In this paper, we propose a thermal model of a hybrid photovoltaic/thermal concentration system. Starting from the thermal balance of the model, the equation is solved and simulated with a MATLAB code, considering air...In this paper, we propose a thermal model of a hybrid photovoltaic/thermal concentration system. Starting from the thermal balance of the model, the equation is solved and simulated with a MATLAB code, considering air as the cooling fluid. This enabled us to evaluate some of the parameters influencing the electrical and thermal performance of this device. The results showed that the temperature, thermal efficiency and electrical efficiency delivered depend on the air mass flow rate. The electrical and thermal efficiencies for different values of air mass flow are encouraging, and demonstrate the benefits of cooling photovoltaic cells. The results show that thermal efficiency decreases air flow rate greater than 0.7 kg/s, whatever the value of the light concentration used. The thermal efficiency of the solar cell increases as the light concentration increases, whatever the air flow rate used. For a concentration equal to 30 sun, the thermal efficiency is 0.16 with an air flow rate equal to 0.005 kg/s;the thermal efficiency increases to 0.19 with an air flow rate equal to 0.1 kg/s at the same concentration. An interesting and useful finding was that the proposed numerical model allows the determination of the electrical as well as thermal efficiency of the hybrid CPV/T with air flow as cooling fluid.展开更多
A solar panel is described,in which thin films of semiconductor are deposited onto a metal substrate.The semiconductor-metal combination forms a thin film photovoltaic cell,and also acts as a reflector-absorber tandem...A solar panel is described,in which thin films of semiconductor are deposited onto a metal substrate.The semiconductor-metal combination forms a thin film photovoltaic cell,and also acts as a reflector-absorber tandem,which acts as a solar selective surface,thus enhancing the solar thermal performance of the collector plate.The use of thin films reduces the distance heat is required to flow from the absorbing surface to the metal plate and heat exchange conduits.Computer modelling demonstrated that,by suitable choice of materials,photovoltaic efficiency can be maintained,with thermal performance slightly reduced,compared to that for thermal-only panels.By grading the absorber layer-to reduce the band gap in the lower region-the thermal performance can be improved,approaching that for a thermal-only solar panel.展开更多
This work investigates the performance of combined hybrid high concentrated photovoltaic/thermal collector (HCPV/T) in Kuwait harsh climate. The proposed system consists of triple junction solar cells (InGaP/InGaAs/Ge...This work investigates the performance of combined hybrid high concentrated photovoltaic/thermal collector (HCPV/T) in Kuwait harsh climate. The proposed system consists of triple junction solar cells (InGaP/InGaAs/Ge) attached to heat source to discharge thermal energy to cooling media. Published HCPV/T models do not consider the effect of shunt resistance which greatly affects the system performance. So, a single diode model employing five parameters including the effect of shunt resistance is adapted to analyze the proposed system. To analyze the thermal performance of the proposed system, a two-dimensional thermal model based on the technique of finite difference is introduced to determine the efficiency of the hybrid HCPV/T system. The present developed subroutines are integrated with other involved codes in TRNSYS software to calculate HCPV/T system efficiency. Electrical and thermal as well as the whole system efficiency at different weather circumstances are evaluated and assessed. The effect of different weather conditions, cell temperature, concentration ratio and the temperatures of the coolant fluid on system performance are studied. Current results indicate that the model of single diode is a reliable one rather than using the two-diode complex model. Compared to measurements provided by high concentrated PV manufacturer, the current results revealed a total root mean square error of approximately 1.94%. Present predictions show that PV cell temperature has logarithmic increase with the rise in concentration ratio but with low values till concentration ratio of 400 suns after that the rise is faster at higher concentration values up to 1500 suns. Results also revealed that hybrid HCPV/T system works effectively specially in severe hot climate where thermal efficiency increases with high surrounding temperature for higher values of concentration ratio. In addition, an increase of approximately 15% in thermal efficiency and 10% in total efficiency can be achieved by utilizing active cooling device in HCPV/T system.展开更多
Powering a moon base,especially keeping it warm during the long lunar night,is a big challenge.This paper introduces a photovoltaic/thermal(PV/T)system incorporating regolith thermal storage to solve the challenge of ...Powering a moon base,especially keeping it warm during the long lunar night,is a big challenge.This paper introduces a photovoltaic/thermal(PV/T)system incorporating regolith thermal storage to solve the challenge of power and heat provision for the lunar base simultaneously.The vacuum of space around the moon helps this system by reducing heat loss.During the moon's daytime,the system not only generates electricity but also captures heat.This stored heat in the regolith is then used at night,reducing the amount of equipment we need to send from Earth.The spectrally selective PV/T panels are designed to absorb a wide range of sunlight(0.3–2.5μm)while minimizing heat loss in the infrared range(3–30μm).Simulation results of the hybrid solar energy system indicate the average value of the overall efficiency is 45.9%,which relatively elevates 56.1%compared to the PV system.The launch mass of the proposed PV/T system is only 8.4%of a traditional photovoltaic-lithium battery system with the same amount of energy storage.And the total specific energy of the proposed system is 7.3 kWh kg^(-1),while that of the photovoltaic-lithium battery system is about 0.3 kWh kg^(-1).In summary,this study proposes an alternative combined heat and electricity supply system for the lunar base,which can greatly reduce the launch mass and free up load for other scientific research equipment.展开更多
Existing photovoltaic cells with high infrared emissivity generate huge radiative heat loss in photovoltaic/thermal applications and degrade the photothermal performance.The purpose of this work is to evaluate the ful...Existing photovoltaic cells with high infrared emissivity generate huge radiative heat loss in photovoltaic/thermal applications and degrade the photothermal performance.The purpose of this work is to evaluate the full spectral absorptivity of CdTe cells to find a spectrally selective photovoltaic cell for photovoltaic/thermal applications.To this end,the solar absorptivity and mid-infrared thermal emissivity of CdTe cells were tested by ellipsometry,UV-Vis-NIR spectrophotometer,and Fourier transform infrared spectrometer.The experimental results show that the AM 1.5 solar spectrum weighted absorptivity of the substrate configuration CdTe cell reaches 0.91,and the mid-infrared emissivity is only 0.29,while the superstrate configuration cell emissivity is as high as 0.9.Further research shows that substrate configuration with a transparent conductive layer on top can be flexibly grown on metal foils and has spectral selectivity with high solar absorptivity and low mid-infrared emissivity should be considered in the future for photovoltaic/thermal applications.展开更多
