期刊文献+
共找到17,183篇文章
< 1 2 250 >
每页显示 20 50 100
Zero-sequence Circulating Current Reduction for Three-phase Three-level Modular Photovoltaic Grid-connected Systems 被引量:16
1
作者 ZHANG Xing SHAO Zhangping WANG Fusheng LIU Ping REN Kangle 《中国电机工程学报》 EI CSCD 北大核心 2013年第9期I0003-I0003,共1页
针对共享正、负母线和交流母线的三相三电平模块化光伏并网系统的零序环流问题,建立三电平模块化系统零序环流的等效模型,并根据激励源的不同将零序环流分成3类,提出一种共享正、负母线和中线的并联方案来抑制I类零序环流,及一种基于改... 针对共享正、负母线和交流母线的三相三电平模块化光伏并网系统的零序环流问题,建立三电平模块化系统零序环流的等效模型,并根据激励源的不同将零序环流分成3类,提出一种共享正、负母线和中线的并联方案来抑制I类零序环流,及一种基于改进型LCL滤波器的并联方案来抑制II、III类零序环流的高频分量,和采用零序环流控制器来抑制II、III类零序环流的低频分量。最后,通过10 kW的三相三电平模块化光伏并网系统的仿真和实验,证明了零序环流模型分析和抑制方法的正确性。 展开更多
关键词 光伏系统 光伏并网 循环电流 模块化 三相 零序 逆变器并联 闭合回路
下载PDF
Improved Voltage Control Strategy for Photovoltaic Grid-Connected System Based on DoubleLayer Coordination Control 被引量:3
2
作者 戚艳 贾宏杰 《Transactions of Tianjin University》 EI CAS 2012年第4期271-278,共8页
An improved automatic voltage coordination control strategy(AVCCS) based on automatic voltage control(AVC) and battery energy storage control(BESC) is proposed for photovoltaic grid-connected system(PVGS) to mitigate ... An improved automatic voltage coordination control strategy(AVCCS) based on automatic voltage control(AVC) and battery energy storage control(BESC) is proposed for photovoltaic grid-connected system(PVGS) to mitigate the voltage fluctuations caused by environmental disturbances.Only AVC is used when small environmental disturbances happen,while BESC is incorporated with AVC to restrain the voltage fluctuations when large disturbances happen.An adjustable parameter determining the allowed amplitudes of voltage fluctuations is introduced to realize the above switching process.A benchmark low voltage distribution system including PVGS is established by using the commercial software DIg SILENT.Simulation results show that the voltage under AVCCS satisfies the IEEE Standard 1547,and the installed battery capacity is also reduced.Meanwhile,the battery's service life is extended by avoiding frequent charges/discharges in the control process. 展开更多
关键词 协调控制策略 自动电压控制 低压配电系统 光伏并网 电压波动 IEEE标准 电池容量 环境干扰
下载PDF
Evaluation of Grid-Connected Photovoltaic Plants Based on Clustering Methods
3
作者 Amr A.Munshi 《Computer Systems Science & Engineering》 SCIE EI 2023年第6期2837-2852,共16页
Photovoltaic(PV)systems are electric power systems designed to sup-ply usable solar power by means of photovoltaics,which is the conversion of light into electricity using semiconducting materials.PV systems have gain... Photovoltaic(PV)systems are electric power systems designed to sup-ply usable solar power by means of photovoltaics,which is the conversion of light into electricity using semiconducting materials.PV systems have gained much attention and are a very attractive energy resource nowadays.The substantial advantage of PV systems is the usage of the most abundant and free energy from the sun.PV systems play an important role in reducing feeder losses,improving voltage profiles and providing ancillary services to local loads.However,large PV grid-connected systems may have a destructive impact on the stability of the elec-tric grid.This is due to thefluctuations of the output AC power generated from the PV systems according to the variations in the solar energy levels.Thus,the elec-trical distribution system with high penetration of PV systems is subject to perfor-mance degradation and instabilities.For that,this project attempts to enhance the integration process of PV systems into electrical grids by analyzing the impact of installing grid-connected PV plants.To accomplish this,an indicative representa-tion of solar irradiation datasets is used for planning and powerflow studies of the electric network prior to PV systems installation.Those datasets contain lengthy historical observations of solar energy data,that requires extensive analysis and simulations.To overcome that the lengthy historical datasets are reduced and clus-tered while preserving the original data characteristics.The resultant clusters can be utilized in the planning stage and simulation studies.Accordingly,studies related to PV systems integration into the electric grid are conducted in an efficient manner,avoiding computing resources and processing times with easier and practical implementation. 展开更多
关键词 CLUSTERING electric grid electric network photovoltaic
下载PDF
Interharmonic Analysis Model of Photovoltaic Grid-connected System with Extended Dynamic Phasors
