Epoxy resin,characterized by prominent mechanical and electric-insulation properties,is the preferred material for packaging power electronic devices.Unfortunately,the efficient recycling and reuse of epoxy materials ...Epoxy resin,characterized by prominent mechanical and electric-insulation properties,is the preferred material for packaging power electronic devices.Unfortunately,the efficient recycling and reuse of epoxy materials with thermally cross-linked molecular structures has become a daunting challenge.Here,we propose an economical and operable recycling strategy to regenerate waste epoxy resin into a high-performance material.Different particle size of waste epoxy micro-spheres(100–600μm)with core-shell structure is obtained through simple mechanical crushing and boron nitride surface treatment.By using smattering epoxy monomer as an adhesive,an eco-friendly composite material with a“brick-wall structure”can be formed.The continuous boron nitride pathway with efficient thermal conductivity endows eco-friendly composite materials with a preeminent thermal conductivity of 3.71 W m^(−1)K^(−1) at a low content of 8.5 vol%h-BN,superior to pure epoxy resin(0.21 W m^(−1)K^(−1)).The composite,after secondary recycling and reuse,still maintains a thermal conductivity of 2.12 W m^(−1)K^(−1) and has mechanical and insulation properties comparable to the new epoxy resin(energy storage modulus of 2326.3 MPa and breakdown strength of 40.18 kV mm^(−1)).This strategy expands the sustainable application prospects of thermosetting polymers,offering extremely high economic and environmental value.展开更多
We prepared concretes(RC0, RC30, and RC100) with three different mixes. The poresize distribution parameters of RAC were examined by high-precision mercury intrusion method(MIM) and nuclear magnetic resonance(NMR...We prepared concretes(RC0, RC30, and RC100) with three different mixes. The poresize distribution parameters of RAC were examined by high-precision mercury intrusion method(MIM) and nuclear magnetic resonance(NMR) imaging. A capillary-bundle physical model with random-distribution pores(improved model, IM) was established according to the parameters, and dry-shrinkage strain values were calculated and verified. Results show that in all pore types, capillary pores, and gel pores have the greatest impacts on concrete shrinkage, especially for pores 2.5-50 and 50-100 nm in size. The median radii are 34.2, 31, and 34 nm for RC0, RC30, and RC100, respectively. Moreover, the internal micropore size distribution of RC0 differs from that of RC30 and RC100, and the pore descriptions of MIM and NMR are consistent both in theory and in practice. Compared with the traditional capillary-bundle model, the calculated results of IM have higher accuracy as demonstrated by experimental verifi cation.展开更多
Vitrimer is a new type of material that combine the advantages of thermoplastic and thermoset materials.The rapid dynamic exchange reactions at high temperature allow the topology of cross-linked networks to change an...Vitrimer is a new type of material that combine the advantages of thermoplastic and thermoset materials.The rapid dynamic exchange reactions at high temperature allow the topology of cross-linked networks to change and rearrange while keeping material structures and properties intact.The concept of vitrimer has emerged to provide a viable strategy for the recycling of highperformance polymer materials,and lots of research works have been carried out for the development of various types of vitrimers.In addition,the recycling strategies for vitrimers are particularly important to determine the performance and potential applications of the recovered materials.Therefore,it is an innovative and valu-able perspective to discuss vitrimer materials according to their different recycling strategies.In this review,we start with a brief overview of vitrimers,and then,focus on recycling strategies for vitrimers.Specifically,we highlight the advantages and disadvan-tages of the two different recycling strategies:physical and chemi-cal recycling methods,and then explore the feasibility of upcycling vitrimers using 3D printing technology.Finally,the impact of recy-cling strategies on vitrimer materials and the prospects for max-imizing the use of vitrimer materials are discussed.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51977084 and 52307025).
文摘Epoxy resin,characterized by prominent mechanical and electric-insulation properties,is the preferred material for packaging power electronic devices.Unfortunately,the efficient recycling and reuse of epoxy materials with thermally cross-linked molecular structures has become a daunting challenge.Here,we propose an economical and operable recycling strategy to regenerate waste epoxy resin into a high-performance material.Different particle size of waste epoxy micro-spheres(100–600μm)with core-shell structure is obtained through simple mechanical crushing and boron nitride surface treatment.By using smattering epoxy monomer as an adhesive,an eco-friendly composite material with a“brick-wall structure”can be formed.The continuous boron nitride pathway with efficient thermal conductivity endows eco-friendly composite materials with a preeminent thermal conductivity of 3.71 W m^(−1)K^(−1) at a low content of 8.5 vol%h-BN,superior to pure epoxy resin(0.21 W m^(−1)K^(−1)).The composite,after secondary recycling and reuse,still maintains a thermal conductivity of 2.12 W m^(−1)K^(−1) and has mechanical and insulation properties comparable to the new epoxy resin(energy storage modulus of 2326.3 MPa and breakdown strength of 40.18 kV mm^(−1)).This strategy expands the sustainable application prospects of thermosetting polymers,offering extremely high economic and environmental value.
基金Funded by the National Natural Science Foundation of China(51202304)the China Postdoctoral Science Foundation(2014M552320)+1 种基金Scientific,the Technological Talents’Special Funds of Wanzhou District and Scientific and Technological Research Program of Chongqing Municipal Education Commission(KJ1401016)the Youth Project of Chongqing Three Gorges College(13QN-20)
文摘We prepared concretes(RC0, RC30, and RC100) with three different mixes. The poresize distribution parameters of RAC were examined by high-precision mercury intrusion method(MIM) and nuclear magnetic resonance(NMR) imaging. A capillary-bundle physical model with random-distribution pores(improved model, IM) was established according to the parameters, and dry-shrinkage strain values were calculated and verified. Results show that in all pore types, capillary pores, and gel pores have the greatest impacts on concrete shrinkage, especially for pores 2.5-50 and 50-100 nm in size. The median radii are 34.2, 31, and 34 nm for RC0, RC30, and RC100, respectively. Moreover, the internal micropore size distribution of RC0 differs from that of RC30 and RC100, and the pore descriptions of MIM and NMR are consistent both in theory and in practice. Compared with the traditional capillary-bundle model, the calculated results of IM have higher accuracy as demonstrated by experimental verifi cation.
基金This work was supported by the Natural National Science Foundation of China[51903210]the Ningbo Natural Science Foundation[202003N4061]Innovation and Entrepreneurship Training Program for College Students of Northwestern Polytechnical University[S202110699694].
文摘Vitrimer is a new type of material that combine the advantages of thermoplastic and thermoset materials.The rapid dynamic exchange reactions at high temperature allow the topology of cross-linked networks to change and rearrange while keeping material structures and properties intact.The concept of vitrimer has emerged to provide a viable strategy for the recycling of highperformance polymer materials,and lots of research works have been carried out for the development of various types of vitrimers.In addition,the recycling strategies for vitrimers are particularly important to determine the performance and potential applications of the recovered materials.Therefore,it is an innovative and valu-able perspective to discuss vitrimer materials according to their different recycling strategies.In this review,we start with a brief overview of vitrimers,and then,focus on recycling strategies for vitrimers.Specifically,we highlight the advantages and disadvan-tages of the two different recycling strategies:physical and chemi-cal recycling methods,and then explore the feasibility of upcycling vitrimers using 3D printing technology.Finally,the impact of recy-cling strategies on vitrimer materials and the prospects for max-imizing the use of vitrimer materials are discussed.