期刊文献+
共找到5,594篇文章
< 1 2 250 >
每页显示 20 50 100
Structure and electrical properties of polysilicon films doped with ammonium tetraborate tetrahydrate
1
作者 Yehua Tang Yuchao Wang +1 位作者 Chunlan Zhou Ke-Fan Wang 《Journal of Semiconductors》 EI CAS CSCD 2024年第10期60-68,共9页
Here,p-type polysilicon films are fabricated by ex-situ doping method with ammonium tetraborate tetrahydrate(ATT)as the boron source,named ATT-pPoly.The effects of ATT on the properties of polysilicon films are compre... Here,p-type polysilicon films are fabricated by ex-situ doping method with ammonium tetraborate tetrahydrate(ATT)as the boron source,named ATT-pPoly.The effects of ATT on the properties of polysilicon films are comprehensively analyzed.The Raman spectra reveal that the ATT-pPoly film is composed of grain boundary and crystalline regions.The preferred orientation is the(111)direction.The grain size increases from 16−23 nm to 21−47 nm,by~70%on average.Comparing with other reported films,Hall measurements reveal that the ATT-pPoly film has a higher carrier concentration(>10^(20)cm^(−3))and higher carrier mobility(>30 cm2/(V·s)).The superior properties of the ATT-pPoly film are attributed to the heavy doping and improved grain size.Heavy doping property is proved by the mean sheet resistance(Rsheet,m)and distribution profile.The R_(sheet,m)decreases by more than 30%,and it can be further decreased by 90%if the annealing temperature or duration is increased.The boron concentration of ATT-pPoly film annealed at 950℃ for 45 min is~3×10^(20)cm^(−3),and the distribution is nearly the same,except near the surface.Besides,the standard deviation coefficient(σ)of Rsheet,m is less than 5.0%,which verifies the excellent uniformity of ATT-pPoly film. 展开更多
关键词 polysilicon film boron doping ammonium tetraborate tetrahydrate(ATT) electrical properties CRYSTALLIZATION
下载PDF
Effect of Zr and Sc on mechanical properties and electrical conductivities of Al wires 被引量:9
2
作者 钞润泽 管西花 +4 位作者 管仁国 铁镝 连超 王祥 张俭 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第10期3164-3169,共6页
In order to obtain the Al wires with good mechanical properties and high electrical conductivities, conductive wires of Al-0.16 Zr, Al-0.16 Sc, Al-0.12Sc-0.04Zr(mass fraction, %) and pure Al(99.996%) were produced... In order to obtain the Al wires with good mechanical properties and high electrical conductivities, conductive wires of Al-0.16 Zr, Al-0.16 Sc, Al-0.12Sc-0.04Zr(mass fraction, %) and pure Al(99.996%) were produced with the diameter of 9.5 mm by continuous rheo-extrusion technology, and the extruded materials were heat treated and analyzed. The results show that the separate additions of 0.16% Sc and 0.16% Zr to pure Al improve the ultimate tensile strength but reduce the electrical conductivity, and the similar trend is found in the Al-0.12Sc-0.04 Zr alloy. After the subsequent heat treatment, the wire with the optimum comprehensive properties is Al-0.12Sc-0.04 Zr alloy, of which the ultimate tensile strength and electrical conductivity reach 160 MPa and 64.03%(IACS), respectively. 展开更多
关键词 alloy composition Al wires mechanical properties electrical conductivity continuous rheo-extrusion
下载PDF
Enhanced thermal and electrical properties of poly (D,L-lactide)/ multi-walled carbon nanotubes composites by in-situ polymerization 被引量:5
3
作者 李清华 周勤华 +4 位作者 邓丹 俞巧珍 谷俐 龚科达 徐科航 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第5期1421-1427,共7页
Biodegradable poly (D,L-lactide) (PLA)/carboxyl-functionalized multi-walled carbon nanotubes (c-MWCNTs) composites were achieved via in-situ polymerization. These as-prepared composite materials were characteriz... Biodegradable poly (D,L-lactide) (PLA)/carboxyl-functionalized multi-walled carbon nanotubes (c-MWCNTs) composites were achieved via in-situ polymerization. These as-prepared composite materials were characterized with FT-IR, XRD, TG, DSC, SEM, and high insulation resistance meter. The results demonstrate that the multi-walled carbon nanotube was carboxyl functionalized, which improved the collection between c-MWCNTs and PLA, and further realized the graft copolymerization of c-MWCNTs and PLA. There is a higher glass transition temperature and a lower pyrolysis temperature of PLA/c-MWCNTs composites than pure PLA. The c-MWCNTs gave a better dispersion than unmodified MWCNTs in the PLA matrix, and an even coating of PLA on the surface of c-MWCNTs was obtained, which increased the interfacial interaction. High insulation resistance analysis showed that the addition of c-MWCNTs increased the electric conductivity, and c-MWCNTs performed against the large dielectric coefficient and electrostatic state of PLA. These results demonstrated that c-MWCNTs modified PLA composites were beneficial for potential application in the development of heat-resisting and conductivity plastic engineering. 展开更多