4
作者 Qing Zhong Yangxin Qiu +3 位作者 Yuming Zhao Haifeng Li Gang Wang Fushuan Wen 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2021年第6期1540-1547,共8页
The interactions between randomly fluctuating power outputs from photovoltaic(PV) at the DC side and background voltage distortions at the AC side could generate interharmonics in the PV grid-connected system(PVGS). T... The interactions between randomly fluctuating power outputs from photovoltaic(PV) at the DC side and background voltage distortions at the AC side could generate interharmonics in the PV grid-connected system(PVGS). There is no universal method that can reveal the transmission mechanism of interharmonics and realize accurate calculation in different scenarios where interharmonics exist in the PVGS. Therefore, extended dynamic phasors(EDPs) and EDP sequence components(EDPSCs) are employed in the interharmonic analysis of the PVGS. First, the dynamic phasors(DPs) and dynamic phasor sequence components(DPSCs) are extended into EDPs and EDPSCs by selecting a suitable fundamental frequency other than the power frequency. Second, an interharmonic analysis model of the PVGS is formulated as a set of state space equations. Third, with the decoupling characteristics of EDPSCs,generation principles and interactions among the interharmonics in the PVGS are presented by the sequence components,and its correctness is verified by simulation and experiment.The presented model can be used to accurately calculate the interharmonics generated in the PVGS both at the AC and DC sides. Because of the decoupling among the EDPSCs, the set of state space equations can effectively describe the principle. 展开更多
关键词 Dynamic phasor sequence component(DPSC) HARMONIC INTERHARMONIC photovoltaic grid-connected system(PVGS) power quality
原文传递
Progress of semitransparent emerging photovoltaics for building integrated applications
5
作者 Zhisheng Zhou Zhangyu Yuan +3 位作者 Zhipeng Yin Qifan Xue Ning Li Fei Huang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第6期992-1015,共24页
With the rapid development of emerging photovoltaics technology in recent years,the application of building-integrated photovoltaics(BIPVs)has attracted the research interest of photovoltaic communities.To meet the pr... With the rapid development of emerging photovoltaics technology in recent years,the application of building-integrated photovoltaics(BIPVs)has attracted the research interest of photovoltaic communities.To meet the practical application requirements of BIPVs,in addition to the evaluation indicator of power conversion efficiency(PCE),other key performance indicators such as heat-insulating ability,average visible light transmittance(AVT),color properties,and integrability are equally important.The traditional Si-based photovoltaic technology is typically limited by its opaque properties for application scenarios where transparency is required.The emerging PV technologies,such as organic and perovskite photovoltaics are promising candidates for BIPV applications,owing to their advantages such as high PCE,high AVT,and tunable properties.At present,the PCE of semitransparent perovskite solar cells(ST-PSCs)has attained 14%with AVT of 22–25%;for semitransparent organic solar cells(ST-OSCs),the PCE reached 13%with AVT of almost 40%.In this review article,we summarize recent advances in material selection,optical engineering,and device architecture design for high-performance semitransparent emerging PV devices,and discuss the application of optical modeling,as well as the challenges of commercializing these semitransparent solar cells for building-integrated applications. 展开更多
关键词 Building integrated photovoltaics Emerging photovoltaics Semitransparent solar cells Perovskite solar cells Organic solar cells
下载PDF
Recent advances in two-dimensional photovoltaic devices
6
作者 Haoyun Wang Xingyu Song +6 位作者 Zexin Li Dongyan Li Xiang Xu Yunxin Chen Pengbin Liu Xing Zhou Tianyou Zhai 《Journal of Semiconductors》 EI CAS CSCD 2024年第5期26-40,共15页
