Accurate forecasting for photovoltaic power generation is one of the key enablers for the integration of solar photovoltaic systems into power grids.Existing deep-learning-based methods can perform well if there are s...Accurate forecasting for photovoltaic power generation is one of the key enablers for the integration of solar photovoltaic systems into power grids.Existing deep-learning-based methods can perform well if there are sufficient training data and enough computational resources.However,there are challenges in building models through centralized shared data due to data privacy concerns and industry competition.Federated learning is a new distributed machine learning approach which enables training models across edge devices while data reside locally.In this paper,we propose an efficient semi-asynchronous federated learning framework for short-term solar power forecasting and evaluate the framework performance using a CNN-LSTM model.We design a personalization technique and a semi-asynchronous aggregation strategy to improve the efficiency of the proposed federated forecasting approach.Thorough evaluations using a real-world dataset demonstrate that the federated models can achieve significantly higher forecasting performance than fully local models while protecting data privacy,and the proposed semi-asynchronous aggregation and the personalization technique can make the forecasting framework more robust in real-world scenarios.展开更多
Photovoltaic(PV)power forecasting is essential for secure operation of a power system.Effective prediction of PV power can improve new energy consumption capacity,help power system planning,promote development of smar...Photovoltaic(PV)power forecasting is essential for secure operation of a power system.Effective prediction of PV power can improve new energy consumption capacity,help power system planning,promote development of smart grids,and ultimately support construction of smart energy cities.However,different from centralized PV power forecasts,three critical challenges are encountered in distributed PV power forecasting:1)lack of on-site meteorological observation,2)leveraging extraneous data to enhance forecasting performance,3)spatial-temporal modelling methods of meteorological information around the distributed PV stations.To address these issues,we propose a Graph Spatial-Temporal Attention Neural Network(GSTANN)to predict the very short-term power of distributed PV.First,we use satellite remote sensing data covering a specific geographical area to supplement meteorological information for all PV stations.Then,we apply the graph convolution block to model the non-Euclidean local and global spatial dependence and design an attention mechanism to simultaneously derive temporal and spatial correlations.Subsequently,we propose a data fusion module to solve the time misalignment between satellite remote sensing data and surrounding measured on-site data and design a power approximation block to map the conversion from solar irradiance to PV power.Experiments conducted with real-world case study datasets demonstrate that the prediction performance of GSTANN outperforms five state-of-the-art baselines.展开更多
Accurate photovoltaic(PV)energy forecasting plays a crucial role in the efficient operation of PV power stations.This study presents a novel hybrid machine-learning(ML)model that combines Gaussian process regression w...Accurate photovoltaic(PV)energy forecasting plays a crucial role in the efficient operation of PV power stations.This study presents a novel hybrid machine-learning(ML)model that combines Gaussian process regression with wavelet packet decomposition to forecast PV power half an hour ahead.The proposed technique was applied to the PV energy database of a station located in Algeria and its performance was compared to that of traditional forecasting models.Performance evaluations demonstrate the superiority of the proposed approach over conventional ML methods,including Gaussian process regression,extreme learning machines,artificial neural networks and support vector machines,across all seasons.The proposed model exhibits lower normalized root mean square error(nRMSE)(2.116%)and root mean square error(RMSE)(208.233 kW)values,along with a higher coefficient of determination(R^(2))of 99.881%.Furthermore,the exceptional performance of the model is maintained even when tested with various prediction horizons.However,as the forecast horizon extends from 1.5 to 5.5 hours,the prediction accuracy decreases,evident by the increase in the RMSE(710.839 kW)and nRMSE(7.276%),and a decrease in R2(98.462%).Comparative analysis with recent studies reveals that our approach consistently delivers competitive or superior results.This study provides empirical evidence supporting the effectiveness of the proposed hybrid ML model,suggesting its potential as a reliable tool for enhancing PV power forecasting accuracy,thereby contributing to more efficient grid management.展开更多
Accurate photovoltaic(PV)power prediction has been a subject of ongoing study in order to address grid stability concerns caused by PV output unpredictability and intermittency.This paper proposes an ultra-short-term ...Accurate photovoltaic(PV)power prediction has been a subject of ongoing study in order to address grid stability concerns caused by PV output unpredictability and intermittency.This paper proposes an ultra-short-term hybrid photovoltaic power forecasting method based on a dendritic neural model(DNM)in this paper.This model is trained using improved biogeography-based optimization(IBBO),a technique that incorporates a domestication operation to increase the performance of classical biogeography-based optimization(BBO).To be more precise,a similar day selection(SDS)technique is presented for selecting the training set,and wavelet packet transform(WPT)is used to divide the input data into many components.IBBO is then used to train DNM weights and thresholds for each component prediction.Finally,each component’s prediction results are stacked and reassembled.The suggested hybrid model is used to forecast PV power under various weather conditions using data from the Desert Knowledge Australia Solar Centre(DKASC)in Alice Springs.Simulation results indicate the proposed hybrid SDS and WPT-IBBO-DNM model has the lowest error of any of the benchmark models and hence has the potential to considerably enhance the accuracy of solar power forecasting(PVPF).展开更多
基金The research is supported by the National Natural Science Foundation of China(62072469)the National Key R&D Program of China(2018AAA0101502)+2 种基金Shandong Natural Science Foundation(ZR2019MF049)West Coast artificial intelligence technology innovation center(2019-1-5,2019-1-6)the Opening Project of Shanghai Trusted Industrial Control Platform(TICPSH202003015-ZC).
