to clarify how intra-spike hormones,pigments,and assimilates coordinate with each other to regulate spike morphology and then floret primordia development.A two-year field experiment was conducted with two winter wheat genotypes:N50(big-spike with greater NFFs)and SM22(mediumspike with fewer NFFs).We monitored high temporal and spatial-resolution changes in the number and morphology of floret primordia within a spike,as well as in intra-spike hormones,pigments,and assimilates.Our results revealed that the big-spike genotype had more NFFs than the medium-spike genotype,not only because they had more spikelets,but also because they had greater NFFs mainly at central spikelets.More floret primordia at central spikelets had sufficient time to develop and acquire fertile potential during the differentiation phase(167-176 d after sowing,DAS)and the pre-dimorphism phase(179 DAS)for the big-spike genotype than the medium-spike genotype.Floret primordia with fertile morphology during the pre-dimorphism phase always developed into fertile florets during the dimorphism phase.Those early-developed floret primordia most proximal and intermediate to the rachis in the big-spike genotype developed faster than the medium-spike genotype.Correspondingly,the spike dry matter and pigments(chlorophyll a,chlorophyll b,carotene,and carotenoids)content during 170-182 DAS,auxin(IAA)and cytokinin(CTK)content on 167 DAS were significantly higher in the big-spike genotype than in the medium-spike genotype,while jasmonic acid(JA)content was significantly lower in the big-spike genotype compared to the medium-spike genotype during 167-182 DAS.Since the significant differences in intra-spike hormone content of the two genotypes appear earlier than those in dry matter and pigments,we propose a possible model that helped the N50 genotype(big-spike)to form more fertile florets,taking the intra-spike hormone content as a signaling molecule induced assimilates and pigments synthesis,which accelerated the development of more floret primordia during the differentiation phase and then acquired fertile potential during the pre-dimorphism phase,finally improved the NFFs.Our high temporal and spatial-resolution analysis provides an accurate time window for precision cultivation and effective physiological breeding to improve the number of fertile florets in wheat. 展开更多
关键词 Fertile florets Floret primordia development Intra-spike hormones Jasmonic acid photosynthetic pigments
下载PDF
Grain Yield,Biomass Accumulation,and Leaf Photosynthetic Characteristics of Rice under Combined Salinity-Drought Stress 被引量:1
4
作者 WEI Huanhe GENG Xiaoyu +7 位作者 ZHANG Xiang ZHU Wang ZHANG Xubin CHEN Yinglong HUO Zhongyang ZHOU Guisheng MENG Tianyao DAI Qigen 《Rice science》 SCIE CSCD 2024年第1期118-128,I0023,共12页
Simultaneous stresses of salinity and drought often coincide during rice-growing seasons in saline lands,primarily due to insufficient water resources and inadequate irrigation facilities.Consequently,combined salinit... Simultaneous stresses of salinity and drought often coincide during rice-growing seasons in saline lands,primarily due to insufficient water resources and inadequate irrigation facilities.Consequently,combined salinity-drought stress poses a major threat to rice production.In this study,two salinity levels(NS,non-salinity;HS,high salinity)along with three drought treatments(CC,control condition;DJ,drought stress imposed at jointing;DH,drought stress imposed at heading)were performed to investigate their combined influences on leaf photosynthetic characteristics,biomass accumulation,and rice yield formation.Salinity,drought,and their combination led to a shortened growth period from heading to maturity,resulting in a reduced overall growth duration.Grain yield was reduced under both salinity and drought stress,with a more substantial reduction under the combined salinity-drought stress.The combined stress imposed at heading caused greater yield losses in rice compared with the stress imposed at jointing.Additionally,the combined salinity-drought stress induced greater decreases in shoot biomass accumulation from heading to maturity,as well as in shoot biomass and nonstructural carbohydrate(NSC)content in the stem at heading and maturity.However,it increased the harvest index and NSC remobilization reserve.Salinity and drought reduced the leaf area index and SPAD value of flag leaves and weakened the leaf photosynthetic characteristics as indicated by lower photosynthetic rates,transpiration rates,and stomatal conductance.These reductions were more pronounced under the combined stress.Salinity,drought,and especially their combination,decreased the activities of ascorbate peroxidase,catalase,and superoxide dismutase,while increasing the contents of malondialdehyde,hydrogen peroxide,and superoxide radical.Our results indicated a more significant yield loss in rice when subjected to combined salinity-drought stress.The individual and combined stresses of salinity and drought diminished antioxidant enzyme activities,inhibited leaf photosynthetic functions,accelerated leaf senescence,and subsequently lowered assimilate accumulation and grain yield. 展开更多
关键词 antioxidant defense system combined salinity-drought stress drought stress photosynthetic characteristics RICE salinity stress
下载PDF
Inhibition of EGFR attenuates EGF-induced activation of retinal pigment epithelium cell via EGFR/AKT signaling pathway 被引量:1