Two-dimensional(2D)materials have attracted tremendous interest in view of the outstanding optoelectronic properties,showing new possibilities for future photovoltaic devices toward high performance,high specific powe... Two-dimensional(2D)materials have attracted tremendous interest in view of the outstanding optoelectronic properties,showing new possibilities for future photovoltaic devices toward high performance,high specific power and flexibility.In recent years,substantial works have focused on 2D photovoltaic devices,and great progress has been achieved.Here,we present the review of recent advances in 2D photovoltaic devices,focusing on 2D-material-based Schottky junctions,homojunctions,2D−2D heterojunctions,2D−3D heterojunctions,and bulk photovoltaic effect devices.Furthermore,advanced strategies for improving the photovoltaic performances are demonstrated in detail.Finally,conclusions and outlooks are delivered,providing a guideline for the further development of 2D photovoltaic devices. 展开更多
关键词 two-dimensional materials photovoltaic devices PHOTODETECTORS solar cells HETEROSTRUCTURES
下载PDF
Multi-Time Scale Optimal Scheduling of a Photovoltaic Energy Storage Building System Based on Model Predictive Control
7
作者 Ximin Cao Xinglong Chen +2 位作者 He Huang Yanchi Zhang Qifan Huang 《Energy Engineering》 EI 2024年第4期1067-1089,共23页
Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a ... Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a multi-time scale optimal scheduling strategy based on model predictive control(MPC)is proposed under the consideration of load optimization.First,load optimization is achieved by controlling the charging time of electric vehicles as well as adjusting the air conditioning operation temperature,and the photovoltaic energy storage building system model is constructed to propose a day-ahead scheduling strategy with the lowest daily operation cost.Second,considering inter-day to intra-day source-load prediction error,an intraday rolling optimal scheduling strategy based on MPC is proposed that dynamically corrects the day-ahead dispatch results to stabilize system power fluctuations and promote photovoltaic consumption.Finally,taking an office building on a summer work day as an example,the effectiveness of the proposed scheduling strategy is verified.The results of the example show that the strategy reduces the total operating cost of the photovoltaic energy storage building system by 17.11%,improves the carbon emission reduction by 7.99%,and the photovoltaic consumption rate reaches 98.57%,improving the system’s low-carbon and economic performance. 展开更多
关键词 Load optimization model predictive control multi-time scale optimal scheduling photovoltaic consumption photovoltaic energy storage building
下载PDF
Enhancement of vertical phase separation in sequentially deposited organic photovoltaics through the independent processing of additives
8
作者 Damin Lee Changwoo Park +6 位作者 Gayoung Ham Young Yong Kim Sung-Nam Kwon Junyeong Lee Sungjin Jo Seok-In Na Hyojung Cha 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期768-777,共10页
Herein,the impact of the independent control of processing additives on vertical phase separation in sequentially deposited (SD) organic photovoltaics (OPVs) and its subsequent effects on charge carrier kinetics at th... Herein,the impact of the independent control of processing additives on vertical phase separation in sequentially deposited (SD) organic photovoltaics (OPVs) and its subsequent effects on charge carrier kinetics at the electron donor-acceptor interface are investigated.The film morphology exhibits notable variations,significantly depending on the layer to which 1,8-diiodooctane (DIO) was applied.Grazing incidence wide-angle X-ray scattering analysis reveals distinctly separated donor/acceptor phases and vertical crystallinity details in SD films.Time-of-flight secondary ion mass spectrometry analysis is employed to obtain component distributions in diverse vertical phase structures of SD films depending on additive control.In addition,nanosecond transient absorption spectroscopy shows that DIO control significantly affects the dynamics of separated charges in SD films.In SD OPVs,DIO appears to act through distinct mechanisms with minimal restriction,depending on the applied layer.This study emphasizes the significance of morphological optimization in improving device performance and underscores the importance of independent additive control in the advancement of OPV technology. 展开更多
关键词 Sequential deposition Vertical phase separation Charge dynamics Organic photovoltaics Nonfullerene acceptors
下载PDF
Electro-Optical Model of Soiling Effects on Photovoltaic Panels and Performance Implications
9