The photovoltaic/thermal(PV/T)system is a promising option for countering energy shortages.To improve the performance of PV/T systems,compound parabolic concentrators(CPCs)and phase-change materials(PCMs)were jointly ...The photovoltaic/thermal(PV/T)system is a promising option for countering energy shortages.To improve the performance of PV/T systems,compound parabolic concentrators(CPCs)and phase-change materials(PCMs)were jointly applied to construct a concentrating photovoltaic/thermal system integrated with phase-change materials(PV/T-CPCM).An open-air environment is used to analyze the effects of different parameters and the intermittent operation strategy on the system performance.The results indicate that the short-circuit current and open-circuit voltage are positively correlated with the solar irradiance,but the open-circuit voltage is negatively correlated with the temperature of the PV modules.When the solar irradiance is 500 W⋅m^(−2) and the temperature of the PV modules is 27.5℃,the short-circuit current and open-circuit voltage are 1.0 A and 44.5 V,respectively.Higher solar irradiance results in higher thermal power,whereas the thermal efficiency is under lower solar irradiance(136.2-167.1 W⋅m^(−2) is twice under higher solar irradiance(272.3-455.7 W⋅m^(−2))).In addition,a higher mass flow rate corresponds to a better cooling effect and greater pump energy consumption.When the mass flow rate increases from 0.01 to 0.02 kg⋅s^(-1),the temperature difference between the inlet and outlet decreases by 1.8℃,and the primary energy-saving efficiency decreases by 0.53%.The intermittent operation of a water pump can reduce the energy consumption of the system,and the combination of liquid cooling with PCMs provides better thermal regulation and energy-saving effects under various conditions.展开更多
In this paper, the performance of a concentrating photovoltaic/thermal solar system is numerically analyzed with a mathematical and physical model. The variations of the electrical efficiency and the thermal efficienc...In this paper, the performance of a concentrating photovoltaic/thermal solar system is numerically analyzed with a mathematical and physical model. The variations of the electrical efficiency and the thermal efficiency with the operation parameters are calculated. It is found that the electrical efficiency increases at first and then decreases with increasing concentration ratio of the sunlight, while the thermal efficiency acts in an opposite manner. When the velocity of the cooling water increases, the electrical efficiency increases. Considering the solar system, the surface of the sun, the atmosphere and the environment, we can get a coupled energy system, which is analyzed with the entropy generation minimization and the entransy theory. This is the first time that the entransy theory is used to analyze photovoltaic/thermal solar system. When the concentration ratio is fixed, it is found that both the minimum entropy generation rate and the maximum entransy loss rate lead to the maximum electrical output power,while both the minimum entropy generation numbers and the maximum entransy loss coefficient lead to the maximum electrical efficiency. When the concentrated sunlight is not fixed, it is shown that neither smaller entropy generation rate nor larger entransy loss rate corresponds to larger electrical output power. Smaller entropy generation numbers do not result in larger electrical efficiency, either. However, larger entransy loss coefficient still corresponds to larger electrical efficiency.展开更多
A novel coupling system that combines a photovoltaic/thermal(PV/T)subsystem and an Organic Rankine Cycle(ORC)driven by solar parabolic trough collector(PTC)is presented in this paper.The mathematical model is initiall...A novel coupling system that combines a photovoltaic/thermal(PV/T)subsystem and an Organic Rankine Cycle(ORC)driven by solar parabolic trough collector(PTC)is presented in this paper.The mathematical model is initially built.On the basis,the influence of area ratio of two collectors(PV/T and PTC)on the performance of system is discussed.The results show that the optimal area ratio of PV/T to PTC is 8:2,which can achieve the maximum energy output.Moreover,the performance of the coupling system and two independent systems(PV/T and ORC system)are compared and analyzed.The results show that the coupling system is more reliable and its total output energy(heat and electricity)is the highest,compared with the other two independent systems.The solar energy utilization efficiency of the coupling system is 40%higher than that of the other two independent systems in the steady-state simulation.Moreover,the annual output energy per unit area collector of the coupling system is 13%higher than that of the other two independent systems in the dynamic simulation.Furthermore,in the dynamic simulation of a typical day,the PV panels’temperature of the coupling system is 5℃–7℃ lower than that of the independent PV/T system.It means that the power generation efficiency of PV panels can be increased by 1.5%–3.5%.This study aims to explore the operation characteristics of the novel solar energy utilization coupling system and promote the development of renewable energy utilization models,which provides a reference for the design and optimization of related energy systems.展开更多
Enhancing solar photovoltaic and thermal conversion performances may help develop more environmentally friendly hybrid photovoltaic/thermal(PV/T)systems that can be used in applications ranging from household to indus...Enhancing solar photovoltaic and thermal conversion performances may help develop more environmentally friendly hybrid photovoltaic/thermal(PV/T)systems that can be used in applications ranging from household to industrial scales.Owing to their enhanced thermal and optical properties,nanofluids have proven to be good candidates for designing PV/T systems with superior performances.As smart nanofluids,magnetic nanofluids(MNFs)can further enhance the performances of PV/T systems under external magnetic fields.This paper reviews recent developments in enhancing the electrical and thermal performances of PV/T systems using magnetic nanofluids.Various parameters affecting the performances are highlighted,and some areas for further investigations are discussed.The reviewed literature shows that PV/T systems with MNFs are promising.However,their performances need further investigation before they can be used in applications.展开更多
Organic photovoltaics(OPVs)need to overcome limitations such as insufficient thermal stability to be commercialized.The reported approaches to improve stability either rely on the development of new materials or on ta...Organic photovoltaics(OPVs)need to overcome limitations such as insufficient thermal stability to be commercialized.The reported approaches to improve stability either rely on the development of new materials or on tailoring the donor/acceptor morphology,however,exhibiting limited applicability.Therefore,it is timely to develop an easy method to enhance thermal stability without having to develop new donor/acceptor materials or donor–acceptor compatibilizers,or by introducing another third component.Herein,a unique approach is presented,based on constructing a polymer fiber rigid network with a high glass transition temperature(T_(g))to impede the movement of acceptor and donor molecules,to immobilize the active layer morphology,and thereby to improve thermal stability.A high-T_(g) one-dimensional aramid nanofiber(ANF)is utilized for network construction.Inverted OPVs with ANF network yield superior thermal stability compared to the ANF-free counterpart.The ANF network-incorporated active layer demonstrates significantly more stable morphology than the ANF-free counterpart,thereby leaving fundamental processes such as charge separation,transport,and collection,determining the device efficiency,largely unaltered.This strategy is also successfully applied to other photovoltaic systems.The strategy of incorporating a polymer fiber rigid network with high T_(g) offers a distinct perspective addressing the challenge of thermal instability with simplicity and universality.展开更多
