The rupture behavior of electron beam physical vapour deposition(EBPVD) Ni/Ni3Al microlaminates composites subjected to tensile load were studied through the numerical method of finite element. 2D model and 3D model...The rupture behavior of electron beam physical vapour deposition(EBPVD) Ni/Ni3Al microlaminates composites subjected to tensile load were studied through the numerical method of finite element. 2D model and 3D model of EBPVD Ni/Ni3Al microlaminates with a centre crack were built respectively. A new scheme for building 3D crack point models was proposed and different types of elements were used. And stress intensity factors around the tip of the crack were obtained correspondingly. The results indicate that the key of the stress intensity factor for 2D model is presumably the average of the keys for 3D model in thickness and the key at the interface is the biggest, which suggests the propagation of the crack greatly likely happen at the interface.展开更多
By using physical vapor deposition(PVD)to grow metallic nanorods,the characteristic length is controllable,which can be identified by two different growth modes:Mode I and Mode II.In Mode I,the growth of metallic nano...By using physical vapor deposition(PVD)to grow metallic nanorods,the characteristic length is controllable,which can be identified by two different growth modes:Mode I and Mode II.In Mode I,the growth of metallic nanorods is dominated by the monolayer surface steps.Whereas in Mode II,the growth mechanism is mainly determined by the multilayer surface steps.In this work,we focused on the analysis of the physical process of Mode I,in which the adatoms diffuse on the monolayer surface at beginning,then diffuse down to the next monolayer surface,and finally result in the metallic nanorods growth.Based on the physical process,both the variations of the characteristic length and the numerical solutions were theoretically proposed.In addition,the twodimensional(2 D)lattice kinetic Monte Carlo simulations were employed to verify the theoretical derivation of the metallic nanorods growth.Our results pay a new way for modifying the performance of metallic nanorods-based applications and devices.展开更多
Laminates with alternating layers of NiCoCrAlY and NiCr were fabricated by using electron beam physical vapor deposition (EB-PVD) method. The influence of the substrate temperature on morphology of the laminates was i...Laminates with alternating layers of NiCoCrAlY and NiCr were fabricated by using electron beam physical vapor deposition (EB-PVD) method. The influence of the substrate temperature on morphology of the laminates was investigated. The results show that in order to produce NiCoCrAlY/NiCr laminates with lower porosity, higher substrate temperature is required. The mechanical properties of the as-deposited samples and heat-treated samples were examined using tensile tests. The stress-strain curve of the as-deposited laminate shows a typical characteristic of multilayered materials and the fracture behavior is improved by annealing the samples at high temperatures. The tensile strength of the samples annealed at 760℃ is 658.4MPa, and the elongation reaches 6.2%.展开更多
The coatings of W-Ti carbides on the surface of diamond was obtained by using physical vapor deposition (PVD), during which WO3 powders pre-treated with hydrofluoric acid were reduced by titanium hydride in vacuum at ...The coatings of W-Ti carbides on the surface of diamond was obtained by using physical vapor deposition (PVD), during which WO3 powders pre-treated with hydrofluoric acid were reduced by titanium hydride in vacuum at 850 ℃. The resistance of diamond to corrosion at high-temperature was investigated. The formation of W-Ti carbides on the surface of diamond was verified by X-ray diffraction analysis, the interface state between diamond and matrix in metaLbase diamond composite was observed by scanning electron microscope. The results showed that the carbide coating is easy to be formed at low deposition temperature on the surface of diamond, while the resistance of diamond to corrosion at highutemperature and the strength of bonding between diarnond and metal matrix are effectively improved.展开更多
The physical vapour deposition of Ni atoms on α-Fe(001) surface under different deposition temperatures were simulated by molecular dynamics to study the intermixing and microstructure of the interracial region. Th...The physical vapour deposition of Ni atoms on α-Fe(001) surface under different deposition temperatures were simulated by molecular dynamics to study the intermixing and microstructure of the interracial region. The results indicate that Ni atoms hardly penetrate into Fe substrate while Fe atoms easily diffuse into Ni deposition layers. The thickness of the intermixing region is temperature-dependent, with high temperatures yielding larger thicknesses. The deposited layers are mainly composed of amorphous phase due to the abnormal deposition behaviour of Ni and Fe. In the deposited Ni-rich phase, the relatively stable metallic compound B2 structured FeNi is found under high deposition temperature conditions.展开更多
Over the past years, great achievements have been made in the development of coating technologies for surface improvement of aluminum alloys. Despite these achievements, the role in the market strongly depends on the ...Over the past years, great achievements have been made in the development of coating technologies for surface improvement of aluminum alloys. Despite these achievements, the role in the market strongly depends on the ability of surface coating technology under technical and economic considerations to meet the increased demands for heavy tribological applications of aluminum alloys. Microplasma oxidation (MPO) technology has recently been studied as a novel and effective means to provide thick and hard ceramic coating with improved properties such as excellent load-bearing and wear resistance properties on aluminum alloys. The present work covers the evaluation of the performances of current single and duplex coatings combining MPO, physical vapor deposition (PVD), and plasma assisted chemical vapor deposition (PACVD) coatings on aluminum alloys. It suggests that the MPO coating is a promising candidate for design engineers to apply aluminum alloys to heavy load-bearing applications. The prospective future for the research on MPO coatings is introduced as well.展开更多
文摘The rupture behavior of electron beam physical vapour deposition(EBPVD) Ni/Ni3Al microlaminates composites subjected to tensile load were studied through the numerical method of finite element. 2D model and 3D model of EBPVD Ni/Ni3Al microlaminates with a centre crack were built respectively. A new scheme for building 3D crack point models was proposed and different types of elements were used. And stress intensity factors around the tip of the crack were obtained correspondingly. The results indicate that the key of the stress intensity factor for 2D model is presumably the average of the keys for 3D model in thickness and the key at the interface is the biggest, which suggests the propagation of the crack greatly likely happen at the interface.