作者 A.Asbayou G.P.Smestad +4 位作者 I.Ismail A.Soussi A.Elfanaoui L.Bouhouch A.Ihlal 《Energy Engineering》 EI 2024年第2期243-258,共16页
In this paper,a detailed model of a photovoltaic(PV)panel is used to study the accumulation of dust on solar panels.The presence of dust diminishes the incident light intensity penetrating the panel’s cover glass,as ... In this paper,a detailed model of a photovoltaic(PV)panel is used to study the accumulation of dust on solar panels.The presence of dust diminishes the incident light intensity penetrating the panel’s cover glass,as it increases the reflection of light by particles.This phenomenon,commonly known as the“soiling effect”,presents a significant challenge to PV systems on a global scale.Two basic models of the equivalent circuits of a solar cell can be found,namely the single-diode model and the two-diode models.The limitation of efficiency data in manufacturers’datasheets has encouraged us to develop an equivalent electrical model that is efficient under dust conditions,integrated with optical transmittance considerations to investigate the soiling effect.The proposed approach is based on the use of experimental current-voltage(I-V)characteristics with simulated data using MATLAB/Simulink.Our research outcomes underscores the feasibility of accurately quantifying the reduction in energy production resulting from soiling by assessing the optical transmittance of accumulated dust on the surface of PV glass. 展开更多
关键词 photovoltaics solar energy optical transmittance SOILING DUST PV performance
下载PDF
Comprehensive Evaluation of Distributed PV Grid-Connected Based on Combined Weighting Weights and TOPSIS-RSR Method
10
作者 Yue Yang Jiarui Zheng +2 位作者 Long Cheng Yongnan Zhu Hao Wu 《Energy Engineering》 EI 2024年第3期703-728,共26页
To effectively quantify the impact of distributed photovoltaic(PV)access on the distribution network,this paper proposes a comprehensive evaluation method of distributed PV grid connection combining subjective and obj... To effectively quantify the impact of distributed photovoltaic(PV)access on the distribution network,this paper proposes a comprehensive evaluation method of distributed PV grid connection combining subjective and objective combination of assignment and technique for order preference by similarity to an ideal solution(TOPSIS)—rank sum ratio(RSR)(TOPSIS-RSR)method.Based on the traditional distribution network evaluation system,a comprehensive evaluation system has been constructed.It fully considers the new development requirements of distributed PV access on the environmental friendliness and absorptive capacity of the distribution grid and comprehensively reflects the impact of distributed PV grid connection.The analytic hierarchy process(AHP)was used to determine the subjective weights of the primary indicators,and the Spearman consistency test was combined to determine the weights of the secondary indicators based on three objective assignment methods.The subjective and objective combination weights of each assessment indicator were calculated through the principle of minimum entropy.Calculate the distance between the indicators to be evaluated and the positive and negative ideal solutions,the relative closeness ranking,and qualitative binning by TOPSIS-RSR method to obtain the comprehensive evaluation results of different scenarios.By setting up different PV grid-connected scenarios and utilizing the IEEE33 node simulation algorithm,the correctness and effectiveness of the proposed subject-object combination assignment and integrated assessment method are verified. 展开更多
关键词 Distributed PV grid-connected comprehensive evaluation evaluation indicator system combined subjective and objective empowerment TOPSIS-RSR method
下载PDF
Analysis for Effects of Temperature Rise of PV Modules upon Driving Distance of Vehicle Integrated Photovoltaic Electric Vehicles
11
作者 Masafumi Yamaguchi Yasuyuki Ota +18 位作者 Taizo Masuda Christian Thiel Anastasios Tsakalidis Arnulf Jaeger-Waldau Kenji Araki Kensuke Nishioka Tatsuya Takamoto Takashi Nakado Kazumi Yamada Tsutomu Tanimoto Yosuke Tomita Yusuke Zushi Kenichi Okumura Takashi Mabuchi Akinori Satou Kyotaro Nakamura Ryo Ozaki Nobuaki Kojima Yoshio Ohshita 《Energy and Power Engineering》 2024年第4期131-150,共20页
