期刊文献+
共找到732篇文章
< 1 2 37 >
每页显示 20 50 100
MoS_(2)Lubricate‑Toughened MXene/ANF Composites for Multifunctional Electromagnetic Interference Shielding
1
作者 Jiaen Wang Wei Ming +8 位作者 Longfu Chen Tianliang Song Moxi Yele Hao Zhang Long Yang Gegen Sarula Benliang Liang Luting Yan Guangsheng Wang 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期358-371,共14页
The design and fabrication of high toughness electromagnetic interference(EMI)shielding composite films with diminished reflection are an imperative task to solve electromagnetic pollution problem.Ternary MXene/ANF(ar... The design and fabrication of high toughness electromagnetic interference(EMI)shielding composite films with diminished reflection are an imperative task to solve electromagnetic pollution problem.Ternary MXene/ANF(aramid nanofibers)–MoS_(2)composite films with nacre-like layered structure here are fabricated after the introduction of MoS_(2)into binary MXene/ANF composite system.The introduction of MoS_(2)fulfills an impressive“kill three birds with one stone”improvement effect:lubrication toughening mechanical performance,reduction in secondary reflection pollution of electromagnetic wave,and improvement in the performance of photothermal conversion.After the introduction of MoS_(2)into binary MXene/ANF(mass ratio of 50:50),the strain to failure and tensile strength increase from 22.1±1.7%and 105.7±6.4 MPa and to 25.8±0.7%and 167.3±9.1 MPa,respectively.The toughness elevates from 13.0±4.1 to 26.3±0.8 MJ m^(−3)(~102.3%)simultaneously.And the reflection shielding effectiveness(SE_(R))of MXene/ANF(mass ratio of 50:50)decreases~10.8%.EMI shielding effectiveness(EMI SE)elevates to 41.0 dB(8.2–12.4 GHz);After the introduction of MoS_(2)into binary MXene/ANF(mass ratio of 60:40),the strain to failure increases from 18.3±1.9%to 28.1±0.7%(~53.5%),the SE_(R)decreases~22.2%,and the corresponding EMI SE is 43.9 dB.The MoS_(2)also leads to a more efficient photothermal conversion performance(~45 to~55℃).Additionally,MXene/ANF–MoS_(2)composite films exhibit excellent electric heating performance,quick temperature elevation(15 s),excellent cycle stability(2,2.5,and 3 V),and long-term stability(2520 s).Combining with excellent mechanical performance with high MXene content,electric heating performance,and photothermal conversion performance,EMI shielding ternary MXene/ANF–MoS_(2)composite films could be applied in many industrial areas.This work broadens how to achieve a balance between mechanical properties and versatility of composites in the case of high-function fillers. 展开更多
关键词 MXene-MoS_(2) Lubrication toughening EMI shielding Photothermal conversion Electric heating performance
下载PDF
Hollow Metal-Organic Framework/MXene/Nanocellulose Composite Films for Giga/Terahertz Electromagnetic Shielding and Photothermal Conversion 被引量:1
2
作者 Tian Mai Lei Chen +2 位作者 Pei‑Lin Wang Qi Liu Ming‑Guo Ma 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期161-179,共19页
With the continuous advancement of communication technology,the escalating demand for electromagnetic shielding interference(EMI)materials with multifunctional and wideband EMI performance has become urgent.Controllin... With the continuous advancement of communication technology,the escalating demand for electromagnetic shielding interference(EMI)materials with multifunctional and wideband EMI performance has become urgent.Controlling the electrical and magnetic components and designing the EMI material structure have attracted extensive interest,but remain a huge challenge.Herein,we reported the alternating electromagnetic structure composite films composed of hollow metal-organic frameworks/layered MXene/nanocellulose(HMN)by alternating vacuum-assisted filtration process.The HMN composite films exhibit excellent EMI shielding effectiveness performance in the GHz frequency(66.8 dB at Kaband)and THz frequency(114.6 dB at 0.1-4.0 THz).Besides,the HMN composite films also exhibit a high reflection loss of 39.7 dB at 0.7 THz with an effective absorption bandwidth up to 2.1 THz.Moreover,HMN composite films show remarkable photothermal conversion performance,which can reach 104.6℃under 2.0 Sun and 235.4℃under 0.8 W cm^(−2),respectively.The unique micro-and macrostructural design structures will absorb more incident electromagnetic waves via interfacial polarization/multiple scattering and produce more heat energy via the local surface plasmon resonance effect.These features make the HMN composite film a promising candidate for advanced EMI devices for future 6G communication and the protection of electronic equipment in cold environments. 展开更多
关键词 Metal-organic frameworks MXene NANOCELLULOSE Electromagnetic shielding Photothermal conversion
下载PDF
A Stable Open-Shell Conjugated Diradical Polymer with Ultra-High Photothermal Conversion Efficiency for NIR-Ⅱ Photo-Immunotherapy of Metastatic Tumor 被引量:1
3
作者 Yijian Gao Ying Liu +7 位作者 Xiliang Li Hui Wang Yuliang Yang Yu Luo Yingpeng Wan Chun‑sing Lee Shengliang Li Xiao‑Hong Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期1-14,共14页