5
作者 Yu-Sheng Zhu Si-Rui Zhou +2 位作者 Hui-Hui Zhang Tong Wang Xiao-Dong Chen 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第6期1018-1027,共10页
AIM:To explore the effect of epidermal growth factor receptor(EGFR)inhibition by erlotinib and EGFR siRNA on epidermal growth factor(EGF)-induced activation of retinal pigment epithelium(RPE)cells.METHODS:Human RPE ce... AIM:To explore the effect of epidermal growth factor receptor(EGFR)inhibition by erlotinib and EGFR siRNA on epidermal growth factor(EGF)-induced activation of retinal pigment epithelium(RPE)cells.METHODS:Human RPE cell line(ARPE-19 cells)was activated by 100 ng/mL EGF.Erlotinib and EGFR siRNA were used to intervene EGF treatment.Cellular viability,proliferation,and migration were detected by methyl thiazolyl tetrazolium(MTT)assay,bromodeoxyuridine(BrdU)staining assay and wound healing assay,respectively.EGFR/protein kinase B(AKT)pathway proteins and N-cadherin,α-smooth muscle actin(α-SMA),and vimentin were tested by Western blot assay.EGFR was also determined by immunofluorescence staining.RESULTS:EGF treatment for 24h induced a significant increase of ARPE-19 cells’viability,proliferation and migration,phosphorylation of EGFR/AKT proteins,and decreased total EGFR expression.Erlotinib suppressed ARPE-19 cells’viability,proliferation and migration through down regulating total EGFR and AKT protein expressions.Erlotinib also inhibited EGF-induced an increase of proliferative and migrative ability in ARPE-19 cells and clearly suppressed EGF-induced EGFR/AKT proteins phosphorylation and decreased expression of N-cadherin,α-SMA,and vimentin proteins.Similarly,EGFR inhibition by EGFR siRNA significantly affected EGF-induced an increase of cell proliferation,viability,and migration,phosphorylation of EGFR/AKT proteins,and up-regulation of N-cadherin,α-SMA,and vimentin proteins.CONCLUSION:Erlotinib and EGFR-knockdown suppress EGF-induced cell viability,proliferation,and migration via EGFR/AKT pathway in RPE cells.EGFR inhibition may be a possible therapeutic approach for proliferative vitreoretinopathy(PVR). 展开更多
关键词 ERLOTINIB epidermal growth factor receptor protein kinase B epithelial-mesenchymal transition retinal pigment epithelium cell
下载PDF
Hepatocyte growth factor promotes retinal pigment epithelium cell activity through MET/AKT signaling pathway 被引量:1
6
作者 Si-Rui Zhou Yu-Sheng Zhu +3 位作者 Wen-Ting Yuan Xiao-Yan Pan Tong Wang Xiao-Dong Chen 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第5期806-814,共9页
AIM:To explore the effects of hepatocyte growth factor(HGF)on retinal pigment epithelium(RPE)cell behaviors.METHODS:The human adult retinal pigment epithelial cell line-19(ARPE-19)were treated by HGF or mesenchymalepi... AIM:To explore the effects of hepatocyte growth factor(HGF)on retinal pigment epithelium(RPE)cell behaviors.METHODS:The human adult retinal pigment epithelial cell line-19(ARPE-19)were treated by HGF or mesenchymalepithelial transition factor(MET)inhibitor SU11274 in vitro.Cell viability was detected by a Cell Counting Kit-8 assay.Cell proliferation and motility was detected by a bromodeoxyuridine incorporation assay and a wound healing assay,respectively.The expression levels of MET,phosphorylated MET,protein kinase B(AKT),and phosphorylated AKT proteins were determined by Western blot assay.The MET and phosphorylated MET proteins were also determined by immunofluorescence assay.RESULTS:HGF increased ARPE-19 cells’viability,proliferation and migration,and induced an increase of phosphorylated MET and phosphorylated AKT proteins.SU11274 significantly reduced cell viability,proliferation,and migration and decreased the expression of MET and AKT proteins.SU11274 suppressed HGF-induced increase of viability,proliferation,and migration in ARPE-19 cells.Additionally,SU11274 also blocked HGF-induced phosphorylation of MET and AKT proteins.CONCLUSION:HGF enhances cellular viability,proliferation,and migration in RPE cells through the MET/AKT signaling pathway,whereas this enhancement is suppressed by the MET inhibitor SU11274.HGF-induced MET/AKT signaling might be a vital contributor of RPE cells survival. 展开更多
关键词 hepatocyte growth factor mesenchymal epithelial transition factor SU11274 retinal pigment epithelial cells
下载PDF
Photosynthetic response dynamics in the invasive species Tithonia diversifolia and two co-occurring native shrub species under fluctuating light conditions
7
作者 Ju Li Shu-Bin Zhang Yang-Ping Li 《Plant Diversity》 SCIE CAS CSCD 2024年第2期265-273,共9页
To determine the invasiveness of invasive plants,many studies have compared photosynthetic traits or strategies between invasive and native species.However,few studies have compared the photosynthetic dynamics between... To determine the invasiveness of invasive plants,many studies have compared photosynthetic traits or strategies between invasive and native species.However,few studies have compared the photosynthetic dynamics between invasive and native species during light fluctuations.We compared photosynthetic induction,relaxation dynamics and leaf traits between the invasive species,Tithonia diversifolia and two native species,Clerodendrum bungei and Blumea balsamifera,in full-sun and shady habitats.The photosynthetic dynamics and leaf traits differed among species.T.diversifolia showed a slower induction