期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Microfluidic-based single cell trapping using a combination of stagnation point flow and physical barrier 被引量:2
1
作者 Miao Yu Zongzheng Chen +3 位作者 Cheng Xiang Bo Liu Handi Xie Kairong Qin 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第3期422-429,共8页
Single cell trapping in vitro by microfluidic device is an emerging approach for the study of the relationship between single cells and their dynamic biochemical microenvironments. In this paper, a hydrodynamic-based ... Single cell trapping in vitro by microfluidic device is an emerging approach for the study of the relationship between single cells and their dynamic biochemical microenvironments. In this paper, a hydrodynamic-based microfluidic device for single cell trapping is designed using a combination of stagnation point flow and physical barrier.The microfluidic device overcomes the weakness of the traditional ones, which have been only based upon either stagnation point flows or physical barriers, and can conveniently load dynamic biochemical signals to the trapped cell. In addition, it can connect with a programmable syringe pump and a microscope to constitute an integrated experimental system.It is experimentally verified that the microfluidic system can trap single cells in vitro even under flow disturbance and conveniently load biochemical signals to the trapped cell. The designed micro-device would provide a simple yet effective experimental platform for further study of the interactions between single cells and their microenvironments. 展开更多
关键词 Single cell trapping Microfluidics Stagnation point flow physical barrier Hydrodynamic tweezers Dynamic biochemical signal
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部