The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although ... The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although long-distance driving of VIPV-EV without electricity charging is expected in sunny regions, driving distance of VIPV-EV is affected by climate conditions such as solar irradiation and temperature rise of PV modules. In this paper, detailed analytical results for effects of climate conditions such as solar irradiation and temperature rise of PV modules upon driving distance of the VIPV-EV were presented by using test data for Toyota Prius and Nissan Van demonstration cars installed with high-efficiency InGaP/GaAs/InGaAs 3-junction solar cell modules with a module efficiency of more than 30%. The temperature rise of some PV modules studied in this study was shown to be expressed by some coefficients related to solar irradiation, wind speed and radiative cooling. The potential of VIPV-EV to be deployed in 10 major cities was also analyzed. Although sunshine cities such as Phoenix show the high reduction ratio of driving range with 17% due to temperature rise of VIPV modules, populous cities such as Tokyo show low reduction ratio of 9%. It was also shown in this paper that the difference between the driving distance of VIPV-EV driving in the morning and the afternoon is due to PV modules’ radiative cooling. In addition, the importance of heat dissipation of PV modules and the development of high-efficiency PV modules with better temperature coefficients was suggested in order to expand driving range of VIPV-EV. The effects of air-conditioner usage and partial shading in addition to the effects of temperature rise of VIPV modules were suggested as the other power losses of VIPV-EV. 展开更多
关键词 Vehicle Integrated photovoltaics (VIPV) VIPV-Powered Electric Vehicles Driving Distance PV Modules Solar Irradiation Temperature Rise Radiative Cooling
下载PDF
Analysis and Modeling of Time Output Characteristics for Distributed Photovoltaic and Energy Storage
12
作者 Kaicheng Liu Chen Liang +1 位作者 Xiaoyang Dong Liping Liu 《Energy Engineering》 EI 2024年第4期933-949,共17页
Due to the unpredictable output characteristics of distributed photovoltaics,their integration into the grid can lead to voltage fluctuations within the regional power grid.Therefore,the development of spatial-tempora... Due to the unpredictable output characteristics of distributed photovoltaics,their integration into the grid can lead to voltage fluctuations within the regional power grid.Therefore,the development of spatial-temporal coordination and optimization control methods for distributed photovoltaics and energy storage systems is of utmost importance in various scenarios.This paper approaches the issue from the perspective of spatiotemporal forecasting of distributed photovoltaic(PV)generation and proposes a Temporal Convolutional-Long Short-Term Memory prediction model that combines Temporal Convolutional Networks(TCN)and Long Short-Term Memory(LSTM).To begin with,an analysis of the spatiotemporal distribution patterns of PV generation is conducted,and outlier data is handled using the 3σ rule.Subsequently,a novel approach that combines temporal convolution and LSTM networks is introduced,with TCN extracting spatial features and LSTM capturing temporal features.Finally,a real spatiotemporal dataset from Gansu,China,is established to compare the performance of the proposed network against other models.The results demonstrate that the model presented in this paper exhibits the highest predictive accuracy,with a single-step Mean Absolute Error(MAE)of 1.782 and an average Root Mean Square Error(RMSE)of 3.72 for multi-step predictions. 展开更多
关键词 photovoltaic power generation spatio-temporal prediction temporal convolutional network long short-term memory network
下载PDF
Reliability-BasedModel for Incomplete Preventive ReplacementMaintenance of Photovoltaic Power Systems
13
作者 Wei Chen Ming Li +2 位作者 Tingting Pei Cunyu Sun Huan Lei 《Energy Engineering》 EI 2024年第1期125-144,共20页