speed and stomatal opening response but had higher average intrinsic water-use efficiency than the two native species in full-sun habitats.Thus,the slow induction response may be attributed to the longer stomatal length in T.diversifolia.Habitat had a significant effect on photosynthetic dynamics in T.diversifolia and B.balsamifera but not in C.bungei.In shady habitat,T.diversifolia had a faster photosynthetic induction response than in full-sun habitat,leading to a higher average stomatal conductance during photosynthetic induction in T.diversifolia than in the two native species.In contrast,B.balsamifera had a larger stomatal length and slower photosynthetic induction and relaxation response in shady habitat than in full-sun habitat,resulting in higher carbon gain during photosynthetic relaxation.Nevertheless,in both habitats,T.diversifolia had an overall higher carbon gain during light fluctuations than the two native species.Our results indicated that T.diversifolia can adopt more effective response strategies under fluctuating light environments to maximize carbon gain,which may contribute to its successful invasion. 展开更多
关键词 Invasive plant photosynthetic induction photosynthetic relaxation Carbon gain Stomatal traits Tithonia diversifolia
下载PDF
Effects of dense planting patterns on photosynthetic traits of different vertical layers and yield of wheat under different nitrogen rates
8
作者 Cuicun Wang Ke Zhang +9 位作者 Qing Liu Xiufeng Zhang Zhikuan Shi Xue Wang Caili Guo Qiang Cao Yongchao Tian Yan Zhu Xiaojun Liu Weixing Cao 《The Crop Journal》 SCIE CSCD 2024年第2期594-604,共11页
A two-year field experiment was conducted to measure the effects of densification methods on photosynthesis and yield of densely planted wheat.Inter-plant and inter-row distances were used to define ratefixed pattern(... A two-year field experiment was conducted to measure the effects of densification methods on photosynthesis and yield of densely planted wheat.Inter-plant and inter-row distances were used to define ratefixed pattern(RR)and row-fixed pattern(RS)density treatments.Meanwhile,four nitrogen(N)rates(0,144,192,and 240 kg N ha-1,termed N0,N144,N192,and N240)were applied with three densities(225,292.5,and 360×10^(4)plants ha^(-1),termed D225,D292.5,and D360).The wheat canopy was clipped into three equal vertical layers(top,middle,and bottom layers),and their chlorophyll density(Ch D)and photosynthetically active radiation interception(FIPAR)were measured.Results showed that the response of Ch D and FIPAR to N rate,density,and pattern varied with different layers.N rate,density,and pattern had significant interaction effects on Ch D.The maximum values of whole-canopy Ch D in the two seasons appeared in N240 combined with D292.5 and D360 under RR,respectively.Across two growing seasons,FIPAR values of RR were higher than those of RS by 29.37%for the top layer and 5.68%for the middle layer,while lower than those of RS by 20.62%for the bottom layer on average.With a low N supply(N0),grain yield was not significantly affected by density for both patterns.At N240,increasing density significantly increased yield under RR,but D360 of RS significantly decreased yield by 3.72%and 9.00%versus D225 in two seasons,respectively.With an appropriate and sufficient N application,RR increased the yield of densely planted wheat more than RS.Additionally,the maximum yield in two seasons appeared in the combination of D360 with N144 or N192 rather than of D225 with N240 under both patterns,suggesting that dense planting combined with an appropriate N-reduction application is feasible to increase photosynthesis capacity and yield. 展开更多
关键词 Chlorophyll density Densification method Nitrogen photosynthetically active radiation INTERCEPTION WHEAT
下载PDF
Effects of thinning and understory removal on water use efficiency of Pinus massoniana:evidence from photosynthetic capacity and stable carbon isotope analyses
9
作者 Ting Wang Qing Xu +4 位作者 Beibei Zhang Deqiang Gao Ying Zhang Jing Jiang Haijun Zuo 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第2期42-53,共12页
Understanding the relationship between forest management and water use efficiency(WUE)is important for evaluating forest adaptability to climate change.However,the effects of thinning and understory removal on WUE and... Understanding the relationship between forest management and water use efficiency(WUE)is important for evaluating forest adaptability to climate change.However,the effects of thinning and understory removal on WUE and its key controlling processes are not well understood,which limits our comprehension of the physiological mechanisms of various management practices.In this study,four forest management measures(no thinning:NT;understory removal:UR;light thinning:LT;and heavy thinning:HT)were carried out in Pinus massoniana plantations in a subtropical region of China.Photosynthetic capacity and needle stable carbon isotope composition(δ^(13)C)were measured to assess instantaneous water use efficiency(WUE_(inst))and long-term water use efficiency(WUE_(i)).Multiple regression models and structural equation modelling(SEM)identified the effects of soil properties and physiological performances on WUE_(inst)and WUE_(i).The results show that WUE_(inst)values among the four treatments were insignificant.However,compared with the NT stand(35.8μmol·mol^(-1)),WUE_(i)values significantly increased to 41.7μmol·mol^(-1)in the UR,50.1μmol·mol^(-1)in the LT and 46.6μmol·mol^(-1)in HT treatments,largely explained by photosynthetic capacity and soil water content.Understory removal did not change physiological performance(needle water potential and photosynthetic capacity).Thinning increased the net photosynthetic rate(A_n)but not stomatal conductance(g_s)or predawn needle water potential(ψ_(pd)),implying that the improvement in water use efficiency for thinned stands was largely driven by radiation interception than by soil water availability.In general,thinning may be an appropriate management measure to promote P.massoniana WUE to cope with seasonal droughts under future extreme climates. 展开更多