In recent years,distributed photovoltaics(DPV)has ushered in a good development situation due to the advantages of pollution-free power generation,full utilization of the ground or roof of the installation site,and ba...In recent years,distributed photovoltaics(DPV)has ushered in a good development situation due to the advantages of pollution-free power generation,full utilization of the ground or roof of the installation site,and balancing a large number of loads nearby.However,under the background of a large-scale DPV grid-connected to the county distribution network,an effective analysis method is needed to analyze its impact on the voltage of the distribution network in the early development stage of DPV.Therefore,a DPV orderly grid-connected method based on photovoltaics grid-connected order degree(PGOD)is proposed.This method aims to orderly analyze the change of voltage in the distribution network when large-scale DPV will be connected.Firstly,based on the voltagemagnitude sensitivity(VMS)index of the photovoltaics permitted grid-connected node and the acceptance of grid-connected node(AoGCN)index of other nodes in the network,thePGODindex is constructed to determine the photovoltaics permitted grid-connected node of the current photovoltaics grid-connected state network.Secondly,a photovoltaics orderly grid-connected model with a continuous updating state is constructed to obtain an orderly DPV grid-connected order.The simulation results illustrate that the photovoltaics grid-connected order determined by this method based on PGOD can effectively analyze the voltage impact of large-scale photovoltaics grid-connected,and explore the internal factors and characteristics of the impact.展开更多
With the rapid development of emerging photovoltaics technology in recent years,the application of building-integrated photovoltaics(BIPVs)has attracted the research interest of photovoltaic communities.To meet the pr...With the rapid development of emerging photovoltaics technology in recent years,the application of building-integrated photovoltaics(BIPVs)has attracted the research interest of photovoltaic communities.To meet the practical application requirements of BIPVs,in addition to the evaluation indicator of power conversion efficiency(PCE),other key performance indicators such as heat-insulating ability,average visible light transmittance(AVT),color properties,and integrability are equally important.The traditional Si-based photovoltaic technology is typically limited by its opaque properties for application scenarios where transparency is required.The emerging PV technologies,such as organic and perovskite photovoltaics are promising candidates for BIPV applications,owing to their advantages such as high PCE,high AVT,and tunable properties.At present,the PCE of semitransparent perovskite solar cells(ST-PSCs)has attained 14%with AVT of 22–25%;for semitransparent organic solar cells(ST-OSCs),the PCE reached 13%with AVT of almost 40%.In this review article,we summarize recent advances in material selection,optical engineering,and device architecture design for high-performance semitransparent emerging PV devices,and discuss the application of optical modeling,as well as the challenges of commercializing these semitransparent solar cells for building-integrated applications.展开更多
Substantially glazed facades are extensively used in contemporary high-rise buildings to achieve attractive architectural aesthetics.Inherent conflicts exist among architectural aesthetics,building energy consumption,...Substantially glazed facades are extensively used in contemporary high-rise buildings to achieve attractive architectural aesthetics.Inherent conflicts exist among architectural aesthetics,building energy consumption,and solar energy harvesting for glazed facades.In this study,we addressed these conflicts by introducing a new dynamic and vertical photovoltaic integrated building envelope(dvPVBE)that offers extraordinary flexibility with weather-responsive slat angles and blind positions,superior architectural aesthetics,and notable energy-saving potential.Three hierarchical control strategies were proposed for different scenarios of the dvPVBE:power generation priority(PGP),natural daylight priority(NDP),and energy-saving priority(ESP).Moreover,the PGP and ESP strategies were further analyzed in the simulation of a dvPVBE.An office room integrated with a dvPVBE was modeled using EnergyPlus.The influence of the dvPVBE in improving the building energy efficiency and corresponding optimal slat angles was investigated under the PGP and ESP control strategies.The results indicate that the application of dvPVBEs in Beijing can provide up to 131%of the annual energy demand of office rooms and significantly increase the annual net energy output by at least 226%compared with static photovoltaic(PV)blinds.The concept of this novel dvPVBE offers a viable approach by which the thermal load,daylight penetration,and energy generation can be effectively regulated.展开更多
As interest in double perovskites is growing,especially in applications like photovoltaic devices,understanding their mechanical properties is vital for device durability.Despite extensive exploration of structure and...As interest in double perovskites is growing,especially in applications like photovoltaic devices,understanding their mechanical properties is vital for device durability.Despite extensive exploration of structure and optical properties,research on mechanical aspects is limited.This article builds a vacancyordered double perovskite model,employing first-principles calculations to analyze mechanical,bonding,electronic,and optical properties.Results show Cs_(2)Hfl_(6),Cs_(2)SnBr_(6),Cs_(2)SnI_(6),and Cs_(2)PtBr_(6)have Young's moduli below 13 GPa,indicating flexibility.Geometric parameters explain flexibility variations with the changes of B and X site composition.Bonding characteristic exploration reveals the influence of B and X site electronegativity on mechanical strength.Cs_(2)SnBr_(6)and Cs_(2)PtBr_(6)are suitable for solar cells,while Cs_(2)HfI_(6)and Cs_(2)TiCl_(6)show potential for semi-transparent solar cells.Optical property calculations highlight the high light absorption coefficients of up to 3.5×10^(5) cm^(-1)for Cs_(2)HfI_(6)and Cs_(2)TiCl_(6).Solar cell simulation shows Cs_(2)PtBr_(6)achieves 22.4%of conversion effciency.Cs_(2)ZrCl_(6)holds promise for ionizing radiation detection with its 3.68 eV bandgap and high absorption coefficient.Vacancy-ordered double perovskites offer superior flexibility,providing valuable insights for designing stable and flexible devices.This understanding enhances the development of functional devices based on these perovskites,especially for applications requiring high stability and flexibility.展开更多
Two-dimensional(2D)materials have attracted tremendous interest in view of the outstanding optoelectronic properties,showing new possibilities for future photovoltaic devices toward high performance,high specific powe...Two-dimensional(2D)materials have attracted tremendous interest in view of the outstanding optoelectronic properties,showing new possibilities for future photovoltaic devices toward high performance,high specific power and flexibility.In recent years,substantial works have focused on 2D photovoltaic devices,and great progress has been achieved.Here,we present the review of recent advances in 2D photovoltaic devices,focusing on 2D-material-based Schottky junctions,homojunctions,2D−2D heterojunctions,2D−3D heterojunctions,and bulk photovoltaic effect devices.Furthermore,advanced strategies for improving the photovoltaic performances are demonstrated in detail.Finally,conclusions and outlooks are delivered,providing a guideline for the further development of 2D photovoltaic devices.展开更多