At present,the operation and maintenance of photovoltaic power generation systems mainly comprise regular maintenance,breakdown maintenance,and condition-based maintenance,which is very likely to lead to over-or under... At present,the operation and maintenance of photovoltaic power generation systems mainly comprise regular maintenance,breakdown maintenance,and condition-based maintenance,which is very likely to lead to over-or under-repair of equipment.Therefore,a preventive maintenance and replacement strategy for PV power generation systems based on reliability as a constraint is proposed.First,a hybrid failure function with a decreasing service age factor and an increasing failure rate factor is introduced to describe the deterioration of PV power generation equipment,and the equipment is replaced when its reliability drops to the replacement threshold in the last cycle.Then,based on the reliability as a constraint,the average maintenance cost and availability of the equipment are considered,and the non-periodic incomplete maintenance model of the PV power generation system is established to obtain the optimal number of repairs,each maintenance cycle and the replacement cycle of the PV power generation system components.Next,the inverter of a PV power plant is used as a research object.The model in this paper is compared and analyzed with the equal cycle maintenance model without considering reliability and the maintenance model without considering the equipment replacement threshold,Through model comparison,when the optimal maintenance strategy is(0.80,4),the average maintenance cost of this paper’s model are decreased by 20.3%and 5.54%and the availability is increased by 0.2395% and 0.0337%,respectively,compared with the equal-cycle maintenance model without considering the reliability constraint and the maintenance model without considering the equipment replacement threshold.Therefore,this maintenance model can ensure the high reliability of PV plant operation while increasing the equipment availability to improve the system economy. 展开更多
关键词 RELIABILITY photovoltaic power system average maintenance cost AVAILABILITY incomplete preventive maintenance hybrid failure rate
下载PDF
Research on the MPPT of Photovoltaic Power Generation Based on Improved WOA and P&O under Partial Shading Conditions
14
作者 Jian Zhong Lei Zhang Ling Qin 《Energy Engineering》 EI 2024年第4期951-971,共21页
Partial shading conditions(PSCs)caused by uneven illumination become one of the most common problems in photovoltaic(PV)systems,which can make the PV power-voltage(P-V)characteristics curve show multi-peaks.Traditiona... Partial shading conditions(PSCs)caused by uneven illumination become one of the most common problems in photovoltaic(PV)systems,which can make the PV power-voltage(P-V)characteristics curve show multi-peaks.Traditional maximum power point tracking(MPPT)methods have shortcomings in tracking to the global maximum power point(GMPP),resulting in a dramatic decrease in output power.In order to solve the above problems,intelligent algorithms are used in MPPT.However,the existing intelligent algorithms have some disadvantages,such as slow convergence speed and large search oscillation.Therefore,an improved whale algorithm(IWOA)combined with the P&O(IWOA-P&O)is proposed for the MPPT of PV power generation in this paper.Firstly,IWOA is used to track the range interval of the GMPP,and then P&O is used to accurately find the MPP in that interval.Compared with other algorithms,simulation results show that this method has an average tracking efficiency of 99.79%and an average tracking time of 0.16 s when tracking GMPP.Finally,experimental verification is conducted,and the results show that the proposed algorithm has better MPPT performance compared to popular particle swarm optimization(PSO)and PSO-P&O algorithms. 展开更多
关键词 photovoltaic power generation maximum power point tracking whale algorithm perturbation and observation
下载PDF
Research on Scheduling Strategy of Flexible Interconnection Distribution Network Considering Distributed Photovoltaic and Hydrogen Energy Storage
15
作者 Yang Li Jianjun Zhao +2 位作者 Xiaolong Yang He Wang Yuyan Wang 《Energy Engineering》 EI 2024年第5期1263-1289,共27页
Distributed photovoltaic(PV)is one of the important power sources for building a new power system with new energy as the main body.The rapid development of distributed PV has brought new challenges to the operation of... Distributed photovoltaic(PV)is one of the important power sources for building a new power system with new energy as the main body.The rapid development of distributed PV has brought new challenges to the operation of distribution networks.In order to improve the absorption ability of large-scale distributed PV access to the distribution network,the AC/DC hybrid distribution network is constructed based on flexible interconnection technology,and a coordinated scheduling strategy model of hydrogen energy storage(HS)and