关键词 Stable carbon isotope Water use efficiency THINNING Understory removal photosynthetic capacity Needle water potential
下载PDF
Exogenous calcium enhances the physiological status and photosynthetic capacity of rose under drought stress
10
作者 Xiaojuan Zhao Shang Lin +5 位作者 Shuang Yu Yichang Zhang Lin Su Lifang Geng Chenxia Cheng Xinqiang Jiang 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第3期853-865,共13页
Drought(water shortage)can substantially limit the yield and economic value of rose plants(Rosa spp.).Here,we characterized the effect of exogenous calcium(Ca^(2+))on the antioxidant system and photosynthesis-related ... Drought(water shortage)can substantially limit the yield and economic value of rose plants(Rosa spp.).Here,we characterized the effect of exogenous calcium(Ca^(2+))on the antioxidant system and photosynthesis-related properties of rose under polyethylene glycol 6000(PEG6000)-induced drought stress.Chlorophyll levels,as well as leaf and root biomass,were significantly reduced by drought;drought also had a major effect on the enzymatic antioxidant system and increased concentrations of reactive oxygen species.Application of exogenous Ca^(2+)increased the net photosynthetic rate and stomatal conductance of leaves,enhanced water-use efficiency,and increased the length and width of stomata following exposure to drought.Organ-specific physiological responses were observed under different concentrations of Ca^(2+).Application of 5 mmol·L^(-1)Ca^(2+)promoted photosynthesis and antioxidant activity in the leaves,and application of 10 mmol·L^(-1)Ca^(2+)promoted antioxidant activity in the roots.Application of exogenous Ca^(2+)greatly enhanced the phenotype and photosynthetic capacity of potted rose plants following exposure to drought stress.Overall,our findings indicate that the application of exogenous Ca^(2+)enhances the drought resistance of roses by promoting physiological adaptation and that it could be used to aid the cultivation of rose plants. 展开更多
关键词 Rosa hybrida L. Exogenous calcium Drought stress Physiological index photosynthetic capacity
下载PDF
The photosynthetic oxygen evolution does not exclude the important role and contribution of bicarbonate photolysis
11
作者 Yanyou Wu Shaogang Guo 《Acta Geochimica》 EI CAS CSCD 2024年第1期174-179,共6页
Photosynthesis is the most important biochemical reaction on Earth. It has co-evolved and developed with the Earth, driving the biogeochemical cycle of all elements on the planet and serving as the only chemical proce... Photosynthesis is the most important biochemical reaction on Earth. It has co-evolved and developed with the Earth, driving the biogeochemical cycle of all elements on the planet and serving as the only chemical process in nature that can convert light energy into chemical energy. Some heavy oxygen isotopic(^(18)O) labeling experiments have"conclusively" demonstrated that the oxygen released by photosynthesis comes only from water and are written into textbooks. However, it is not difficult to find that bicarbonate has never been excluded from the direct substrate of photosynthesis from beginning to end during the history of photosynthesis research. No convincing mechanism can be used to explain photosynthetic oxygen evolution solely from water photolysis. The bicarbonate effect, the Dole effect, the thermodynamic convenience of bicarbonate photolysis, the crystal structure characteristics of photosystem Ⅱ, and the reinterpretation of heavy oxygen isotopic labeling(^(18)O)experiments all indicate that the photosynthetic oxygen evolution does not exclude the important role and contribution of bicarbonate photolysis. The recently proposed view that bicarbonate photolysis is the premise of water photolysis, bicarbonate photolysis and water photolysis work together with a 1:1(mol/mol) stoichiometric relationship, and the stoichiometric relationship between oxygen and carbon dioxide released during photosynthetic oxygen evolution is also 1:1, has excellent applicability and objectivity, which can logically and reasonably explain the precise coordination between light and dark reactions during photosynthesis, the bicarbonate effect, the Dole effect, the Kok cycle and the neutrality of water and carbon in nature.This is of great significance for constructing the bionic artificial photosynthetic reactors and scientifically answering the question of the source of elemental stoichiometric relationships in nature. 展开更多
关键词 Bicarbonate effect Dole effect Kok cycle Heavy oxygen isotope Artificial photosynthetic reactor
下载PDF
An overview of pigment gland morphogenesis and its regulatory mechanism
12