Massive efforts have been concentrated on the advance of eminent near-infrared(NIR) photothermal materials(PTMs) in the NIR-Ⅱ window(1000–1700 nm), especially organic PTMs because of their intrinsic biological safet... Massive efforts have been concentrated on the advance of eminent near-infrared(NIR) photothermal materials(PTMs) in the NIR-Ⅱ window(1000–1700 nm), especially organic PTMs because of their intrinsic biological safety compared with inorganic PTMs. However, so far, only a few NIR-Ⅱresponsive organic PTMs was explored, and their photothermal conversion efficiencies(PCEs) still remain relatively low. Herein, donor–acceptor conjugated diradical polymers with open-shell characteristics are explored for synergistically photothermal immunotherapy of metastatic tumors in the NIR-Ⅱ window. By employing side-chain regulation, the conjugated diradical polymer TTB-2 with obvious NIR-Ⅱ absorption was developed, and its nanoparticles realize a record-breaking PCE of 87.7% upon NIR-Ⅱ light illustration. In vitro and in vivo experiments demonstrate that TTB-2 nanoparticles show good tumor photoablation with navigation of photoacoustic imaging in the NIR-Ⅱ window, without any side-effect. Moreover, by combining with PD-1 antibody,the pulmonary metastasis of breast cancer is high-effectively prevented by the efficient photo-immunity effect. Thus, this study explores superior PTMs for cancer metastasis theranostics in the NIR-Ⅱ window, offering a new horizon in developing radical-characteristic NIR-Ⅱ photothermal materials. 展开更多
关键词 NIR-Ⅱconjugated polymer PHOTOTHERMAL RADICAL Nanoparticles Cancer therapy
下载PDF
Bio-Based Waterborne Poly(Vanillin-Butyl Acrylate)/MXene Coatings for Leather with Desired Warmth Retention and Antibacterial Properties 被引量:1
4
作者 Jianzhong Ma Li Ma +3 位作者 Lei Zhang Wenbo Zhang Qianqian Fan Buxing Han 《Engineering》 SCIE EI CAS CSCD 2024年第5期250-263,共14页
This study presents a solvent-free,facile synthesis of a bio-based green antibacterial agent and aromatic monomer methacrylated vanillin(MV)using vanillin.The resulting MV not only imparted antibacterial properties to... This study presents a solvent-free,facile synthesis of a bio-based green antibacterial agent and aromatic monomer methacrylated vanillin(MV)using vanillin.The resulting MV not only imparted antibacterial properties to coatings layered on leather,but could also be employed as a green alternative to petroleum-based carcinogen styrene(St).Herein,MV was copolymerized with butyl acrylate(BA)to obtain waterborne bio-based P(MV-BA)miniemulsion via miniemulsion polymerization.Subsequently,MXene nanosheets with excellent photothermal conversion performance and antibacterial properties,were introduced into the P(MV-BA)miniemulsion by ultrasonic dispersion.During the gradual solidification of P(MV-BA)/MXene nanocomposite miniemulsion on the leather surface,MXene gradually migrated to the surface of leather coatings due to the cavitation effect of ultrasonication and amphiphilicity of MXene,which prompted its full exposure to light and bacteria,exerting the maximum photothermal conversion efficiency and significant antibacterial efficacy.In particular,when the dosage of MXene nanosheets was 1.4 wt%,the surface temperature of P(MV-BA)/MXene nanocomposite miniemulsioncoated leather(PML)increased by about 15℃ in an outdoor environment during winter,and the antibacterial rate against Escherichia coli and Staphylococcus aureus was nearly 100%under the simulated sunlight treatment for 30 min.Moreover,the introduction of MXene nanosheets increased the air permeability,water vapor permeability,and thermal stability of these coatings.This study provides a new insight into the preparation of novel,green,and waterborne bio-based nanocomposite coatings for leather,with desired warmth retention and antibacterial properties.It can not only realize zerocarbon heating based on sunlight in winter,reducing the use of fossil fuels and greenhouse gas emissions,but also improve ability to fight off invasion by harmful bacteria,viruses,and other microorganisms. 展开更多
关键词 MXene nanosheets VANILLIN Styrene substitute Leather coating Photothermal conversion Warmth retention Antibacterial properties
下载PDF
The application of cellulosic-based materials on interfacial solar steam generation for highly efficient wastewater purification: A review
5
作者 Haroon A.M.Saeed Weilin Xu Hongjun Yang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第9期245-282,共38页
The world's population is growing,leading to an increasing demand for freshwater resources for drinking,sanitation,agriculture,and industry.Interfacial solar steam generation(ISSG)can solve many problems,such as m... The world's population is growing,leading to an increasing demand for freshwater resources for drinking,sanitation,agriculture,and industry.Interfacial solar steam generation(ISSG)can solve many problems,such as mitigating the power crisis,minimizing water pollution,and improving the purification and desalination of seawater,rivers/lakes,and wastewater.Cellulosic materials are a viable and ecologically sound technique for capturing solar energy that is adaptable to a range of applications.This review paper aims to provide an overview of current advancements in the field of cellulose-based materials ISSG devices,specifically focusing on their applications in water purification and