期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Fundamental Physical Constants and Primary Physical Parameters
1
作者 Vladimir S. Netchitailo 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2023年第1期190-209,共20页
Every four years the Committee on Data for Science and Technology (CODATA) supplies a self-consistent set of values of the basic constants and conversion factors of physics recommended for international use. In 2013, ... Every four years the Committee on Data for Science and Technology (CODATA) supplies a self-consistent set of values of the basic constants and conversion factors of physics recommended for international use. In 2013, the World-Universe Model (WUM) proposed a principally different depiction of the World as an alternative to the picture of the Big Bang Model. This article: 1) Gives the short history of Classical Physics before Special Relativity;2) Calculates Fundamental Physical Constants based on experimentally measured Rydberg constant, Electrodynamic constant, Electron Charge-to-Mass Ratio, and Planck constant;3) Discusses Electrodynamic constant and Speed of Light;4) Considers Dimensionless Fundamental Parameters (Dirac Large Number Q and Dimensionless Rydberg Constant α);5) Calculates Newtonian Constant of Gravitation based on the Inter-connectivity of Primary Physical Parameters;6) Makes a detailed analysis of the Self-consistency of Fundamental Physical Constants and Primary Physical Parameters through the prism of WUM. The performed analysis suggests: 1) Discontinuing using the notion “Vacuum” and its characteristics (Speed of Light in Vacuum, Characteristic Impedance of Vacuum, Vacuum Magnetic Permeability, Vacuum Electric Permittivity);2) Accepting the exact numerical values of Electrodynamic constant, Planck constant, Elementary charge, and Dimensionless Rydberg Constant α. WUM recommends the predicted value of Newtonian Constant of Gravitation in 2018 to be considered in CODATA Recommend Values of the Fundamental Physical Constants 2022. 展开更多
关键词 Classical Physics Fundamental physical Constants Electrodynamic Constant Speed of Light Dirac Large Number Dimensionless Rydberg Constant Newtonian Constant of Gravitation Self-Consistency of Fundamental physical Constants
下载PDF
Recent Progress in Space Science and Applications on Chinese Space Station in 2022–2024
2
作者 GU Yidong GAO Ming +4 位作者 ZHAO Guangheng WANG Qiang LYU Congmin ZHONG Hongen LIU Guoning 《空间科学学报》 CAS CSCD 北大核心 2024年第4期607-621,共15页
Chinese Space Station(CSS)has been fully deployed by the end of 2022,and the facility has entered into the application and development phase.It has conducted scientific research projects in various fields,such as spac... Chinese Space Station(CSS)has been fully deployed by the end of 2022,and the facility has entered into the application and development phase.It has conducted scientific research projects in various fields,such as space life science and biotechnology,space materials science,microgravity fundamental physics,fluid physics,combustion science,space new technologies,and applications.In this review,we introduce the progress of CSS development and provide an overview of the research conducted in Chinese Space Station and the recent scientific findings in several typical research fields.Such compelling findings mainly concern the rapid solidification of ultra-high temperature alloy melts,dynamics of fluid transport in space,gravity scaling law of boiling heat transfer,vibration fluidization phenomenon of particulate matter,cold atom interferometer technology under high microgravity and related equivalence principle testing,the full life cycle of rice under microgravity and so forth.Furthermore,the planned scientific research and corresponding prospects of Chinese space station in the next few years are presented. 展开更多
关键词 Chinese Space Station(CSS) Space material science Micro-gravity fluid physics Fundamental physics Space life sciences and biotechnology
下载PDF
Selection and Justification of a New Initial Level of the Material World 被引量:2
3
作者 Valentyn Nastasenko 《Journal of Applied Mathematics and Physics》 2021年第5期1089-1099,共11页