distributed PV is established.Firstly,the mathematical model of distributed PV and HS system is established,and a comprehensive energy storage system combining seasonal hydrogen energy storage(SHS)and battery(BT)is proposed.Then,a flexible interconnected distribution network scheduling optimization model is established to minimize the total active power loss,voltage deviation and system operating cost.Finally,simulation analysis is carried out on the improved IEEE33 node,the NSGA-II algorithm is used to solve specific examples,and the optimal scheduling results of the comprehensive economy and power quality of the distribution network are obtained.Compared with the method that does not consider HS and flexible interconnection technology,the network loss and voltage deviation of this method are lower,and the total system cost can be reduced by 3.55%,which verifies the effectiveness of the proposed method. 展开更多
关键词 Seasonal hydrogen storage flexible interconnection AC/DC distribution network photovoltaic absorption scheduling strategy
下载PDF
Experimental Investigation of the Stability of the Performance Characteristics of a Photovoltaic Module in the Face of Environmental and Meteorological Factors
16
作者 Adingra Paul Arsène Kouassi Siaka Touré Diakaridja Traoré 《Open Journal of Applied Sciences》 2024年第2期589-608,共20页
The explosive technological improvement of photovoltaic systems as well as the necessity of populations to come to less expensive energy sources, that have led to an implosion at the level of solar panel manufacturers... The explosive technological improvement of photovoltaic systems as well as the necessity of populations to come to less expensive energy sources, that have led to an implosion at the level of solar panel manufacturers. This causes a large flow of these equipments to developing countries where the need is high, without any quality control. That conducted an experimental investigation on the performance characteristics of a 250 wp monocrystalline silicon photovoltaic module in other to check the verification and quality control. Most of these PV panels which often have missing informations are manufactured and tested in places that are inadequate for our environmental and meteorological conditions. Also, their influences on the stability of internal parameters were evaluated in order to optimize their performance. The results obtained at maximum illumination (1000 w/m<sup>2</sup>) confirmed those produced by the manufacturer. The analysis of these characteristics showed that the illumination and the temperature (meteorological factors) influenced at most the stability of the internal characteristics of the module in the sense that the maximum power increased very rapidly beyond 750 w/m<sup>2</sup> but a degradation of performance was accentuated for a temperature of the solar cells exceeding 50°C. The degradation coefficients were evaluated at -0.0864 V/°C for the voltage and at -1.6248 w/°C for the power. The 10° inclination angle of the solar panel proved to be ideal for optimizing overall efficiency in practical situations. 展开更多
关键词 Renewables Energies Instruments Internal Parameters of photovoltaic Panel Monocrystalline photovoltaic Panel Solar Energy Production Energy Intermittence
下载PDF
Study on Image Recognition Algorithm for Residual Snow and Ice on Photovoltaic Modules
17
作者 Yongcan Zhu JiawenWang +3 位作者 Ye Zhang Long Zhao Botao Jiang Xinbo Huang 《Energy Engineering》 EI 2024年第4期895-911,共17页
The accumulation of snow and ice on PV modules can have a detrimental impact on power generation,leading to reduced efficiency for prolonged periods.Thus,it becomes imperative to develop an intelligent system capable ... The accumulation of snow and ice on PV modules can have a detrimental impact on power generation,leading to reduced efficiency for prolonged periods.Thus,it becomes imperative to develop an intelligent system capable of accurately assessing the extent of snow and ice coverage on PV modules.To address this issue,the article proposes an innovative ice and snow recognition algorithm that effectively segments the ice and snow areas within the collected images.Furthermore,the algorithm incorporates an analysis of the morphological characteristics of ice and snow coverage on PV modules,allowing for the establishment of a residual ice and snow recognition process.This process utilizes both the external