desalination.This paper examines the cellulose-based materials ISSG system and evaluates the effectiveness of various cellulosic materials,such as cellulose nanofibers derived from different sources,carbonized wood materials,and two-dimensional(2D)and 3D cellulosic-based materials from various sources,as well as advanced cellulosic materials,including bacterial cellulose and cellulose membranes obtained from agricultural and industrial cellulose wastes.The focus is on exploring the potential applications of these materials in ISSG devices for water desalination,purification,and treatment.The function,advantages,and disadvantages of cellulosic materials in the performance of ISSG devices were also deliberated throughout our discussion.In addition,the potential and suggested methods for enhancing the utilization of cellulose-based materials in the field of ISSG systems for water desalination,purification,and treatment were also emphasized. 展开更多
关键词 CELLULOSIC MATERIALS PHOTOTHERMAL conversion process SOLAR STEAM GENERATION wastewater purification
下载PDF
Construction of a Cu@hollow TS-1 nanoreactor based on a hierarchical full-spectrum solar light utilization strategy for photothermal synergistic artificial photosynthesis
6
作者 Sixian Zhu Qiao Zhao +5 位作者 Hongxia Guo Li Liu Xiao Wang Xiwei Qi Xianguang Meng Wenquan Cui 《Carbon Energy》 SCIE EI CAS CSCD 2024年第2期25-36,共12页
The artificial photosynthesis technology has been recognized as a promising solution for CO_(2) utilization.Photothermal catalysis has been proposed as a novel strategy to promote the efficiency of artificial photosyn... The artificial photosynthesis technology has been recognized as a promising solution for CO_(2) utilization.Photothermal catalysis has been proposed as a novel strategy to promote the efficiency of artificial photosynthesis by coupling both photochemistry and thermochemistry.However,strategies for maximizing the use of solar spectra with different frequencies in photothermal catalysis are urgently needed.Here,a hierarchical full-spectrum solar light utilization strategy is proposed.Based on this strategy,a Cu@hollow titanium silicalite-1 zeolite(TS-1)nanoreactor with spatially separated photo/thermal catalytic sites is designed to realize high-efficiency photothermal catalytic artificial photosynthesis.The space-time yield of alcohol products over the optimal catalyst reached 64.4μmol g−1 h−1,with the selectivity of CH3CH2OH of 69.5%.This rationally designed hierarchical utilization strategy for solar light can be summarized as follows:(1)high-energy ultraviolet light is utilized to drive the initial and difficult CO_(2) activation step on the TS-1 shell;(2)visible light can induce the localized surface plasmon resonance effect on plasmonic Cu to generate hot electrons for H2O dissociation and subsequent reaction steps;and(3)low-energy near-infrared light is converted into heat by the simulated greenhouse effect by cavities to accelerate the carrier dynamics.This work provides some scientific and experimental bases for research on novel,highly efficient photothermal catalysts for artificial photosynthesis. 展开更多
关键词 artificial photosynthesis full spectrum NANOREACTORS photothermal catalysis
下载PDF
Photothermal self-healing polyurethane coating based on hollow nanofillers in seawater
7
作者 KANG Qian-qian MAO Zhi-peng +3 位作者 PENG Li-ming MYRONYUK Oleksiy LI Wei-hua WANG Wei 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第10期3447-3462,共16页
Herein,a novel composite coating with excellent self-healing and corrosion resistance activated byphotothermal responsive hollow core-shell nanofillers was developed.A photothermal nanofiller(Co_(9)S_(8)@Bi_(2)S_(3))w... Herein,a novel composite coating with excellent self-healing and corrosion resistance activated byphotothermal responsive hollow core-shell nanofillers was developed.A photothermal nanofiller(Co_(9)S_(8)@Bi_(2)S_(3))with ahollow core-shell structure was synthesized and then added to polyurethane(PU)to prepare PU-Co_(9)S_(8)@Bi_(2)S_(3)compositecoating.Applying 808 nm near-infrared irradiation induces a photothermal effect in Co_(9)S_(8)@Bi_(2)S_(3),which subsequentlyinitiates the reconstruction of reversible hydrogen bonds,facilitating the self-healing of coating scratches.The excellentphotothermal self-healing performance of PU-Co_(9)S_(8)@Bi_(2)S_(3)coating was demonstrated by scratch tests and moleculardynamics simulations.The electrochemical impedance spectroscopy test results showed that the PU-Co_(9)S_(8)@Bi_(2)S_(3)coating has good self-healing and anti-corrosion properties.The low-frequency impedance modulus of the coating afterthree self-healing sessions was still close to 109Ω·cm^(2)after 30 d of immersion in seawater.This study provides a newstrategy for developing multi-cycle self-healing coatings triggered by photothermal effects. 展开更多
关键词 polyurethane coating photothermal effect SELF-HEALING corrosion protection
下载PDF
Elimination of methicillin‑resistant Staphylococcus aureus biofilms on titanium implants via photothermally‑triggered nitric oxide and immunotherapy for enhanced osseointegration
8
作者 Yong‑Lin Yu Jun‑Jie Wu +5 位作者 Chuan‑Chuan Lin Xian Qin Franklin R.Tay Li Miao Bai‑Long Tao Yang Jiao 《Military Medical Research》 SCIE CAS CSCD 2024年第2期157-179,共23页