The work refers to the foundations of the material world, in particular—to the field of quantum physics associated with the initial level—his fundamental physical constants and elementary particles. The study of the... The work refers to the foundations of the material world, in particular—to the field of quantum physics associated with the initial level—his fundamental physical constants and elementary particles. The study of the initial levels of structuring of this formation is necessary for a better understanding of the foundations of the structure Universe. Therefore, the solution of these problems is an urgent and important task, to which the works of many scientists of the world are devoted, from ancient times to the present. However, these tasks have not yet been fully resolved. Their solution is the main goal and scientific novelty of the work performed. For this, <strong>research methods</strong> were used based on the general principles of deduction and movement from simple initial systems to more complex ones, which are substantiated by reliable physical laws. <strong>The research results</strong> are the choice and substantiation of the initial (zero) level of the material world and a system of fundamental physical constants and physical quantities found on their basis, which precede the 1st level—elementary particles. The problems of determining the wave parameters of the gravitational field and the unified of gravitational and electromagnetic fields of the Universe were solved only as a result of the transition to the zero level of the material world. 展开更多
关键词 Levels of Structuring of the Material World Fundamental Physics Constants and Elementary Particles
下载PDF
A New Quantum Number Triangular Array That Defines the Internal Organization of Valence Quarks, the Hadron Quark Model, and the CKM Matrix 被引量:1
4
作者 Donald William Chakeres Richard Vento 《Journal of Modern Physics》 2016年第1期145-155,共11页
Purpose: The Harmonic Neutron Hypothesis, HNH, has demonstrated that many of the fundamental physical constants, including the quarks, are associated with partial harmonic fractional exponents, , of a fundamental freq... Purpose: The Harmonic Neutron Hypothesis, HNH, has demonstrated that many of the fundamental physical constants, including the quarks, are associated with partial harmonic fractional exponents, , of a fundamental frequency, v<sub>F</sub>. The model has shown that the properties of the quarks are based on a progression of prime number composites. They also fall on three separate power law lines related to integer factors of the Y-intercept, , of a fundamental electromagnetic line which is scaled by the Rydberg constant, R and Planck’s constant. The quark lines are scaled by the quantum number factors {1, 2, 3}, and their Y-intercepts are referred to as n<sub>bem</sub>. The goal is to present a new proto-quark model in a six-quark inverted triangular array that defines the global organization of the valence quarks, which determines the hadronic quantum numbers, the standard hadron quark model, and the Cabibbo-Kobayashi-Maskawa (CKM) matrix. Methods: The charm, bottom, top quarks are associated with power law line Y-intercept, n<sub>bem</sub> equal to 1;the strange and down quarks with n<sub>bem</sub> equal to 2;and the up quark with n<sub>bem</sub> equal to 3. An inverted equilateral triangular array with three rows arranged from upper row (triangle base) to bottom row (triangle vertex), is associated respectively with n<sub>bem</sub> numbers 1, 2, and 3. The novelty of our perspective thus defines a new global valence quark organization which supersedes the Standard hadron composite quark model. The quarks are ordered via relative mass, partial fractions, and n<sub>bem</sub> quantum number. The top row of our inverted triangle includes the c, b, and t quarks from left to right;the middle row depicts the d and s quarks;and the bottom row, the up quark. Results: Our array depicts a quantum generator of the global organization of the valence quarks defining the composite quark model. The vertices of the triangular array are the up quarks, the midpoints are the down quarks. All weak transitions are from a corner to a midpoint or vice versa. The standard 3 by 3 CKM matrix is generated from the new quark triangle with each up type quark (u, c, and t) transforming to each down type (d, s, and b), with their experimental flavor transition magnitudes given. Conclusion: A new quark quantum number, n<sub>bem</sub>, is an important discovery that generates a new proto-valence quark triangle that secondarily generates the composite quark model and the CKM matrix. 展开更多