作者 SUN Yue YANG Ping +5 位作者 HAN Yifei LI Huazu SUN Deli CHEN Jinhong ZHU Shuijin ZHAO Tianlun 《Journal of Cotton Research》 CAS 2024年第2期207-214,共8页
Cotton has enormous economic potential,providing high-quality protein,oil,and fibre.But the comprehensive utilization of cottonseed is limited by the presence of pigment gland and its inclusion.Pigment gland is a comm... Cotton has enormous economic potential,providing high-quality protein,oil,and fibre.But the comprehensive utilization of cottonseed is limited by the presence of pigment gland and its inclusion.Pigment gland is a common characteristic of Gossypium genus and its relatives,appearing as visible dark opaque dots in most tissues and organs of cotton plants.Secondary metabolites,such as gossypol,synthesized and stored in the cavities of pigment glands act as natural phytoalexins,but are toxic to humans and other monogastric animals.However,only a few cotton genes have been identified as being associated with pigment gland morphogenesis to date,and the developmental processes and regulatory mechanism involved in pigment gland formation remain largely unclear.Here,the research progress on the process of pigment gland morphogenesis and the genetic basis of cotton pigment glands is reviewed,for providing a theoretical basis for cultivating cotton with the ideal pigment gland trait. 展开更多
关键词 Cotton pigment gland morphogenesis Transcriptional regulation Terpenoids biosynthesis
下载PDF
RNA-sequencing expression profile and functional analysis of retinal pigment epithelium in atrophic age-related macular degeneration
13
作者 Miao Xu Yan Gao +2 位作者 Wenjie Yin Qinghuai Liu Songtao Yuan 《Journal of Biomedical Research》 CAS CSCD 2024年第5期500-511,I0012-I0018,共19页
The retinal pigment epithelium(RPE)is fundamental to sustaining retinal homeostasis.RPE abnormality leads to visual defects and blindness,including age-related macular degeneration(AMD).Although breakthroughs have bee... The retinal pigment epithelium(RPE)is fundamental to sustaining retinal homeostasis.RPE abnormality leads to visual defects and blindness,including age-related macular degeneration(AMD).Although breakthroughs have been made in the treatment of neovascular AMD,effective intervention for atrophic AMD is largely absent.The adequate knowledge of RPE pathology is hindered by a lack of the patients'RPE datasets,especially at the single-cell resolution.In the current study,we delved into a large-scale single-cell resource of AMD donors,in which RPE cells were occupied in a substantial proportion.Bulk RNA-seq datasets of atrophic AMD were integrated to extract molecular characteristics of RPE in the pathogenesis of atrophic AMD.Both in vivo and in vitro models revealed that carboxypeptidase X,M14 family member 2(CPXM2),was specifically expressed in the RPE cells of atrophic AMD,which might be induced by oxidative stress and involved in the epithelial-mesenchymal transition of RPE cells.Additionally,silencing of CPXM2 inhibited the mesenchymal phenotype of RPE cells in an oxidative stress cell model.Thus,our results demonstrated that CPXM2 played a crucial role in regulating atrophic AMD and might serve as a potential therapeutic target for atrophic AMD. 展开更多
关键词 age-related macular degeneration retinal pigment epithelium high-throughput RNA-sequencing bioinformatics analysis
下载PDF
Cone-rod homeobox transcriptionally activates TCF7 to promote the proliferation of retinal pigment epithelial and retinoblastoma cells in vitro
14
作者 Na Zhao Ying-Ying Li +11 位作者 Jia-Man Xu Mu-Yao Yang Yun-Zhe Li Thomas Chuen Lam Lei Zhou Qi-Hu Tong Jun-Tao Zhang Sheng-Zhan Wang Xin-Xin Hu Yu-Fei Wu Qin-Kang Lu Ting-Yuan Lang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第11期1995-2006,共12页
AIM:To investigate the proliferation regulatory effect of cone-rod homeobox(CRX)in retinal pigment epithelium(RPE)and retinoblastoma(RB)cells to explore the potential application and side effect(oncogenic potential)of... AIM:To investigate the proliferation regulatory effect of cone-rod homeobox(CRX)in retinal pigment epithelium(RPE)and retinoblastoma(RB)cells to explore the potential application and side effect(oncogenic potential)of CRXbased gene therapy in RPE-based retinopathies.METHODS:Adult human retinal pigment epithelial(ARPE)-19 and human retinal pigment epithelial(RPE)-1 cells and Y79 RB cell were used in the study.Genetic manipulation was performed by lentivirus-based technology.The cell proliferation was determined by a CellTiter-Glo Reagent.The mRNA and protein levels were determined by quantitative real-time polymerase chain reaction(qPCR)and Western blot assay.The transcriptional activity of the promoter was determined by luciferase reporter gene assay.The bindings between CRX and transcription factor 7(TCF7)promoter as well as TCF7 and the promoters of TCF7 target genes were examined by chromatin immunoprecipitation(ChIP)assay.The transcription of the TCF7 was determined by a modified nuclear run-on assay.RESULTS:CRX overexpression and knockdown significantly increased(n=3,P<0.05 in all the cells)and decreased(n=3,P<0.01 in all the cells)the proliferation of RPE and RB cells.CRX overexpression and knockdown significantly increased and deceased the mRNA levels of Wnt signaling target genes[including MYC proto-oncogene(MYC),JUN,FOS like 1(FOSL1),CCND1,cyclin D2(CCND2),cyclin D3(CCND3),cellular communication network factor 4(CCN4),peroxisome proliferator activated receptor delta(PPARD),and matrix metallopeptidase 7(MMP7)]and the luciferase activity driven by the Wnt signaling transcription factor(TCF7).TCF7 overexpression and knockdown significantly increased and decreased the proliferation of RPE and RB cells and depletion of TCF7 significantly abolished the stimulatory effect of CRX on the proliferation of RPE and RB cells.CRX overexpression and knockdown significantly increased and decreased the mRNA level of TCF7 and the promoter of TCF7 was significantly immunoprecipitated by CRX antibody.CONCLUSION:CRX transcriptionally activates TCF7 to promote the proliferation of RPE and RB cells in vitro.CRX is a potential target for RPE-based regenerative medicine.The potential risk of this strategy,tumorigenic potential,should be considered. 展开更多