Background:Treatment of methicillin-resistant Staphylococcus aureus(MRSA)biofilm infections in implant placement surgery is limited by the lack of antimicrobial activity of titanium(Ti)implants.There is a need to expl... Background:Treatment of methicillin-resistant Staphylococcus aureus(MRSA)biofilm infections in implant placement surgery is limited by the lack of antimicrobial activity of titanium(Ti)implants.There is a need to explore more effective approaches for the treatment of MRSA biofilm infections.Methods:Herein,an interfacial functionalization strategy is proposed by the integration of mesoporous polydopamine nanoparticles(PDA),nitric oxide(NO)release donor sodium nitroprusside(SNP)and osteogenic growth peptide(OGP)onto Ti implants,denoted as Ti-PDA@SNP-OGP.The physical and chemical properties of Ti-PDA@SNP-OGP were assessed by scanning electron microscopy,X-ray photoelectron spectroscope,water contact angle,photothermal property and NO release behavior.The synergistic antibacterial effect and elimination of the MRSA biofilms were evaluated by 2′,7′-dichlorofluorescein diacetate probe,1-N-phenylnaphthylamine assay,adenosine triphosphate intensity,O-nitrophenyl-β-D-galactopyranoside hydrolysis activity,bicinchoninic acid leakage.Fluorescence staining,assays for alkaline phosphatase activity,collagen secretion and extracellular matrix mineralization,quantitative real‑time reverse transcription‑polymerase chain reaction,and enzyme-linked immunosorbent assay(ELISA)were used to evaluate the inflammatory response and osteogenic ability in bone marrow stromal cells(MSCs),RAW264.7 cells and their co-culture system.Giemsa staining,ELISA,micro-CT,hematoxylin and eosin,Masson's trichrome and immunohistochemistry staining were used to evaluate the eradication of MRSA biofilms,inhibition of inflammatory response,and promotion of osseointegration of Ti-PDA@SNP-OGP in vivo.Results:Ti-PDA@SNP-OGP displayed a synergistic photothermal and NO-dependent antibacterial effect against MRSA following near-infrared light(NIR)irradiation,and effectively eliminated the formed MRSA biofilms by inducing reactive oxygen species(ROS)-mediated oxidative stress,destroying bacterial membrane integrity and causing leakage of intracellular components(P<0.01).In vitro experiments revealed that Ti-PDA@SNP-OGP not only facilitated osteogenic differentiation of MSCs,but also promoted the polarization of pro-inflammatory M1 macrophages to the anti-inflammatory M2-phenotype(P<0.05 or P<0.01).The favorable osteo-immune microenvironment further facilitated osteogenesis of MSCs and the anti-inflammation of RAW264.7 cells via multiple paracrine signaling pathways(P<0.01).In vivo evaluation confirmed the aforementioned results and revealed that Ti-PDA@SNP-OGP induced ameliorative osseointegration in an MRSA-infected femoral defect implantation model(P<0.01).Conclusions:Ti-PDA@SNP-OGP is a promising multi-functional material for the high-efficient treatment of MRSA infections in implant replacement surgeries. 展开更多
关键词 Polydopamine nanoparticles Methicillin-resistant Staphylococcus aureus Nitric oxide OSSEOINTEGRATION Osteo-immunomodulation Photothermal effect Titanium implants
下载PDF
Isoindigo nanoparticles for photoacoustic imaging-guided tumor photothermal therapy
9
作者 Yao Pei Ran Wang +9 位作者 Xiang Rong Xiang Xia Hexiang Wang Zongwei Zhang Tian Qiu Saran Long Jianjun Du Jiangli Fan Wen Sun Xiaojun Peng 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第8期19-25,共7页
The key factor in photothermal therapy lies in the selection of photothermal agents.Traditional photothermal agents generally have problems such as poor photothermal stability and low photothermal conversion efficienc... The key factor in photothermal therapy lies in the selection of photothermal agents.Traditional photothermal agents generally have problems such as poor photothermal stability and low photothermal conversion efficiency.Herein,we have designed and synthesized an isoindigo(IID)dye.We used isoindigo as the molecular center and introduced common triphenylamine and methoxy groups as rotors.In order to improve the photothermal stability and tumor targeting ability,we encapsulated IID into nanoparticles.As a result,the nanoparticles exhibited high photothermal stability and photothermal conversion efficiency(67%)upon 635 nm laser irradiation.Thus,the nanoparticles demonstrated a significant inhibitory effect on live tumors in photothermal therapy guided by photoacoustic imaging and provided a viable strategy to overcome the treatment challenges. 展开更多
关键词 Photothermal therapy Isoindigo NANOPARTICLES Photoacoustic imaging
下载PDF
Temperature-feedback two-photon-responsive metal-organic frameworks for efficient photothermal therapy
10
作者 Xianshun Sun Xin Lu +4 位作者 Wenyao Duan Bo Li Yupeng Tian Dandan Li Hongping Zhou 《中国科学技术大学学报》 CAS CSCD 北大核心 2024年第6期53-59,I0011,共8页
