期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Responses of phreatophyte transpiration to falling water table in hyper-arid and arid regions,Northwest China 被引量:2
1
作者 Li-he Yin Dan-dan Xu +2 位作者 Wu-hui Jia Xin-xin Zhang Jun Zhang 《China Geology》 2021年第3期410-420,共11页
Quantitative assessment of the impact of groundwater depletion on phreatophytes in(hyper-)arid regions is key to sustainable groundwater management.However,a parsimonious model for predicting the response of phreatoph... Quantitative assessment of the impact of groundwater depletion on phreatophytes in(hyper-)arid regions is key to sustainable groundwater management.However,a parsimonious model for predicting the response of phreatophytes to a decrease of the water table is lacking.A variable saturated flow model,HYDRUS-1D,was used to numerically assess the influences of depth to the water table(DWT)and mean annual precipitation(MAP)on transpiration of groundwater-dependent vegetation in(hyper-)arid regions of northwest China.An exponential relationship is found for the normalized transpiration(a ratio of transpiration at a certain DWT to transpiration at 1 m depth,T_(a)^(*))with increasing DWT,while a positive linear relationship is identified between T_(a)^(*)and annual precipitation.Sensitivity analysis shows that the model is insensitive to parameters,such as saturated soil hydraulic conductivity and water stress parameters,indicated by an insignificant variation(less than 20%in most cases)under±50%changes of these parameters.Based on these two relationships,a universal model has been developed to predict the response of phreatophyte transpiration to groundwater drawdown for(hyper-)arid regions using MAP only.The estimated T_(a)^(*)from the model is reasonable by comparing with published measured values. 展开更多
关键词 Groundwater depletion phreatophytes Transpiration Numerical assessment Water table depth(DWT) Mean annual precipitation(MAP) (Hyper-)arid regions Hydrogeological survey engineering Northwest China.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部