关键词 retinal pigment epithelial cell RETINOBLASTOMA cone-rod homeobox transcription factor 7 regenerative medicine tumorigenic potential
下载PDF
Matching Dyeing and Properties of Silk Fabrics with Natural Edible Pigments
15
作者 CHEN Yangyi ZHOU Shihang +4 位作者 SU Tong LI Jingzhi CHEN Hongshan QI Huan QIU Yiping 《Journal of Donghua University(English Edition)》 CAS 2024年第4期428-435,共8页
The silk fabrics were matching dyed with three natural edible pigments(red rice red,ginger yellow and gardenia blue).By investigating the dyeing rates and lifting properties of these pigments,it was observed that thei... The silk fabrics were matching dyed with three natural edible pigments(red rice red,ginger yellow and gardenia blue).By investigating the dyeing rates and lifting properties of these pigments,it was observed that their compatibilities were excellent in the dyeing process:dye dosage 2.5%(omf),mordant alum dosage 2.0%(omf),dyeing temperature 80℃and dyeing time 40 min.The silk fabrics dyed with secondary colors exhibited vibrant and vivid color owing to the remarkable lightness and chroma of ginger yellow.However,gardenia blue exhibited multiple absorption peaks in the visible light range,resulting in significantly lower lightness and chroma for the silk fabrics dyed with tertiary colors,thus making it suitable only for matte-colored fabrics with low chroma levels.In addition,the silk fabrics dyed with these three pigments had a color fastness that exceeded grade 3 in resistance to perspiration,soap washing and light exposure,indicating acceptable wearing properties.The dyeing process described in this research exhibited a wide range of potential applications in matching dyeing of protein-based textiles with natural colorants. 展开更多
关键词 matching dyeing silk fabric natural edible pigment secondary color tertiary color
下载PDF
Combination of manual lymphatic drainage and Kinesio taping for treating pigmented villonodular synovitis:A case report
16
作者 Yan-Ping Qu Wei Jin +1 位作者 Ben Huang Jie Shen 《World Journal of Clinical Cases》 SCIE 2024年第19期3971-3977,共7页
BACKGROUND Pigmented villonodular synovitis(PVNS)is a benign proliferative disorder that affects the synovial joints,bursae,and tendon sheaths.To date,few studies have reported on the treatment of postoperative pain a... BACKGROUND Pigmented villonodular synovitis(PVNS)is a benign proliferative disorder that affects the synovial joints,bursae,and tendon sheaths.To date,few studies have reported on the treatment of postoperative pain and edema in patients with PVNS.Herein,we present the case of a woman who developed pain and edema in the left lower limb 1 wk after synovectomy and arthroscopic partial meniscectomy and was unable to walk due to limited flexion and extension of the left knee.CASE SUMMARY A 32-year-old woman underwent synovectomy and arthroscopic partial meniscectomy successively and was treated with a combination of manual lymphatic drainage(MLD)and kinesio taping(KT)in our hospital to alleviate postoperative pain and edema.The following parameters were assessed at 2 wk post-treatment and 1 wk post-discharge follow up:suprapatellar circumference,infrapatellar circumference,visual analog scale score,knee range of motion,pittsburgh sleep quality index score,hamilton anxiety rating scale(HAMA)score,and hamilton depression rating scale(HAMD)score.After treatment,the postoperative pain and edema in the patient’s left knee were effectively relieved,resulting in improved sleep quality and remarkably attenuated HAMA and HAMD scores.CONCLUSION Combined MLD and KT may be an effective approach for relieving postoperative pain and edema in patients with PVNS. 展开更多
关键词 pigmented villonodular synovitis Manual lymphatic drainage Kinesio taping Postoperative pain EDEMA Case report
下载PDF
Expression and significance of pigment epithelium-derived factor and vascular endothelial growth factor in colorectal adenoma and cancer
17
作者 Ye Yang Wu Wen +6 位作者 Feng-Lin Chen Ying-Jie Zhang Xiao-Cong Liu Xiao-Yan Yang Shan-Shan Hu Ye Jiang Jing Yuan 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第3期670-686,共17页