The realization of real-time thermal feedback for monitoring photothermal therapy(PTT)under near-infrared(NIR)light irradiation is of great interest and challenge for antitumor therapy.Herein,by assembling highly effi... The realization of real-time thermal feedback for monitoring photothermal therapy(PTT)under near-infrared(NIR)light irradiation is of great interest and challenge for antitumor therapy.Herein,by assembling highly efficient photothermal conversion gold nanorods and a temperature-responsive probe((E)-4-(4-(diethylamino)styryl)-1-methylpyridin-1-ium,PyS)within MOF-199,an intelligent nanoplatform(AMPP)was fabricated for simultaneous chemodynamic therapy and NIR light-induced temperature-feedback PTT.The fluorescence intensity and temperature of the PyS probe are linearly related due to the restriction of the rotation of the characteristic monomethine bridge.Moreover,the copper ions resulting from the degradation of MOF-199 in an acidic microenvironment can convert H_(2)O_(2)into•OH,resulting in tumor ablation through a Fenton-like reaction,and this process can be accelerated by increasing the temperature.This study establishes a feasible platform for fabricating highly sensitive temperature sensors for efficient temperature-feedback PTT. 展开更多
关键词 metal-organic framework TWO-PHOTON temperature feedback photothermal therapy chemodynamic therapy
下载PDF
Femtosecond laser ultrafast photothermal exsolution
11
作者 Lurun Xu Jingchao Tao +2 位作者 Zhuguo Li Guo He Dongshi Zhang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第5期207-219,共13页
Exsolution,as an effective approach to constructing particle-decorated interfaces,is still challenging to yield interfacial films rather than isolated particles.Inspired by in vivo near-infrared laser photothermal the... Exsolution,as an effective approach to constructing particle-decorated interfaces,is still challenging to yield interfacial films rather than isolated particles.Inspired by in vivo near-infrared laser photothermal therapy,using 3 mol%Y_(2)O_(3)stabilized tetragonal zirconia polycrystals(3Y-TZP)as host oxide matrix and iron-oxide(Fe3O4/γ-Fe_(2)O_(3)/α-Fe_(2)O_(3))materials as photothermal modulator and exsolution resource,femtosecond laser ultrafast exsolution approach is presented enabling to conquer this challenge.The key is to trigger photothermal annealing behavior via femtosecond laser ablation to initialize phase transition from monoclinic zirconia(m-ZrO_(2))to tetragonal zirconia(t-ZrO_(2))and induce t-ZrO_(2)columnar crystal growth.Fe-ions rapidly segregate along grain boundaries and diffuse towards the outmost surface,and become‘frozen’,highlighting the potential to use photothermal materials and ultrafast heating/quenching behaviors of femtosecond laser ablation for interfacial exsolution.Triggering interfacial iron-oxide coloring exsolution is composition and concentration dependent.Photothermal materials themselves and corresponding photothermal transition capacity play a crucial role,initializing at 2 wt%,3 wt%,and 5 wt%for Fe3O4/γ-Fe_(2)O_(3)/α-Fe_(2)O_(3)doped 3Y-TZP samples.Due to different photothermal effects,exsolution states of ablated 5 wt%Fe_(3)O_(4)/γ-Fe_(2)O_(3)/α-Fe_(2)O_(3)-doped 3Y-TZP samples are totally different,with whole coverage,exhaustion(ablated away)and partial exsolution(rich in the grain boundaries in subsurface),respectively.Femtosecond laser ultrafast photothermal exsolution is uniquely featured by up to now the deepest microscale(10μm from 5 wt%-Fe_(3)O_(4)-3Y-TZP sample)Fe-elemental deficient layer for exsolution and the whole coverage of exsolved materials rather than the formation of isolated exsolved particles by other methods.It is believed that this novel exsolution method may pave a good way to modulate interfacial properties for extensive applications in the fields of biology,optics/photonics,energy,catalysis,environment,etc. 展开更多
关键词 EXSOLUTION ultrafast quenching femtosecond laser ablation photothermal therapy 3Y-TZP ceramics thermal annealing
下载PDF
面向工业化种植的光热管理农膜——机遇与挑战
12
作者 Song Zhang Zhang Chen +2 位作者 Chuanxiang Cao Yuanyuan Cui Yanfeng Gao 《Engineering》 SCIE EI CAS CSCD 2024年第4期191-200,共10页
As indispensable parts of greenhouses and plant factories,agricultural covering films play a prominent role in regulating microclimate environments.Polyethylene covering films directly transmit the full solar spectrum... As indispensable parts of greenhouses and plant factories,agricultural covering films play a prominent role in regulating microclimate environments.Polyethylene covering films directly transmit the full solar spectrum.However,this high level of sunlight transmission may be inappropriate or even harmful for crops with specific photothermal requirements.Modern greenhouses are integrated with agricultural covering materials,heating,ventilation,and air conditioning(HVAC)systems,and smart irrigation and communication technologies to maximize planting efficiency.This review provides insight into the photothermal requirements of crops and ways to meet these requirements,including new materials based on passive radiative cooling and light scattering,simulations to evaluate the energy consumption and environmental conditions in a greenhouse,and data mining to identify key biological growth factors and thereby improve new covering films.Finally,future challenges and directions for photothermalmanagement agricultural films are elaborated on to bridge the gap between lab-scale research and large-scale practical applications. 展开更多