文摘Accurate forecasting for photovoltaic power generation is one of the key enablers for the integration of solar photovoltaic systems into power grids.Existing deep-learning-based methods can perform well if there are sufficient training data and enough computational resources.However,there are challenges in building models through centralized shared data due to data privacy concerns and industry competition.Federated learning is a new distributed machine learning approach which enables training models across edge devices while data reside locally.In this paper,we propose an efficient semi-asynchronous federated learning framework for short-term solar power forecasting and evaluate the framework performance using a CNN-LSTM model.We design a personalization technique and a semi-asynchronous aggregation strategy to improve the efficiency of the proposed federated forecasting approach.Thorough evaluations using a real-world dataset demonstrate that the federated models can achieve significantly higher forecasting performance than fully local models while protecting data privacy,and the proposed semi-asynchronous aggregation and the personalization technique can make the forecasting framework more robust in real-world scenarios.
基金supported in part by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA27000000)。
文摘Photovoltaic(PV)power forecasting is essential for secure operation of a power system.Effective prediction of PV power can improve new energy consumption capacity,help power system planning,promote development of smart grids,and ultimately support construction of smart energy cities.However,different from centralized PV power forecasts,three critical challenges are encountered in distributed PV power forecasting:1)lack of on-site meteorological observation,2)leveraging extraneous data to enhance forecasting performance,3)spatial-temporal modelling methods of meteorological information around the distributed PV stations.To address these issues,we propose a Graph Spatial-Temporal Attention Neural Network(GSTANN)to predict the very short-term power of distributed PV.First,we use satellite remote sensing data covering a specific geographical area to supplement meteorological information for all PV stations.Then,we apply the graph convolution block to model the non-Euclidean local and global spatial dependence and design an attention mechanism to simultaneously derive temporal and spatial correlations.Subsequently,we propose a data fusion module to solve the time misalignment between satellite remote sensing data and surrounding measured on-site data and design a power approximation block to map the conversion from solar irradiance to PV power.Experiments conducted with real-world case study datasets demonstrate that the prediction performance of GSTANN outperforms five state-of-the-art baselines.
文摘Accurate photovoltaic(PV)energy forecasting plays a crucial role in the efficient operation of PV power stations.This study presents a novel hybrid machine-learning(ML)model that combines Gaussian process regression with wavelet packet decomposition to forecast PV power half an hour ahead.The proposed technique was applied to the PV energy database of a station located in Algeria and its performance was compared to that of traditional forecasting models.Performance evaluations demonstrate the superiority of the proposed approach over conventional ML methods,including Gaussian process regression,extreme learning machines,artificial neural networks and support vector machines,across all seasons.The proposed model exhibits lower normalized root mean square error(nRMSE)(2.116%)and root mean square error(RMSE)(208.233 kW)values,along with a higher coefficient of determination(R^(2))of 99.881%.Furthermore,the exceptional performance of the model is maintained even when tested with various prediction horizons.However,as the forecast horizon extends from 1.5 to 5.5 hours,the prediction accuracy decreases,evident by the increase in the RMSE(710.839 kW)and nRMSE(7.276%),and a decrease in R2(98.462%).Comparative analysis with recent studies reveals that our approach consistently delivers competitive or superior results.This study provides empirical evidence supporting the effectiveness of the proposed hybrid ML model,suggesting its potential as a reliable tool for enhancing PV power forecasting accuracy,thereby contributing to more efficient grid management.
基金This work was supported in part by Guangxi University(No.A3020051008)in part by the National Key Research and Development Program of China(No.2019YFE0118000)。
文摘Accurate photovoltaic(PV)power prediction has been a subject of ongoing study in order to address grid stability concerns caused by PV output unpredictability and intermittency.This paper proposes an ultra-short-term hybrid photovoltaic power forecasting method based on a dendritic neural model(DNM)in this paper.This model is trained using improved biogeography-based optimization(IBBO),a technique that incorporates a domestication operation to increase the performance of classical biogeography-based optimization(BBO).To be more precise,a similar day selection(SDS)technique is presented for selecting the training set,and wavelet packet transform(WPT)is used to divide the input data into many components.IBBO is then used to train DNM weights and thresholds for each component prediction.Finally,each component’s prediction results are stacked and reassembled.The suggested hybrid model is used to forecast PV power under various weather conditions using data from the Desert Knowledge Australia Solar Centre(DKASC)in Alice Springs.Simulation results indicate the proposed hybrid SDS and WPT-IBBO-DNM model has the lowest error of any of the benchmark models and hence has the potential to considerably enhance the accuracy of solar power forecasting(PVPF).