BACKGROUND The incidence and mortality of colorectal cancer(CRC)are among the highest in the world,and its occurrence and development are closely related to tumor neovascularization.When the balance between pigment ep... BACKGROUND The incidence and mortality of colorectal cancer(CRC)are among the highest in the world,and its occurrence and development are closely related to tumor neovascularization.When the balance between pigment epithelium-derived factors(PEDF)that inhibit angiogenesis and vascular endothelial growth factors(VEGF)that stimulate angiogenesis is broken,angiogenesis is out of control,resulting in tumor development.Therefore,it is very necessary to find more therapeutic targets for CRC for early intervention and later treatment.AIM To investigate the expression and significance of PEDF,VEGF,and CD31-stained microvessel density values(CD31-MVD)in normal colorectal mucosa,adenoma,and CRC.METHODS In this case-control study,we collected archived wax blocks of specimens from the Digestive Endoscopy Center and the General Surgery Department of Chengdu Second People's Hospital from April 2022 to October 2022.Fifty cases of specimen wax blocks were selected as normal intestinal mucosa confirmed by electronic colonoscopy and concurrent biopsy(normal control group),50 cases of specimen wax blocks were selected as colorectal adenoma confirmed by electronic colonoscopy and pathological biopsy(adenoma group),and 50 cases of specimen wax blocks were selected as CRC confirmed by postoperative pathological biopsy after inpatient operation of general surgery(CRC group).An immunohistochemical staining experiment was carried out to detect PEDF and VEGF expression in three groups of specimens,analyze their differences,study the relationship between the two and clinicopathological factors in CRC group,record CD31-MVD in the three groups,and analyze the correlation of PEDF,VEGF,and CD31-MVD in the colorectal adenoma group and the CRC group.The F test or adjusted F test is used to analyze measurement data statistically.Kruskal-Wallis rank sum test was used between groups for ranked data.The chi-square test,adjusted chi-square test,or Fisher's exact test were used to compare the rates between groups.All differences between groups were compared using the Bonferroni method for multiple comparisons.Spearman correlation analysis was used to test the correlation of the data.The test level(α)was 0.05,and a two-sided P<0.05 was considered statistically significant.RESULTS The positive expression rate and expression intensity of PEDF were gradually decreased in the normal control group,adenoma group,and CRC group(100%vs 78%vs 50%,χ^(2)=34.430,P<0.001;++~++vs+~++vs-~+,H=94.059,P<0.001),while VEGF increased gradually(0%vs 68%vs 96%,χ^(2)=98.35,P<0.001;-vs-~+vs++~+++,H=107.734,P<0.001).In the CRC group,the positive expression rate of PEDF decreased with the increase of differen-tiation degree,invasion depth,lymph node metastasis,distant metastasis,and TNM stage(χ^(2)=20.513,4.160,5.128,6.349,5.128,P<0.05);the high expression rate of VEGF was the opposite(χ^(2)=10.317,13.134,17.643,21.844,17.643,P<0.05).In the colorectal adenoma group,the expression intensity of PEDF correlated negatively with CD31-MVD(r=-0.601,P<0.001),whereas VEGF was not significantly different(r=0.258,P=0.07).In the CRC group,the expression intensity of PEDF correlated negatively with the expression intensity of CD31-MVD and VEGF(r=-0.297,P<0.05;r=-0.548,P<0.05),while VEGF expression intensity was positively related to CD31-MVD(r=0.421,P=0.002).CONCLUSION It is possible that PEDF can be used as a new treatment and prevention target for CRC by upregulating the expression of PEDF while inhibiting the expression of VEGF. 展开更多
关键词 pigment epithelium-derived factors Vascular endothelial growth factor Microvessel density Colorectal adenoma Colorectal cancer Targeted therapy
下载PDF
Regulation role of miR-204 on SIRT1/VEGF in metabolic memory induced by high glucose in human retinal pigment epithelial cells
18
作者 Qiao-Ling Lai Ting Xie +1 位作者 Wei-Dong Zheng Yan Huang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第7期1232-1237,共6页
AIM:To examine the regulatory role of microRNA-204(miR-204)on silent information regulator 1(SIRT1)and vascular endothelial growth factor(VEGF)under highglucose-induced metabolic memory in human retinal pigment epithe... AIM:To examine the regulatory role of microRNA-204(miR-204)on silent information regulator 1(SIRT1)and vascular endothelial growth factor(VEGF)under highglucose-induced metabolic memory in human retinal pigment epithelial(hRPE)cells.METHODS:Cells were cultured with either normal(5 mmol/L)or high D-glucose(25 mmol/L)concentrations for 8d to establish control and high-glucose groups,respectively.To induce metabolic memory,cells were cultured with 25 mmol/L D-glucose for 4d followed by culture with 5 mmol/L D-glucose for 4d.In addition,exposed in 25 mmol/L D-glucose for 4d and then transfected with 100 nmol/L miR-204 control,miR-204 inhibitor or miR-204 mimic in 5 mmol/L D-glucose for 4d.Quantitative reverse transcription-polymerase chain reaction(RT-qPCR)was used to detect miR-204 mRNA levels.SIRT1 and VEGF protein levels were assessed by immunohistochemical and Western blot.Flow cytometry was used to investigate apoptosis rate.RESULTS:It was found that high glucose promoted miR-204 and VEGF expression,and inhibited SIRT1 activity,even after the return to normal glucose culture conditions.Upregulation of miR-204 promoted apoptosis inhibiting SIRT1 and increasing VEGF expression.However,downregulation of miR-204 produced the opposite effects.CONCLUSION:The study identifies that miR-204 is the upstream target of SIRT1and VEGF,and that miR-204 can protect hRPE cells from the damage caused by metabolic memory through increasing SIRT1 and inhibiting VEGF expression. 展开更多