关键词 GREENHOUSE Photothermal management Passive radiative cooling Light scattering
下载PDF
Photothermal catalytic C-C coupling to ethylene from CO_(2) with high efficiency by synergistic cooperation of oxygen vacancy and half-metallic WTe_(2)
13
作者 Xiaoyue Zhang Yong Yang +4 位作者 Yingjie Hu Lijun Xiong Tianyu Wang Panjie Li Jinyou Shen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期547-556,I0014,共11页
Photothermal catalytic CO_(2) conversion provides an effective solution targeting carbon neutrality by synergistic utilization of photon and heat.However,the C-C coupling initiated by photothermal catalysis is still a... Photothermal catalytic CO_(2) conversion provides an effective solution targeting carbon neutrality by synergistic utilization of photon and heat.However,the C-C coupling initiated by photothermal catalysis is still a big challenge.Herein,a three-dimensional(3D)hierarchical W_(18)O_(49)/WTe_(2) hollow nanosphere is constructed through in-situ embodying of oxygen vacancy and tellurium on the scaffold of WO_(3).The light absorption towards near-infrared spectral region and CO_(2) adsorption are enhanced by the formation of half-metal WTe_(2) and the unique hierarchical hollow architecture.Combining with the generation of oxygen vacancy with strengthened CO_(2) capture,the photothermal effect on the samples can be sufficiently exploited for activating the CO_(2) molecules.In particular,the close contact between W_(18)O_(49)and WTe_(2) largely promotes the photoinduced charge separation and mass transfer,and thus the~*CHO intermediate formation and fixedness are facilitated.As a result,the C-C coupling can be evoked between tungsten and tellurium atoms on WTe_(2).The ethylene production by optimized W_(18)O_(49)/WTe_(2) reaches 147.6μmol g^(-1)with the selectivity of 80%.The in-situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS)and density functional theory(DFT)calculations are performed to unveil the presence and significance of aldehyde intermediate groups in C-C coupling.The half-metallic WTe_(2) cocatalyst proposes a new approach for efficient CO_(2) conversion with solar energy,and may especially create a new platform for the generation of multi-carbon products. 展开更多
关键词 Photothermal catalysis HALF-METAL WTe_(2) C–C coupling Carbon neutrality
下载PDF
Nitrogen-doped microporous graphite-enhanced copper plasmonic effect for solar evaporation
14
作者 Xintao Wu Chengcheng Li +7 位作者 Ziqi Zhang Yang Cao Jieqiong Wang Xinlong Tian Zhongxin Liu Yijun Shen Mingxin Zhang Wei Huang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第3期215-223,共9页
Water scarcity is a global challenge,and solar evaporation technology offers a promising and eco-friendly solution for freshwater production.Photothermal conversion materials(PCMs)are crucial for solar evaporation.Imp... Water scarcity is a global challenge,and solar evaporation technology offers a promising and eco-friendly solution for freshwater production.Photothermal conversion materials(PCMs)are crucial for solar evaporation.Improving photothermal conversion efficiency and reducing water evaporation enthalpy are the two key strategies for the designing of PCMs.The desired PCMs that combine both of these properties remain a challenging task,even with the latest advancements in the field.Herein,we developed copper nanoparticles(NPs)with different conjugated nitrogen-doped microporous carbon coatings(Cu@C–N)as PCMs.The microporous carbon enveloping layer provides a highly efficient pathway for water transport and a nanoconfined environment that protects Cu NPs and facilitates the evaporation of water clusters,reducing the enthalpy of water evaporation.Meanwhile,the conjugated nitrogen nodes form strong metal-organic coordination bonds with the surface of copper NPs,acting as an energy bridge to achieve rapid energy transfer and provide high solar-to-vapor conversion efficiency.The Cu@C–N exhibited up to 89.4%solar-to-vapor conversion efficiency and an evaporation rate of 1.94 kgm^(−2) h^(−1) under one sun irradiation,outperforming conventional PCMs,including carbon-based materials and semiconductor materials.These findings offer an efficient design scheme for high-performance PCMs essential for solar evaporators to address global water scarcity. 展开更多
关键词 NANOCONFINEMENT photothermal conversion materials plasmonic resonance seawater desalination solar evaporation
下载PDF
Rational construction of CuFe_(2)O_(4)@C/Cd_(0.9)Zn_(0.1)S S-scheme heterojunction photocatalyst for extraordinary photothermal-assisted photocatalytic H_(2) evolution
15
作者 Dong Zhang Minghui Zhu +7 位作者 Ran Qin Peixian Chen Maoye Yin Dafeng Zhang Junchang Liu Hengshuai Li Xipeng Pu Peiqing Cai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期240-249,共10页