关键词 QUARKS Quark Model Neutron Cabibbo-Kobayashi-Maskawa Matrix Fundamental physical Constants Fundamental Particles Unification Models
下载PDF
Fundamental Harmonic Power Laws Relating the Frequency Equivalents of the Electron, Bohr Radius, Rydberg Constant with the Fine Structure, Planck’s Constant, 2 and π 被引量:1
5
作者 Donald William Chakeres 《Journal of Modern Physics》 2016年第13期1801-1810,共10页
We evaluate three of the quantum constants of hydrogen, the electron, e<sup>-</sup>, the Bohr radius, a<sub>0</sub>, and the Rydberg constants, , as natural unit frequency equivalents, v. This ... We evaluate three of the quantum constants of hydrogen, the electron, e<sup>-</sup>, the Bohr radius, a<sub>0</sub>, and the Rydberg constants, , as natural unit frequency equivalents, v. This is equivalent to Planck’s constant, h, the speed of light, c, and the electron charge, e, all scaled to 1 similar in concept to the Hartree atomic, and Planck units. These frequency ratios are analyzed as fundamental coupling constants. We recognize that the ratio of the product of 8π<sup>2</sup>, the v<sub>e</sub><sub>-</sub> times the v<sub>R</sub> divided by v<sub>a</sub><sub>0</sub> squared equals 1. This is a power law defining Planck’s constant in a dimensionless domain as 1. We also find that all of the possible dimensionless and dimensioned ratios correspond to other constants or classic relationships, and are systematically inter-related by multiple power laws to the fine structure constant, α;and the geometric factors 2, and π. One is related to an angular momentum scaled by Planck’s constant, and another is the kinetic energy law. There are harmonic sinusoidal relationships based on 2π circle geometry. In the dimensionless domain, α is equivalent to the free space constant of permeability, and its reciprocal to permittivity. If any two quanta are known, all of the others can be derived within power laws. This demonstrates that 8π2 represents the logical geometric conversion factor that links the Euclid geometric factors/three dimensional space, and the quantum domain. We conclude that the relative scale and organization of many of the fundamental constants even beyond hydrogen are related to a unified power law system defined by only three physical quanta of v<sub>e</sub><sub>-</sub>, v<sub>R</sub>, and v<sub>a</sub><sub>0</sub>. 展开更多
关键词 Fundamental physical Constants Unification Models Hydrogen ELECTRON Bohr Radius Rydberg Constant Fine Structure Constant
下载PDF
The Derivation of the Cosmic Microwave Background Radiation Peak Spectral Radiance, Planck Time, and the Hubble Constant from the Neutron and Hydrogen 被引量:1
6
作者 Donald William Chakeres Vola Andrianarijaona 《Journal of Modern Physics》 2016年第6期573-586,共14页
Purpose: The cosmic microwave background radiation, CMB, is fundamental to observational cosmology, and is believed to be a remnant from the Big Bang. The CMB, Planck time, t<sub>P</sub>, and the Hubble co... Purpose: The cosmic microwave background radiation, CMB, is fundamental to observational cosmology, and is believed to be a remnant from the Big Bang. The CMB, Planck time, t<sub>P</sub>, and the Hubble constant, H<sub>0</sub>, are important cosmologic constants. The goal is to accurately derive and demonstrate the inter-relationships of the CMB peak spectral radiance frequency, t<sub>P</sub>, and H<sub>0</sub> from neutron and hydrogen quantum data only. Methods: The harmonic neutron hypothesis, HNH, evaluates physical phenomena within a finite consecutive integer and exponential power law harmonic fraction series that are scaled by a fundamental frequency of the neutron as the exponent base. The CMB and the H<sub>0</sub> are derived from a previously published method used to derive t<sub>P</sub>. Their associated integer exponents are respectively +1/2, −3/4, and −128/35. Results: Precise mathematical relationships of these three constants are demonstrated. All of the derived values are within their known observational values. The derived and known values are: ν<sub>CMB</sub>, 160.041737 (06) × 10<sup>9</sup> Hz, ~160 × 10<sup>9</sup> Hz;2.72519 K, 2.72548 ± 0.00057 K, H<sub>0</sub> 2.29726666 (11) × 10<sup>−18</sup> s<sup>−1</sup>, ~2.3 × 10<sup>−18</sup> s<sup>−1</sup>;and t<sub>P</sub> 5.3911418 (3) × 10<sup>−44</sup> s, 5.39106 (32) × 10<sup>−44</sup> s. Conclusion: The cosmic fundamental constants t<sub>P</sub>, H<sub>0</sub>, and CMB are mathematically inter-related constants all defined by gravity. They are also directly derivable from the quantum properties of the neutron and hydrogen within a harmonic power law. 展开更多