Improving the accuracy of solar power forecasting is crucial to ensure grid stability,optimize solar power plant operations,and enhance grid dispatch efficiency.Although hybrid neural network models can effectively ad...Improving the accuracy of solar power forecasting is crucial to ensure grid stability,optimize solar power plant operations,and enhance grid dispatch efficiency.Although hybrid neural network models can effectively address the complexities of environmental data and power prediction uncertainties,challenges such as labor-intensive parameter adjustments and complex optimization processes persist.Thus,this study proposed a novel approach for solar power prediction using a hybrid model(CNN-LSTM-attention)that combines a convolutional neural network(CNN),long short-term memory(LSTM),and attention mechanisms.The model incorporates Bayesian optimization to refine the parameters and enhance the prediction accuracy.To prepare high-quality training data,the solar power data were first preprocessed,including feature selection,data cleaning,imputation,and smoothing.The processed data were then used to train a hybrid model based on the CNN-LSTM-attention architecture,followed by hyperparameter optimization employing Bayesian methods.The experimental results indicated that within acceptable model training times,the CNN-LSTM-attention model outperformed the LSTM,GRU,CNN-LSTM,CNN-LSTM with autoencoders,and parallel CNN-LSTM attention models.Furthermore,following Bayesian optimization,the optimized model demonstrated significantly reduced prediction errors during periods of data volatility compared to the original model,as evidenced by MRE evaluations.This highlights the clear advantage of the optimized model in forecasting fluctuating data.展开更多
Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a ...Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a multi-time scale optimal scheduling strategy based on model predictive control(MPC)is proposed under the consideration of load optimization.First,load optimization is achieved by controlling the charging time of electric vehicles as well as adjusting the air conditioning operation temperature,and the photovoltaic energy storage building system model is constructed to propose a day-ahead scheduling strategy with the lowest daily operation cost.Second,considering inter-day to intra-day source-load prediction error,an intraday rolling optimal scheduling strategy based on MPC is proposed that dynamically corrects the day-ahead dispatch results to stabilize system power fluctuations and promote photovoltaic consumption.Finally,taking an office building on a summer work day as an example,the effectiveness of the proposed scheduling strategy is verified.The results of the example show that the strategy reduces the total operating cost of the photovoltaic energy storage building system by 17.11%,improves the carbon emission reduction by 7.99%,and the photovoltaic consumption rate reaches 98.57%,improving the system’s low-carbon and economic performance.展开更多
Renewable energies are highly dependent on local weather conditions, with photovoltaic energy being particularly affected by intermittent clouds. Anticipating the impact of cloud shadows on power plants is crucial, as...Renewable energies are highly dependent on local weather conditions, with photovoltaic energy being particularly affected by intermittent clouds. Anticipating the impact of cloud shadows on power plants is crucial, as clouds can cause partial shading, excessive irradiation, and operational issues. This study focuses on analyzing cloud tracking methods for short-term forecasts, aiming to mitigate such impacts. We conducted a systematic literature review, highlighting the most significant articles on cloud tracking from ground-based observations. We explore both traditional image processing techniques and advances in deep learning models. Additionally, we discuss current challenges and future research directions in this rapidly evolving field, aiming to provide a comprehensive overview of the state of the art and identify opportunities for significant advancements in the next generation of cloud tracking systems based on computer vision and deep learning.展开更多
Herein,the impact of the independent control of processing additives on vertical phase separation in sequentially deposited (SD) organic photovoltaics (OPVs) and its subsequent effects on charge carrier kinetics at th...Herein,the impact of the independent control of processing additives on vertical phase separation in sequentially deposited (SD) organic photovoltaics (OPVs) and its subsequent effects on charge carrier kinetics at the electron donor-acceptor interface are investigated.The film morphology exhibits notable variations,significantly depending on the layer to which 1,8-diiodooctane (DIO) was applied.Grazing incidence wide-angle X-ray scattering analysis reveals distinctly separated donor/acceptor phases and vertical crystallinity details in SD films.Time-of-flight secondary ion mass spectrometry analysis is employed to obtain component distributions in diverse vertical phase structures of SD films depending on additive control.In addition,nanosecond transient absorption spectroscopy shows that DIO control significantly affects the dynamics of separated charges in SD films.In SD OPVs,DIO appears to act through distinct mechanisms with minimal restriction,depending on the applied layer.This study emphasizes the significance of morphological optimization in improving device performance and underscores the importance of independent additive control in the advancement of OPV technology.展开更多
Radio-photovoltaic cell is a micro nuclear battery for devices operating in extreme environments,which converts the decay energy of a radioisotope into electric energy by using a phosphor and a photovoltaic converter....Radio-photovoltaic cell is a micro nuclear battery for devices operating in extreme environments,which converts the decay energy of a radioisotope into electric energy by using a phosphor and a photovoltaic converter.Many phosphors with high light yield and good environmental stability have been developed,but the performance of radio-photovoltaic cells remains far behind expectations in terms of power density and power conversion efficiency,because of the poor photoelectric conversion efficiency of traditional photovoltaic converters under low-light conditions.This paper reports an radio-photovoltaic cell based on an intrinsically stable formamidinium-cesium perovskite photovoltaic converter exhibiting a wide light wavelength response from 300 to 800 nm,high open-circuit voltage(V_(oc)),and remarkable efficiency at low-light intensity.When a He ions accelerator is adopted as a mimickedαradioisotope source with an equivalent activity of 0.83 mCi cm^(-2),the formamidinium-cesium perovskite radio-photovoltaic cell achieves a V_(oc)of 0.498 V,a short-circuit current(J_(sc))of 423.94 nA cm^(-2),and a remarkable power conversion efficiency of 0.886%,which is 6.6 times that of the Si reference radio-photovoltaic cell,as well as the highest among all radio-photovoltaic cells reported so far.This work provides a theoretical basis for enhancing the performance of radio-photovoltaic cells.展开更多
文摘In this paper, we propose a thermal model of a hybrid photovoltaic/thermal concentration system. Starting from the thermal balance of the model, the equation is solved and simulated with a MATLAB code, considering air as the cooling fluid. This enabled us to evaluate some of the parameters influencing the electrical and thermal performance of this device. The results showed that the temperature, thermal efficiency and electrical efficiency delivered depend on the air mass flow rate. The electrical and thermal efficiencies for different values of air mass flow are encouraging, and demonstrate the benefits of cooling photovoltaic cells. The results show that thermal efficiency decreases air flow rate greater than 0.7 kg/s, whatever the value of the light concentration used. The thermal efficiency of the solar cell increases as the light concentration increases, whatever the air flow rate used. For a concentration equal to 30 sun, the thermal efficiency is 0.16 with an air flow rate equal to 0.005 kg/s;the thermal efficiency increases to 0.19 with an air flow rate equal to 0.1 kg/s at the same concentration. An interesting and useful finding was that the proposed numerical model allows the determination of the electrical as well as thermal efficiency of the hybrid CPV/T with air flow as cooling fluid.