文摘By using physical vapor deposition(PVD)to grow metallic nanorods,the characteristic length is controllable,which can be identified by two different growth modes:Mode I and Mode II.In Mode I,the growth of metallic nanorods is dominated by the monolayer surface steps.Whereas in Mode II,the growth mechanism is mainly determined by the multilayer surface steps.In this work,we focused on the analysis of the physical process of Mode I,in which the adatoms diffuse on the monolayer surface at beginning,then diffuse down to the next monolayer surface,and finally result in the metallic nanorods growth.Based on the physical process,both the variations of the characteristic length and the numerical solutions were theoretically proposed.In addition,the twodimensional(2 D)lattice kinetic Monte Carlo simulations were employed to verify the theoretical derivation of the metallic nanorods growth.Our results pay a new way for modifying the performance of metallic nanorods-based applications and devices.
文摘Laminates with alternating layers of NiCoCrAlY and NiCr were fabricated by using electron beam physical vapor deposition (EB-PVD) method. The influence of the substrate temperature on morphology of the laminates was investigated. The results show that in order to produce NiCoCrAlY/NiCr laminates with lower porosity, higher substrate temperature is required. The mechanical properties of the as-deposited samples and heat-treated samples were examined using tensile tests. The stress-strain curve of the as-deposited laminate shows a typical characteristic of multilayered materials and the fracture behavior is improved by annealing the samples at high temperatures. The tensile strength of the samples annealed at 760℃ is 658.4MPa, and the elongation reaches 6.2%.
文摘The coatings of W-Ti carbides on the surface of diamond was obtained by using physical vapor deposition (PVD), during which WO3 powders pre-treated with hydrofluoric acid were reduced by titanium hydride in vacuum at 850 ℃. The resistance of diamond to corrosion at high-temperature was investigated. The formation of W-Ti carbides on the surface of diamond was verified by X-ray diffraction analysis, the interface state between diamond and matrix in metaLbase diamond composite was observed by scanning electron microscope. The results showed that the carbide coating is easy to be formed at low deposition temperature on the surface of diamond, while the resistance of diamond to corrosion at highutemperature and the strength of bonding between diarnond and metal matrix are effectively improved.
基金Project supported by the National Natural Science Foundation for Young Scientists of China (Grant No. 10702058)the China Postdoctoral Science Foundation (Grant No. 20090451100)
文摘The physical vapour deposition of Ni atoms on α-Fe(001) surface under different deposition temperatures were simulated by molecular dynamics to study the intermixing and microstructure of the interracial region. The results indicate that Ni atoms hardly penetrate into Fe substrate while Fe atoms easily diffuse into Ni deposition layers. The thickness of the intermixing region is temperature-dependent, with high temperatures yielding larger thicknesses. The deposited layers are mainly composed of amorphous phase due to the abnormal deposition behaviour of Ni and Fe. In the deposited Ni-rich phase, the relatively stable metallic compound B2 structured FeNi is found under high deposition temperature conditions.
文摘Over the past years, great achievements have been made in the development of coating technologies for surface improvement of aluminum alloys. Despite these achievements, the role in the market strongly depends on the ability of surface coating technology under technical and economic considerations to meet the increased demands for heavy tribological applications of aluminum alloys. Microplasma oxidation (MPO) technology has recently been studied as a novel and effective means to provide thick and hard ceramic coating with improved properties such as excellent load-bearing and wear resistance properties on aluminum alloys. The present work covers the evaluation of the performances of current single and duplex coatings combining MPO, physical vapor deposition (PVD), and plasma assisted chemical vapor deposition (PACVD) coatings on aluminum alloys. It suggests that the MPO coating is a promising candidate for design engineers to apply aluminum alloys to heavy load-bearing applications. The prospective future for the research on MPO coatings is introduced as well.