Rational design of photocatalyst to maximize the use of sunlight is one of the issues to be solved in photocatalysis technology.In this study,the CuFe_(2)O_(4)@C/Cd_(0.9)Zn_(0.1)S(CFO@C/CZS)S-scheme photocatalyst with... Rational design of photocatalyst to maximize the use of sunlight is one of the issues to be solved in photocatalysis technology.In this study,the CuFe_(2)O_(4)@C/Cd_(0.9)Zn_(0.1)S(CFO@C/CZS)S-scheme photocatalyst with photothermal effect was synthesized by ultrasonic self-assembly combined with calcination.The dark CFO@C absorbed visible light and partly converted into heat to promote the hydrogen evolution reaction.The presence of heterojunctions inhibited the photogenerated electron-hole recombination.The graphite-carbon layer provided a stable channel for electron transfer,and the presence of magnetic CFO made recycle easier.Under the action of photothermal assistance and heterojunction,the hydrogen evolution rate of the optimal CFO@C/CZS was 80.79 mmol g^(-1) h^(-1),which was 2.55 times and 260.61 times of that of pure CZS and CFO@C,respectively.Notably,the composite samples also exhibit excellent stability and a wide range of environmental adaptability.Through experimental tests and first-principles simulation calculation methods,the plausible mechanism of photoactivity enhancement was proposed.This work provided a feasible strategy of photothermal assistance for the development of heterojunction photocatalysts with distinctive hydrogen evolution. 展开更多
关键词 Photothermal effect S-scheme heterojunction Photocatalytic hydrogen evolution First-principles calculations
下载PDF
Synergistic chemotherapy/PTT/oxygen enrichment by multifunctional liposomal polydopamine nanoparticles for rheumatoid arthritis treatment
16
作者 Xiaoling Fu Yutong Song +4 位作者 Xianquan Feng Zhihong Liu Wenhao Gao Hongtao Song Qian Zhang 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2024年第1期86-102,共17页
Amultifunctional liposomal polydopamine nanoparticle(MPM@Lipo)was designed in this study,to combine chemotherapy,photothermal therapy(PTT)and oxygen enrichment to clear hyperproliferating inflammatory cells and improv... Amultifunctional liposomal polydopamine nanoparticle(MPM@Lipo)was designed in this study,to combine chemotherapy,photothermal therapy(PTT)and oxygen enrichment to clear hyperproliferating inflammatory cells and improve the hypoxic microenvironment for rheumatoid arthritis(RA)treatment.MPM@Lipo significantly scavenged intracellular reactive oxygen species and relieved joint hypoxia,thus contributing to the repolarization of M1 macrophages into M2 phenotype.Furthermore,MPM@Lipo could accumulate at inflammatory joints,inhibit the production of inflammatory factors,and protect cartilage in vivo,effectively alleviating RA progression in a rat adjuvant-induced arthritis model.Moreover,upon laser irradiation,MPM@Lipo can elevate the temperature to not only significantly obliterate excessively proliferating inflammatory cells but also accelerate the production of methotrexate and oxygen,resulting in excellent RA treatment effects.Overall,the use of synergistic chemotherapy/PTT/oxygen enrichment therapy to treat RA is a powerful potential strategy. 展开更多
关键词 POLYDOPAMINE Thermosensitive liposomes Photothermal therapy Oxygen generation Rheumatoid arthritis
下载PDF
Amphipathic Janus Nanofibers Aerogel for Efficient Solar Steam Generation
17
作者 Rui Wang Jinshuo Deng +6 位作者 Ping Wu Qianli Ma Xiangting Dong Wensheng Yu Guixia Liu Jinxian Wang Lei Liu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期422-432,共11页
Solar steam generation is a promising water purification technology due to its low-cost and environmentally friendly applications in water purification and desalination.However,hydrophilic or hydrophobic materials alo... Solar steam generation is a promising water purification technology due to its low-cost and environmentally friendly applications in water purification and desalination.However,hydrophilic or hydrophobic materials alone are insufficient in achieving necessary characteristics for constructing highquality solar steam generators with good comprehensive properties.Herein,novel hydrophile/hydrophobe amphipathic Janus nanofibers aerogel is designed and used as a host material for preparing solar steam generators.The product consists of an internal cubic aerogel and an external layer of photothermal materials.The internal aerogel is composed of electrospun amphipathic Janus nanofibers.Owing to the unique composition and structure,the prepared solar steam generator integrates the features of high water evaporation rate(2.944 kg m^(-2)h^(-1)under 1 kW m^(-2)irradiation),selffloating,salt-resisting,and fast performance recovery after flipping.Moreover,the product also exhibits excellent properties on desalination and removal of organic pollutants.Compared with traditional hydrophilic aerogel host material,the amphipathic Janus nanofibers aerogel brings much higher water evaporation rate and salt resistance. 展开更多
关键词 AEROGELS electrospinning photothermal materials solar desalination solar steam generation
下载PDF
Insights into the Origins of Solar-Assisted Electrochemical Water Oxidation in Allotropic Co_(5.47)N/CON Heterojunctions
18
作者 Sirui Liu Qiong Gao +8 位作者 Bo Geng Lili Wu Zhikun Xu Xinzhi Ma Shijie Liu Boquan Li Mingyi Zhang Lirong Zhang Xitian Zhang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第5期234-243,共10页