关键词 human retinal pigment epithelial metabolic memory microRNA-204 silent information regulator 1 vascular endothelial growth factor high-glucose
下载PDF
Bone morphogenetic protein-6 suppresses TGF-β_(2)-induced epithelial-mesenchymal transition in retinal pigment epithelium
19
作者 Xuan Liu Ming Liu +5 位作者 Meng Ji Bo Ma Yu-Cen Hou Xin-Yue Yao Qiao-Chu Cheng Li Chen 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第4期646-652,共7页
AIM:To evaluate the effect of bone morphogenetic protein-6(BMP-6)on transforming growth factor(TGF)-β_(2)-induced epithelial-mesenchymal transition(EMT)in retinal pigment epithelium(RPE).METHODS:Adult retinal pigment... AIM:To evaluate the effect of bone morphogenetic protein-6(BMP-6)on transforming growth factor(TGF)-β_(2)-induced epithelial-mesenchymal transition(EMT)in retinal pigment epithelium(RPE).METHODS:Adult retinal pigment epithelial cell line(ARPE-19)were randomly divided into control,TGF-β_(2)(5μg/L),and BMP-6 small interfering RNA(siRNA)group.The cell morphology was observed by microscopy,and the cell migration ability were detected by Transwell chamber.The EMT-related indexes and BMP-6 protein levels were detected by Western blotting.Furthermore,a BMP-6 overexpression plasmid was constructed and RPE cells were divided into the control group,TGF-β_(2)+empty plasmid group,BMP-6 overexpression group,and TGF-β_(2)+BMP-6 overexpression group.The EMT-related indexes and extracellular regulated protein kinases(ERK)protein levels were detected.RESULTS:Compared with the control group,the migration of RPE cells in the TGF-β_(2) group was significantly enhanced.TGF-β_(2) increased the protein expression levels ofα-smooth muscle actin(α-SMA),fibronectin and vimentin but significantly decreased the protein levels of E-cadherin and BMP-6(P<0.05)in RPE.Similarly,the migration of RPE cells in the BMP-6 siRNA group was also significantly enhanced.BMP-6 siRNA increased the protein expression levels ofα-SMA,fibronectin and vimentin but significantly decreased the protein expression levels of E-cadherin(P<0.05).Overexpression of BMP-6 inhibited the migration of RPE cells induced by TGF-β_(2) and prevented TGF-β_(2) from affecting EMT-related biomarkers(P<0.05).CONCLUSION:BMP-6 prevents the EMT in RPE cells induced by TGF-β_(2),which may provide a theoretical basis for the prevention and treatment of proliferative vitreoretinopathy. 展开更多
关键词 bone morphogenetic protein-6 epithelialmesenchymal transition transforming growth factor-β_(2) retinal pigment epithelial cells cell migration
下载PDF
Post Cryopreservation Growth Kinetic and Photosynthetic Assessment of an Acid Tolerant Strain of Stichococcus bacillaris
20
作者 Marzia Licata Luigi Marra +5 位作者 Nunzia Nappi Elena Aurino Feliciana Oliva Antonino De Natale Donato Giovannelli Antonino Pollio 《Natural Resources》 2024年第5期130-148,共19页
Preserving microbial diversity has become a strategic undertaking. Thus, ex situ microalgal culture conservation results in strategic and functional resource in both biodiversity protection and application domains. Cr... Preserving microbial diversity has become a strategic undertaking. Thus, ex situ microalgal culture conservation results in strategic and functional resource in both biodiversity protection and application domains. Cryopreservation of microalgae has been practiced since the 1960s and is now considered the optimal preservation strategy. Furthermore, the overall monitoring during growth of cultures after freezing/thawing protocols was hardly investigated and there is poor evaluation related to preserve especially the photosystem apparatus. The present study focuses on Stichococcus bacillaris as case study for short-term cryopreservation at −80 °C storage. Various freezing pretreatments using cryoprotective agents, and two thawing methods were compared introducing a novel variable to evaluate viability recovery and assessing growth kinetics of cultures immediately after thawing and after a series batch cultivation. Photosynthetic rate and pigments assessment were proposed to evaluate hidden metabolic cell damage. Results underline cryoprotective agents can increase the kinetic recovery of preserved cells in terms of reduction of lag phase during batch cultivation tests: the use of dimethyl sulfoxide and glycerol granted a growth comparable to unpreserved cells when sudden thawing occurs after 24 hours of storage, but recovery after preservation is less sensitive to cryoprotective agents when gradual thawing and 1 month of storage is considered. However, cells are always able to restore their physiological pathways even without agents, so their kinetic effect has been proved and quantified. Interestingly, both the photosynthetic efficiency and the ratio between total chlorophyll and carotenoids are comparable (0.75 F<sub>v</sub>/F<sub>m</sub>, 2.2 ± 0.25 g/g) to unpreserved cells and they are unsensitive to chosen agents, but the ratio between chlorophyll a and chlorophyll b was clearly altered (up to 10 times), suggesting that photoactive pigments relative proportions can result in similar growth kinetic performances. Long-term studies will be carried out to assess whether the differences found could cause chronic damage to photosystem efficiency of S. bacillaris cultures. 展开更多
关键词 MICROALGAE Stichococcus bacillaris CRYOPRESERVATION Growth Kinetic photosynthetic Rate
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部