文摘A solar panel is described,in which thin films of semiconductor are deposited onto a metal substrate.The semiconductor-metal combination forms a thin film photovoltaic cell,and also acts as a reflector-absorber tandem,which acts as a solar selective surface,thus enhancing the solar thermal performance of the collector plate.The use of thin films reduces the distance heat is required to flow from the absorbing surface to the metal plate and heat exchange conduits.Computer modelling demonstrated that,by suitable choice of materials,photovoltaic efficiency can be maintained,with thermal performance slightly reduced,compared to that for thermal-only panels.By grading the absorber layer-to reduce the band gap in the lower region-the thermal performance can be improved,approaching that for a thermal-only solar panel.
文摘This work investigates the performance of combined hybrid high concentrated photovoltaic/thermal collector (HCPV/T) in Kuwait harsh climate. The proposed system consists of triple junction solar cells (InGaP/InGaAs/Ge) attached to heat source to discharge thermal energy to cooling media. Published HCPV/T models do not consider the effect of shunt resistance which greatly affects the system performance. So, a single diode model employing five parameters including the effect of shunt resistance is adapted to analyze the proposed system. To analyze the thermal performance of the proposed system, a two-dimensional thermal model based on the technique of finite difference is introduced to determine the efficiency of the hybrid HCPV/T system. The present developed subroutines are integrated with other involved codes in TRNSYS software to calculate HCPV/T system efficiency. Electrical and thermal as well as the whole system efficiency at different weather circumstances are evaluated and assessed. The effect of different weather conditions, cell temperature, concentration ratio and the temperatures of the coolant fluid on system performance are studied. Current results indicate that the model of single diode is a reliable one rather than using the two-diode complex model. Compared to measurements provided by high concentrated PV manufacturer, the current results revealed a total root mean square error of approximately 1.94%. Present predictions show that PV cell temperature has logarithmic increase with the rise in concentration ratio but with low values till concentration ratio of 400 suns after that the rise is faster at higher concentration values up to 1500 suns. Results also revealed that hybrid HCPV/T system works effectively specially in severe hot climate where thermal efficiency increases with high surrounding temperature for higher values of concentration ratio. In addition, an increase of approximately 15% in thermal efficiency and 10% in total efficiency can be achieved by utilizing active cooling device in HCPV/T system.
基金supported by the National Natural Science Foundation of China(Grant Nos.52106276 and 52130601)Fundamental Research Funds for the Central Universities(Grant No.WK2090000038)the Joint research center for multi-energy complementation and conversion of USTC。
文摘Powering a moon base,especially keeping it warm during the long lunar night,is a big challenge.This paper introduces a photovoltaic/thermal(PV/T)system incorporating regolith thermal storage to solve the challenge of power and heat provision for the lunar base simultaneously.The vacuum of space around the moon helps this system by reducing heat loss.During the moon's daytime,the system not only generates electricity but also captures heat.This stored heat in the regolith is then used at night,reducing the amount of equipment we need to send from Earth.The spectrally selective PV/T panels are designed to absorb a wide range of sunlight(0.3–2.5μm)while minimizing heat loss in the infrared range(3–30μm).Simulation results of the hybrid solar energy system indicate the average value of the overall efficiency is 45.9%,which relatively elevates 56.1%compared to the PV system.The launch mass of the proposed PV/T system is only 8.4%of a traditional photovoltaic-lithium battery system with the same amount of energy storage.And the total specific energy of the proposed system is 7.3 kWh kg^(-1),while that of the photovoltaic-lithium battery system is about 0.3 kWh kg^(-1).In summary,this study proposes an alternative combined heat and electricity supply system for the lunar base,which can greatly reduce the launch mass and free up load for other scientific research equipment.
基金supported by the National Natural Science Foundation of China(NSFC 52130601 and52106276)the Fundamental Research Funds for the Central Universities(WK5290000003)the support of the Research Center for Multi-energy complementation and conversion。
文摘Existing photovoltaic cells with high infrared emissivity generate huge radiative heat loss in photovoltaic/thermal applications and degrade the photothermal performance.The purpose of this work is to evaluate the full spectral absorptivity of CdTe cells to find a spectrally selective photovoltaic cell for photovoltaic/thermal applications.To this end,the solar absorptivity and mid-infrared thermal emissivity of CdTe cells were tested by ellipsometry,UV-Vis-NIR spectrophotometer,and Fourier transform infrared spectrometer.The experimental results show that the AM 1.5 solar spectrum weighted absorptivity of the substrate configuration CdTe cell reaches 0.91,and the mid-infrared emissivity is only 0.29,while the superstrate configuration cell emissivity is as high as 0.9.Further research shows that substrate configuration with a transparent conductive layer on top can be flexibly grown on metal foils and has spectral selectivity with high solar absorptivity and low mid-infrared emissivity should be considered in the future for photovoltaic/thermal applications.
基金supported by the Hebei Province Postdoctoral Merit Funding Program(Grant No.:B2022005004)the Science and Tech-nology Nova Plan of Hebei University of Technology(Grant No.:JBKYXX2207)+2 种基金the National Natural Science Foundation of China(Grant No.:51978231)the S&T Program of Hebei(Project No.:216Z4502G)the Natural Science Foundation of Hebei Province(Grant No.:E2020202196).