Solar irradiation can efficiently promote the kinetics of the oxygen evolution reaction(OER)during water splitting,where heterojunction catalysts exhibit excellent photoresponsive properties.However,insights into the ... Solar irradiation can efficiently promote the kinetics of the oxygen evolution reaction(OER)during water splitting,where heterojunction catalysts exhibit excellent photoresponsive properties.However,insights into the origins of photoassisted OER catalysis remain unclear,especially the interfaced promotion under convergent solar irradiation(CSI).Herein,novel allotropic Co_(5.47)N/CoN heterojunctions were synthesized,and corresponding OER mechanisms under CSI were comprehensively uncovered from physical and chemical aspects using the in situ Raman technique and electrochemical cyclic voltammetry method.Our results provide a unique mechanism where high-energy UV light promotes the Co^(3+/4+)conversion process in addition to the ordinary photoelectric effect excitation of the Co^(2+)material.Importantly,visible light under CSI can produce a photothermal effect for Co^(2+)excitation and Co^(3+/4+)conversion,which promotes the OER significantly more than the usual photoelectric effect.As a result,Co_(5.47)N/CoN(containing 28%CoN)obtained 317.9%OER enhancement,which provides a pathway for constructing excellent OER catalysts. 展开更多
关键词 chemical origins in situ Raman OER photothermal effect physical origins
下载PDF
CA IX-targeted Ag_(2)S quantum dots bioprobe for NIR-II imaging-guided hypoxia tumor chemo-photothermal therapy
19
作者 Xinyue Cui Zhuang Hu +3 位作者 Ruihan Li Peng Jiang Yongchang Wei Zilin Chen 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第6期878-888,共11页
Hypoxia is the common characteristic of almost all solid tumors,which prevents therapeutic drugs from reaching the tumors.Therefore,the development of new targeted agents for the accurate diagnosis of hypoxia tumors i... Hypoxia is the common characteristic of almost all solid tumors,which prevents therapeutic drugs from reaching the tumors.Therefore,the development of new targeted agents for the accurate diagnosis of hypoxia tumors is widely concerned.As carbonic anhydrase IX(CA IX)is abundantly distributed on the hypoxia tumor cells,it is considered as a potential tumor biomarker.4-(2-Aminoethyl)benzenesulfonamide(ABS)as a CA IX inhibitor has inherent inhibitory activity and good targeting effect.In this study,Ag_(2)S quantum dots(QDs)were used as the carrier to prepare a novel diagnostic and therapeutic bioprobe(Ag_(2)S@polyethylene glycol(PEG)-ABS)through ligand exchange and amide condensation reaction.Ag_(2)S@PEG-ABS can selectively target tumors by surface-modified ABS and achieve accurate tumor imaging by the near infrared-II(NIR-II)fluorescence characteristics of Ag_(2)S QDs.PEG modification of Ag_(2)S QDs greatly improves its water solubility and stability,and therefore achieves high photothermal stability and high photothermal conversion efficiency(PCE)of 45.17%.Under laser irradiation,Ag_(2)S@PEG-ABS has powerful photothermal and inherent antitumor combinations on colon cancer cells(CT-26)in vitro.It also has been proved that Ag_(2)S@PEG-ABS can realize the effective treatment of hypoxia tumors in vivo and show good biocompatibility.Therefore,it is a new efficient integrated platform for the diagnosis and treatment of hypoxia tumors. 展开更多
关键词 CA IX-targeted Hypoxia tumor combination therapy NIR-II imaging Photothermal effect
下载PDF
Regulating crystal phase of TiO_(2) to enhance catalytic activity of Ni/TiO_(2) for solar-driven dry reforming of methane
20
作者 HE Zhanjun GONG Kun +3 位作者 DAI Yuanyuan NIU Qiang LIN Tiejun ZHONG Liangshu 《燃料化学学报(中英文)》 EI CAS CSCD 北大核心 2024年第9期1203-1213,共11页
Ni/TiO_(2) catalyst is widely employed for photo-driven DRM reaction while the influence of crystal structure of TiO_(2) remains unclear.In this work,the rutile/anatase ratio in supports was successfully controlled by... Ni/TiO_(2) catalyst is widely employed for photo-driven DRM reaction while the influence of crystal structure of TiO_(2) remains unclear.In this work,the rutile/anatase ratio in supports was successfully controlled by varying the calcination temperature of anatase-TiO_(2).Structural characterizations revealed that a distinct TiO_(x) coating on the Ni nanoparticles(NPs)was evident for Ni/TiO_(2)-700 catalyst due to strong metal-support interaction.It is observed that the TiOx overlayer gradually disappeared as the ratio of rutile/anatase increased,thereby enhancing the exposure of Ni active sites.The exposed Ni sites enhanced visible light absorption and boosted the dissociation capability of CH4,which led to the much elevated catalytic activity for Ni/TiO_(2)-950 in which rutile dominated.Therefore,the catalytic activity of solar-driven DRM reaction was significantly influenced by the rutile/anatase ratio.Ni/TiO_(2)-950,characterized by a predominant rutile phase,exhibited the highest DRM reactivity,with remarkable H_(2) and CO production rates reaching as high as 87.4 and 220.2 mmol/(g·h),respectively.These rates were approximately 257 and 130 times higher,respectively,compared to those obtained on Ni/TiO_(2)-700 with anatase.This study suggests that the optimization of crystal structure of TiO_(2) support can effectively enhance the performance of photothermal DRM reaction. 展开更多
关键词 dry reforming of methane photothermal catalysis crystal phase TiO_(2) metal-support interaction
下载PDF
上一页 1 2 37 下一页 到第
使用帮助 返回顶部