ellipse method and the pixel statistical method to refine the identification process.The effectiveness of the proposed algorithm is validated through extensive testing with isolated and continuous snow area pictures.The results demonstrate the algorithm’s accuracy and reliability in identifying and quantifying residual snow and ice on PV modules.In conclusion,this research presents a valuable method for accurately detecting and quantifying snow and ice coverage on PV modules.This breakthrough is of utmost significance for PV power plants,as it enables predictions of power generation efficiency and facilitates efficient PV maintenance during the challenging winter conditions characterized by snow and ice.By proactively managing snow and ice coverage,PV power plants can optimize energy production and minimize downtime,ensuring a sustainable and reliable renewable energy supply. 展开更多
关键词 photovoltaic(PV)module residual snow and ice snow detection feature extraction image processing
下载PDF
Advancements in Photovoltaic Panel Fault Detection Techniques
18
作者 Junyao Zheng 《Journal of Materials Science and Chemical Engineering》 2024年第6期1-11,共11页
This paper examines the progression and advancements in fault detection techniques for photovoltaic (PV) panels, a target for optimizing the efficiency and longevity of solar energy systems. As the adoption of PV tech... This paper examines the progression and advancements in fault detection techniques for photovoltaic (PV) panels, a target for optimizing the efficiency and longevity of solar energy systems. As the adoption of PV technology grows, the need for effective fault detection strategies becomes increasingly paramount to maximize energy output and minimize operational downtimes of solar power systems. These approaches include the use of machine learning and deep learning methodologies to be able to detect the identified faults in PV technology. Here, we delve into how machine learning models, specifically kernel-based extreme learning machines and support vector machines, trained on current-voltage characteristic (I-V curve) data, provide information on fault identification. We explore deep learning approaches by taking models like EfficientNet-B0, which looks at infrared images of solar panels to detect subtle defects not visible to the human eye. We highlight the utilization of advanced image processing techniques and algorithms to exploit aerial imagery data, from Unmanned Aerial Vehicles (UAVs), for inspecting large solar installations. Some other techniques like DeepLabV3 , Feature Pyramid Networks (FPN), and U-Net will be detailed as such tools enable effective segmentation and anomaly detection in aerial panel images. Finally, we discuss implications of these technologies on labor costs, fault detection precision, and sustainability of PV installations. 展开更多
关键词 photovoltaic Panels Fault Detection Deep Learning Image Processing
下载PDF
Comprehensive Benefit Evaluation of SZ Distributed Photovoltaic Power Generation Project Based on AHP-Matter-Element Extension Model
19
作者 Shuli Jing 《Journal of Electronic Research and Application》 2024年第1期60-68,共9页
With the introduction of the“dual carbon goals,”there has been a robust development of distributed photovoltaic power generation projects in the promotion of their construction.As part of this initiative,a comprehen... With the introduction of the“dual carbon goals,”there has been a robust development of distributed photovoltaic power generation projects in the promotion of their construction.As part of this initiative,a comprehensive and systematic analysis has been conducted to study the overall benefits of photovoltaic power generation projects.The evaluation process encompasses economic,technical,environmental,and social aspects,providing corresponding analysis methods and data references.Furthermore,targeted countermeasures and suggestions are proposed,signifying the research’s importance for the construction and development of subsequent distributed photovoltaic power generation projects. 展开更多
关键词 Distributed photovoltaic power generation Comprehensive benefits EVALUATION
下载PDF
Small-signal Modeling and Analysis of Grid-connected Photovoltaic Generation Systems 被引量:4
20
作者 HUANG Hanqi MAO Chengxiong LU Jiming WANG Dan 《中国电机工程学报》 EI CSCD 北大核心 2012年第22期I0002-I0002,共1页
关键词 光伏发电系统 小信号建模 并网 普及率
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部