文摘The photovoltaic/thermal(PV/T)system is a promising option for countering energy shortages.To improve the performance of PV/T systems,compound parabolic concentrators(CPCs)and phase-change materials(PCMs)were jointly applied to construct a concentrating photovoltaic/thermal system integrated with phase-change materials(PV/T-CPCM).An open-air environment is used to analyze the effects of different parameters and the intermittent operation strategy on the system performance.The results indicate that the short-circuit current and open-circuit voltage are positively correlated with the solar irradiance,but the open-circuit voltage is negatively correlated with the temperature of the PV modules.When the solar irradiance is 500 W⋅m^(−2) and the temperature of the PV modules is 27.5℃,the short-circuit current and open-circuit voltage are 1.0 A and 44.5 V,respectively.Higher solar irradiance results in higher thermal power,whereas the thermal efficiency is under lower solar irradiance(136.2-167.1 W⋅m^(−2) is twice under higher solar irradiance(272.3-455.7 W⋅m^(−2))).In addition,a higher mass flow rate corresponds to a better cooling effect and greater pump energy consumption.When the mass flow rate increases from 0.01 to 0.02 kg⋅s^(-1),the temperature difference between the inlet and outlet decreases by 1.8℃,and the primary energy-saving efficiency decreases by 0.53%.The intermittent operation of a water pump can reduce the energy consumption of the system,and the combination of liquid cooling with PCMs provides better thermal regulation and energy-saving effects under various conditions.
基金supported by the National Natural Science Foundation of China(Grant No.51376101)the Science Fund for Creative Research Groups(Grant No.51621062)
文摘In this paper, the performance of a concentrating photovoltaic/thermal solar system is numerically analyzed with a mathematical and physical model. The variations of the electrical efficiency and the thermal efficiency with the operation parameters are calculated. It is found that the electrical efficiency increases at first and then decreases with increasing concentration ratio of the sunlight, while the thermal efficiency acts in an opposite manner. When the velocity of the cooling water increases, the electrical efficiency increases. Considering the solar system, the surface of the sun, the atmosphere and the environment, we can get a coupled energy system, which is analyzed with the entropy generation minimization and the entransy theory. This is the first time that the entransy theory is used to analyze photovoltaic/thermal solar system. When the concentration ratio is fixed, it is found that both the minimum entropy generation rate and the maximum entransy loss rate lead to the maximum electrical output power,while both the minimum entropy generation numbers and the maximum entransy loss coefficient lead to the maximum electrical efficiency. When the concentrated sunlight is not fixed, it is shown that neither smaller entropy generation rate nor larger entransy loss rate corresponds to larger electrical output power. Smaller entropy generation numbers do not result in larger electrical efficiency, either. However, larger entransy loss coefficient still corresponds to larger electrical efficiency.
基金This work was supported by National Key R&D Program of China-Research on Optimal Configuration and Demand Response of Energy Storage Technology in Nearly Zero Energy Community(No.2019YFE0193100).
文摘A novel coupling system that combines a photovoltaic/thermal(PV/T)subsystem and an Organic Rankine Cycle(ORC)driven by solar parabolic trough collector(PTC)is presented in this paper.The mathematical model is initially built.On the basis,the influence of area ratio of two collectors(PV/T and PTC)on the performance of system is discussed.The results show that the optimal area ratio of PV/T to PTC is 8:2,which can achieve the maximum energy output.Moreover,the performance of the coupling system and two independent systems(PV/T and ORC system)are compared and analyzed.The results show that the coupling system is more reliable and its total output energy(heat and electricity)is the highest,compared with the other two independent systems.The solar energy utilization efficiency of the coupling system is 40%higher than that of the other two independent systems in the steady-state simulation.Moreover,the annual output energy per unit area collector of the coupling system is 13%higher than that of the other two independent systems in the dynamic simulation.Furthermore,in the dynamic simulation of a typical day,the PV panels’temperature of the coupling system is 5℃–7℃ lower than that of the independent PV/T system.It means that the power generation efficiency of PV panels can be increased by 1.5%–3.5%.This study aims to explore the operation characteristics of the novel solar energy utilization coupling system and promote the development of renewable energy utilization models,which provides a reference for the design and optimization of related energy systems.
基金This work was supported by the World Bank through the East Africa Higher Education Centers of Excellence(Project ID:PI 51847)and the African Center of Excellence in Energy for Sustainable Development(ACE-ESD).
文摘Enhancing solar photovoltaic and thermal conversion performances may help develop more environmentally friendly hybrid photovoltaic/thermal(PV/T)systems that can be used in applications ranging from household to industrial scales.Owing to their enhanced thermal and optical properties,nanofluids have proven to be good candidates for designing PV/T systems with superior performances.As smart nanofluids,magnetic nanofluids(MNFs)can further enhance the performances of PV/T systems under external magnetic fields.This paper reviews recent developments in enhancing the electrical and thermal performances of PV/T systems using magnetic nanofluids.Various parameters affecting the performances are highlighted,and some areas for further investigations are discussed.The reviewed literature shows that PV/T systems with MNFs are promising.However,their performances need further investigation before they can be used in applications.
基金financially supported by the Sichuan Science and Technology Program(Grant Nos.2023YFH0087,2023YFH0085,2023YFH0086,and 2023NSFSC0990)State Key Laboratory of Polymer Materials Engineering(Grant Nos.sklpme2022-3-02 and sklpme2023-2-11)+1 种基金Tibet Foreign Experts Program(Grant No.2022wz002)supported by the King Abdullah University of Science and Technology(KAUST)Office of Research Administration(ORA)under Award Nos.OSR-CARF/CCF-3079 and OSR-2021-CRG10-4701.
文摘Organic photovoltaics(OPVs)need to overcome limitations such as insufficient thermal stability to be commercialized.The reported approaches to improve stability either rely on the development of new materials or on tailoring the donor/acceptor morphology,however,exhibiting limited applicability.Therefore,it is timely to develop an easy method to enhance thermal stability without having to develop new donor/acceptor materials or donor–acceptor compatibilizers,or by introducing another third component.Herein,a unique approach is presented,based on constructing a polymer fiber rigid network with a high glass transition temperature(T_(g))to impede the movement of acceptor and donor molecules,to immobilize the active layer morphology,and thereby to improve thermal stability.A high-T_(g) one-dimensional aramid nanofiber(ANF)is utilized for network construction.Inverted OPVs with ANF network yield superior thermal stability compared to the ANF-free counterpart.The ANF network-incorporated active layer demonstrates significantly more stable morphology than the ANF-free counterpart,thereby leaving fundamental processes such as charge separation,transport,and collection,determining the device efficiency,largely unaltered.This strategy is also successfully applied to other photovoltaic systems.The strategy of incorporating a polymer fiber rigid network with high T_(g) offers a distinct perspective addressing the challenge of thermal instability with simplicity and universality.