关键词 Cosmic Microwave Background Radiation NEUTRON Fundamental physical Constants Unification Models HYDROGEN Planck Time Hubble Constant
下载PDF
Recent Progress of Microgravity Science Research in China
7
作者 ZHAO Jianfu DU Wangfang +12 位作者 KANG Qi LAN Ding LI Kai LI Weibin LIU Y C LUO Xinghong MIAO Jianyin WANG Qinggong WANG Shuangfeng ZHANG Tao ZHANG Xingwang ZHANG Yonghai ZHENG Huiqiong 《空间科学学报》 CAS CSCD 北大核心 2022年第4期772-785,共14页
Microgravity science is an important branch of space science.Its major objective is to study the laws of materials movement in microgravity,as well as to reveal the influence of gravity on the movement of materials in... Microgravity science is an important branch of space science.Its major objective is to study the laws of materials movement in microgravity,as well as to reveal the influence of gravity on the movement of materials in different gravity environments.Application researches relevant to these basic studies are also important contents of microgravity science.The advanced subjects,to some extent,reflect the ability of human beings to understand nature and the R&D level in this field in various countries.In this paper,the recent progress and the latest achievements of microgravity science and application researches in China aboard space platforms such as the Core Capsule Tianhe of the China Space Station(CSS)and satellites,as well as utilizing ground-based short-term microgravity facilities such as the Drop Tower Beijing and TUFF,are summarized,which cover the following sub-disciplines:microgravity fluid physics,microgravity combustion science,space materials science,space fundamental physics,space bio-technology,and relevant space technology applications. 展开更多
关键词 Microgravity science China Space Station(CSS) Ground-based short-term microgravity platforms Microgravity fluid physics Microgravity combustion science Space materials science Space fundamental physics Space bio-technology
下载PDF
Relationship between the Fundamental Constants of Physics Obtained from the Uncertainty Principle for Energy and Time 被引量:1
8
作者 Stanislaw Olszewski 《Journal of Modern Physics》 2015年第5期622-626,共5页
An attempt is done to calculate the value of the elementary electron charge from its relation to the Planck constant and the speed of light. This relation is obtained, in the first step, from the Pauli analysis of the... An attempt is done to calculate the value of the elementary electron charge from its relation to the Planck constant and the speed of light. This relation is obtained, in the first step, from the Pauli analysis of the strength of the electric field associated with an elementary emission process of energy. In the next step, the uncertainty principle is applied to both the emission time and energy. The theoretical result for e is roughly close to the experimental value of the electron charge. 展开更多
关键词 Fundamental Constants of Physics Uncertainty Principle for Energy and Time
下载PDF
Basic Notions of Classical Physics
9
作者 Vladimir S. Netchitailo 《Journal of High Energy Physics, Gravitation and Cosmology》 2023年第4期1187-1207,共21页
Classical Physics is a branch of Physics that should be described by classical notions, which define emergent phenomena. An Emergent Phenomenon is a property that is a result of simple interactions that work cooperati... Classical Physics is a branch of Physics that should be described by classical notions, which define emergent phenomena. An Emergent Phenomenon is a property that is a result of simple interactions that work cooperatively to create a more complex interaction. Physically, simple interactions occur at a microscopic level, and the collective result can be observed at a macroscopic level. The developed Hypersphere World-Universe Model (WUM) introduces classical notions, when the very first ensemble of particles was created at the cosmological time π<sub>M</sub> ≅ 10<sup>-18</sup> and become possible to introduce the notion “Medium of the World”. We emphasize that Classical Physics is principally different from Quantum Physics that describes quantum objects, which have four-momenta only. Classical Physics is dealing with ensembles of quantum objects! The present paper discusses the Basic Notions of Classical Physics considering a principally different cosmological model WUM, which is, in fact, a Paradigm Shift for Cosmology. WUM is a natural continuation of Classical Physics, and it can already serve as a basis for a New Cosmology proposed by Paul Dirac in 1937. 展开更多