基金supported by North China Electric Power Research Institute’s Self-Funded Science and Technology Project“Research on Distributed Energy Storage Optimal Configuration and Operation Control Technology for Photovoltaic Promotion in the Entire County”(KJZ2022049).
文摘In recent years,distributed photovoltaics(DPV)has ushered in a good development situation due to the advantages of pollution-free power generation,full utilization of the ground or roof of the installation site,and balancing a large number of loads nearby.However,under the background of a large-scale DPV grid-connected to the county distribution network,an effective analysis method is needed to analyze its impact on the voltage of the distribution network in the early development stage of DPV.Therefore,a DPV orderly grid-connected method based on photovoltaics grid-connected order degree(PGOD)is proposed.This method aims to orderly analyze the change of voltage in the distribution network when large-scale DPV will be connected.Firstly,based on the voltagemagnitude sensitivity(VMS)index of the photovoltaics permitted grid-connected node and the acceptance of grid-connected node(AoGCN)index of other nodes in the network,thePGODindex is constructed to determine the photovoltaics permitted grid-connected node of the current photovoltaics grid-connected state network.Secondly,a photovoltaics orderly grid-connected model with a continuous updating state is constructed to obtain an orderly DPV grid-connected order.The simulation results illustrate that the photovoltaics grid-connected order determined by this method based on PGOD can effectively analyze the voltage impact of large-scale photovoltaics grid-connected,and explore the internal factors and characteristics of the impact.
基金financially supported by the Fundamental Research Funds for the Central Universities(No.2022ZYGXZR099)Pazhou Lab(No.PZL2022KF0010).
文摘With the rapid development of emerging photovoltaics technology in recent years,the application of building-integrated photovoltaics(BIPVs)has attracted the research interest of photovoltaic communities.To meet the practical application requirements of BIPVs,in addition to the evaluation indicator of power conversion efficiency(PCE),other key performance indicators such as heat-insulating ability,average visible light transmittance(AVT),color properties,and integrability are equally important.The traditional Si-based photovoltaic technology is typically limited by its opaque properties for application scenarios where transparency is required.The emerging PV technologies,such as organic and perovskite photovoltaics are promising candidates for BIPV applications,owing to their advantages such as high PCE,high AVT,and tunable properties.At present,the PCE of semitransparent perovskite solar cells(ST-PSCs)has attained 14%with AVT of 22–25%;for semitransparent organic solar cells(ST-OSCs),the PCE reached 13%with AVT of almost 40%.In this review article,we summarize recent advances in material selection,optical engineering,and device architecture design for high-performance semitransparent emerging PV devices,and discuss the application of optical modeling,as well as the challenges of commercializing these semitransparent solar cells for building-integrated applications.
基金supported by the National Natural Science Foundation of China(52078269 and 52325801).
文摘Substantially glazed facades are extensively used in contemporary high-rise buildings to achieve attractive architectural aesthetics.Inherent conflicts exist among architectural aesthetics,building energy consumption,and solar energy harvesting for glazed facades.In this study,we addressed these conflicts by introducing a new dynamic and vertical photovoltaic integrated building envelope(dvPVBE)that offers extraordinary flexibility with weather-responsive slat angles and blind positions,superior architectural aesthetics,and notable energy-saving potential.Three hierarchical control strategies were proposed for different scenarios of the dvPVBE:power generation priority(PGP),natural daylight priority(NDP),and energy-saving priority(ESP).Moreover,the PGP and ESP strategies were further analyzed in the simulation of a dvPVBE.An office room integrated with a dvPVBE was modeled using EnergyPlus.The influence of the dvPVBE in improving the building energy efficiency and corresponding optimal slat angles was investigated under the PGP and ESP control strategies.The results indicate that the application of dvPVBEs in Beijing can provide up to 131%of the annual energy demand of office rooms and significantly increase the annual net energy output by at least 226%compared with static photovoltaic(PV)blinds.The concept of this novel dvPVBE offers a viable approach by which the thermal load,daylight penetration,and energy generation can be effectively regulated.
基金supported by the National Natural Science Foundation of China(62305261,62305262)the Natural Science Foundation of Shaanxi Province(2024JC-YBMS-021,2024JC-YBMS-788,2023-JC-YB-065,2023-JC-QN-0693,2022JQ-652)+1 种基金the Xi’an Science and Technology Bureau of University Service Enterprise Project(23GXFW0043)the Cross disciplinary Research and Cultivation Project of Xi’an University of Architecture and Technology(2023JCPY-17)。
文摘As interest in double perovskites is growing,especially in applications like photovoltaic devices,understanding their mechanical properties is vital for device durability.Despite extensive exploration of structure and optical properties,research on mechanical aspects is limited.This article builds a vacancyordered double perovskite model,employing first-principles calculations to analyze mechanical,bonding,electronic,and optical properties.Results show Cs_(2)Hfl_(6),Cs_(2)SnBr_(6),Cs_(2)SnI_(6),and Cs_(2)PtBr_(6)have Young's moduli below 13 GPa,indicating flexibility.Geometric parameters explain flexibility variations with the changes of B and X site composition.Bonding characteristic exploration reveals the influence of B and X site electronegativity on mechanical strength.Cs_(2)SnBr_(6)and Cs_(2)PtBr_(6)are suitable for solar cells,while Cs_(2)HfI_(6)and Cs_(2)TiCl_(6)show potential for semi-transparent solar cells.Optical property calculations highlight the high light absorption coefficients of up to 3.5×10^(5) cm^(-1)for Cs_(2)HfI_(6)and Cs_(2)TiCl_(6).Solar cell simulation shows Cs_(2)PtBr_(6)achieves 22.4%of conversion effciency.Cs_(2)ZrCl_(6)holds promise for ionizing radiation detection with its 3.68 eV bandgap and high absorption coefficient.Vacancy-ordered double perovskites offer superior flexibility,providing valuable insights for designing stable and flexible devices.This understanding enhances the development of functional devices based on these perovskites,especially for applications requiring high stability and flexibility.
基金supported by the National Natural Science Foundation of China(52322210,52172144,22375069,21825103,and U21A2069)National Key R&D Program of China(2021YFA1200501)+1 种基金Shenzhen Science and Technology Program(JCYJ20220818102215033,JCYJ20200109105422876)the Innovation Project of Optics Valley Laboratory(OVL2023PY007).
文摘Two-dimensional(2D)materials have attracted tremendous interest in view of the outstanding optoelectronic properties,showing new possibilities for future photovoltaic devices toward high performance,high specific power and flexibility.In recent years,substantial works have focused on 2D photovoltaic devices,and great progress has been achieved.Here,we present the review of recent advances in 2D photovoltaic devices,focusing on 2D-material-based Schottky junctions,homojunctions,2D−2D heterojunctions,2D−3D heterojunctions,and bulk photovoltaic effect devices.Furthermore,advanced strategies for improving the photovoltaic performances are demonstrated in detail.Finally,conclusions and outlooks are delivered,providing a guideline for the further development of 2D photovoltaic devices.
基金supported by the State Grid Science&Technology Project(5400-202224153A-1-1-ZN).
文摘Improving the accuracy of solar power forecasting is crucial to ensure grid stability,optimize solar power plant operations,and enhance grid dispatch efficiency.Although hybrid neural network models can effectively address the complexities of environmental data and power prediction uncertainties,challenges such as labor-intensive parameter adjustments and complex optimization processes persist.Thus,this study proposed a novel approach for solar power prediction using a hybrid model(CNN-LSTM-attention)that combines a convolutional neural network(CNN),long short-term memory(LSTM),and attention mechanisms.The model incorporates Bayesian optimization to refine the parameters and enhance the prediction accuracy.To prepare high-quality training data,the solar power data were first preprocessed,including feature selection,data cleaning,imputation,and smoothing.The processed data were then used to train a hybrid model based on the CNN-LSTM-attention architecture,followed by hyperparameter optimization employing Bayesian methods.The experimental results indicated that within acceptable model training times,the CNN-LSTM-attention model outperformed the LSTM,GRU,CNN-LSTM,CNN-LSTM with autoencoders,and parallel CNN-LSTM attention models.Furthermore,following Bayesian optimization,the optimized model demonstrated significantly reduced prediction errors during periods of data volatility compared to the original model,as evidenced by MRE evaluations.This highlights the clear advantage of the optimized model in forecasting fluctuating data.
文摘Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a multi-time scale optimal scheduling strategy based on model predictive control(MPC)is proposed under the consideration of load optimization.First,load optimization is achieved by controlling the charging time of electric vehicles as well as adjusting the air conditioning operation temperature,and the photovoltaic energy storage building system model is constructed to propose a day-ahead scheduling strategy with the lowest daily operation cost.Second,considering inter-day to intra-day source-load prediction error,an intraday rolling optimal scheduling strategy based on MPC is proposed that dynamically corrects the day-ahead dispatch results to stabilize system power fluctuations and promote photovoltaic consumption.Finally,taking an office building on a summer work day as an example,the effectiveness of the proposed scheduling strategy is verified.The results of the example show that the strategy reduces the total operating cost of the photovoltaic energy storage building system by 17.11%,improves the carbon emission reduction by 7.99%,and the photovoltaic consumption rate reaches 98.57%,improving the system’s low-carbon and economic performance.
文摘Renewable energies are highly dependent on local weather conditions, with photovoltaic energy being particularly affected by intermittent clouds. Anticipating the impact of cloud shadows on power plants is crucial, as clouds can cause partial shading, excessive irradiation, and operational issues. This study focuses on analyzing cloud tracking methods for short-term forecasts, aiming to mitigate such impacts. We conducted a systematic literature review, highlighting the most significant articles on cloud tracking from ground-based observations. We explore both traditional image processing techniques and advances in deep learning models. Additionally, we discuss current challenges and future research directions in this rapidly evolving field, aiming to provide a comprehensive overview of the state of the art and identify opportunities for significant advancements in the next generation of cloud tracking systems based on computer vision and deep learning.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.RS-2023-00213920,NRF-2021R1A4A1031761).
文摘Herein,the impact of the independent control of processing additives on vertical phase separation in sequentially deposited (SD) organic photovoltaics (OPVs) and its subsequent effects on charge carrier kinetics at the electron donor-acceptor interface are investigated.The film morphology exhibits notable variations,significantly depending on the layer to which 1,8-diiodooctane (DIO) was applied.Grazing incidence wide-angle X-ray scattering analysis reveals distinctly separated donor/acceptor phases and vertical crystallinity details in SD films.Time-of-flight secondary ion mass spectrometry analysis is employed to obtain component distributions in diverse vertical phase structures of SD films depending on additive control.In addition,nanosecond transient absorption spectroscopy shows that DIO control significantly affects the dynamics of separated charges in SD films.In SD OPVs,DIO appears to act through distinct mechanisms with minimal restriction,depending on the applied layer.This study emphasizes the significance of morphological optimization in improving device performance and underscores the importance of independent additive control in the advancement of OPV technology.
基金the financial support from the National Natural Science Foundation of China(grant numbers 11922507,12050005,52002140)Fundamental Research Funds for the Central Universities(2020kfyXJJS008)+1 种基金Major State Basic Research Development Program of China(2021YFB3201000)Young Elite Scientists Sponsorship Program by CAST
文摘Radio-photovoltaic cell is a micro nuclear battery for devices operating in extreme environments,which converts the decay energy of a radioisotope into electric energy by using a phosphor and a photovoltaic converter.Many phosphors with high light yield and good environmental stability have been developed,but the performance of radio-photovoltaic cells remains far behind expectations in terms of power density and power conversion efficiency,because of the poor photoelectric conversion efficiency of traditional photovoltaic converters under low-light conditions.This paper reports an radio-photovoltaic cell based on an intrinsically stable formamidinium-cesium perovskite photovoltaic converter exhibiting a wide light wavelength response from 300 to 800 nm,high open-circuit voltage(V_(oc)),and remarkable efficiency at low-light intensity.When a He ions accelerator is adopted as a mimickedαradioisotope source with an equivalent activity of 0.83 mCi cm^(-2),the formamidinium-cesium perovskite radio-photovoltaic cell achieves a V_(oc)of 0.498 V,a short-circuit current(J_(sc))of 423.94 nA cm^(-2),and a remarkable power conversion efficiency of 0.886%,which is 6.6 times that of the Si reference radio-photovoltaic cell,as well as the highest among all radio-photovoltaic cells reported so far.This work provides a theoretical basis for enhancing the performance of radio-photovoltaic cells.