关键词 World-Universe Model Space and Time Aether Dark Matter GRAVITY GRAVITOMAGNETISM Fundamental physical Constants Creation of Matter Primary Notions
下载PDF
Decisive Role of Gravitational Parameter G in Cosmology
10
作者 Vladimir S. Netchitailo 《Journal of High Energy Physics, Gravitation and Cosmology》 2023年第3期611-625,共15页
In 1937, P. Dirac proposed the Large Number Hypothesis and the Hypothesis of the variable gravitational “constant”, and later added the notion of continuous creation of Matter in the World. The Hypersphere World-Uni... In 1937, P. Dirac proposed the Large Number Hypothesis and the Hypothesis of the variable gravitational “constant”, and later added the notion of continuous creation of Matter in the World. The Hypersphere World-Universe Model (WUM) follows these ideas, albeit introducing a different mechanism of Matter creation. In this paper, we show that Gravitational parameter G that can be measured directly makes measurable all Cosmological parameters, which cannot be measured directly. 展开更多
关键词 World-Universe Model Fundamental physical Constants Primary Cosmological Parameters Dirac Large Number Intergalactic Plasma Medium of the World Age of Universe Maxwell’s Equations
下载PDF
Zero-to ultralow-field nuclear magnetic resonance and its applications 被引量:2
11
作者 Min Jiang Ji Bian +6 位作者 Qing Li Ze Wu Haowen Su Minxiang Xu Yuanhong Wang Xin Wang Xinhua Peng 《Fundamental Research》 CAS 2021年第1期68-84,共17页
As a complementary analysis tool to conventional high-field nuclear magnetic resonance(NMR),zero-to ultralow-field(ZULF)NMR detects nuclear magnetization signals in the sub-microtesla regime.Spin-exchange relaxation-f... As a complementary analysis tool to conventional high-field nuclear magnetic resonance(NMR),zero-to ultralow-field(ZULF)NMR detects nuclear magnetization signals in the sub-microtesla regime.Spin-exchange relaxation-free(SERF)atomic magnetometers provide a new generation of sensitive detectors for ZULF NMR.Owing to features such as low cost,high resolution,and portability,ZULF NMR has recently attracted considerable attention in chemistry,biology,medicine,and tests of fundamental physics.This review describes the basic principles,methodology,and recent experimental and theoretical development of ZULF NMR as well as its applications in spectroscopy,quantum control,imaging,NMR-based quantum devices,and tests of fundamental physics.The future prospects of ZULF NMR are also discussed. 展开更多
关键词 zero-to ultralow-field NMR atomic magnetometer SPECTROSCOPY quantum control imaging NMR-based quantum devices tests of fundamental physics
原文传递
Some highlights of the Gamma-ray first four years of the Fermi Space Telescope
12
作者 Steven Ritz 《Frontiers of physics》 SCIE CSCD 2013年第6期693-713,共21页
The Fermi Gamma-ray Space Telescope, formerly called GLAST, measures the cosmic gamma-ray flux in the energy range 8 keV to 〉 300 GeV. In addition to breakthrough capabilities in energy coverage and localization, the... The Fermi Gamma-ray Space Telescope, formerly called GLAST, measures the cosmic gamma-ray flux in the energy range 8 keV to 〉 300 GeV. In addition to breakthrough capabilities in energy coverage and localization, the very large field of view enables observations of 20~ of the sky at any instant, and the entire sky on a timescale of a few hours. With its launch in 2008, Fermi opens a new and important window on a wide variety of phenomena, including pulsars, black holes and active galactic nuclei, gamma-ray bursts, supernova remnants and the origins of cosmic rays, and searches for hypothetical new phenomena such as particle dark matter annihilations. A brief overview and selected science highlights from the first four years are provided. 展开更多
关键词 high-energy gamma-ray astrophysics dark matter fundamental physics tests spacebased astrophysics space-based particle astrophysics gamma-ray bursts BLAZARS PULSARS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部