关键词 in-situ polymerization multi-walled carbon nanotubes POLYLACTIDE thermal properties electrical conductivity
下载PDF
Effect of Ba_(0.5)Bi_(0.5)Fe_(0.9)Sn_(0.1)O_3 addition on electrical properties of BaCo_(0.02)~ⅡCo_(0.04)~ⅢBi_(0.94)O_3 thick-film thermistors
4
作者 杨云 袁昌来 +3 位作者 陈国华 杨涛 骆颖 周昌荣 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第12期4008-4017,共10页
Thick-film thermistor with negative temperature coefficient(NTC), low room-temperature resistivity and modest thermistor constant was screen-printed on the alumina substrate by the combination of 30.94III0.04II0.02 ... Thick-film thermistor with negative temperature coefficient(NTC), low room-temperature resistivity and modest thermistor constant was screen-printed on the alumina substrate by the combination of 30.94III0.04II0.02 B OBi Coa Co with Ba0.5Bi0.5Fe0.9Sn0.1O3. The electrical properties of the thick films were characterized by a digital multimeter, a Keithley 2400 and an impedance analyzer. The results show that with the Ba0.5Bi0.5Fe0.9Sn0.1O3 content increasing from 0.05 to 0.25, the values of room-temperature resistivity, thermistor constant and peak voltage of the thick films increases and are in the ranges of 1.47-26.5 ?·cm, 678-1345 K and 18.9-47.0 V, respectively. The corresponding current at the peak voltage of the thick films decreases and is in the range of 40-240 m A. The impedance spectroscopy measurement demonstrates that the as-prepared thick films show the abnormal electrical heterogeneous microstructure, consisting of high-resistive grains and less resistive grain boundary regions. It can be concluded that the addition of Ba0.5Bi0.5Fe0.9Sn0.1O3 into 30.94III0.04II0.02 Ba Co OBi Co improves the thermistor behavior and but also deteriorates the current characteristics. 展开更多
关键词 NTC thick films BaCo0.02ⅡCo0.04ⅢBi0.94O3 Ba0.5Bi0.5Fe0.9Sn0.1O3 electrical property
下载PDF
Electronic properties of 2D materials and their junctions
5
作者 Taposhree Dutta Neha Yadav +8 位作者 Yongling Wu Gary J.Cheng Xiu Liang Seeram Ramakrishna Aoussaj Sbai Rajeev Gupta Aniruddha Mondal Zheng Hongyu Ashish Yadav 《Nano Materials Science》 EI CAS CSCD 2024年第1期1-23,共23页
With an extensive range of distinctive features at nano meter-scale thicknesses,two-dimensional(2D)materials drawn the attention of the scientific community.Despite tremendous advancements in exploratory research on 2... With an extensive range of distinctive features at nano meter-scale thicknesses,two-dimensional(2D)materials drawn the attention of the scientific community.Despite tremendous advancements in exploratory research on 2D materials,knowledge of 2D electrical transport and carrier dynamics still in its infancy.Thus,here we highlighted the electrical characteristics of 2D materials with electronic band structure,electronic transport,dielectric constant,carriers mobility.The atomic thinness of 2D materials makes substantially scaled field-effect transistors(FETs)with reduced short-channel effects conceivable,even though strong carrier mobility required for high performance,low-voltage device operations.We also discussed here about factors affecting 2D materials which easily enhanced the activity of those materials for various applications.Presently,Those 2D materials used in state-of-the-art electrical and optoelectronic devices because of the extensive nature of their electronic band structure.2D materials offer unprecedented freedom for the design of novel p-n junction device topologies in contrast to conventional bulk semiconductors.We also,describe the numerous 2D p-n junctions,such as homo junction and hetero junction including mixed dimensional junctions.Finally,we talked about the problems and potential for the future. 展开更多
关键词 2D materials electrical properties p-n junctions Mixed hereto junctions Homo junctions electrical transport
下载PDF
Achieving Synergistic Improvement in Dielectric and Energy Storage Properties of All-Organic Poly(Methyl Methacrylate)-Based Copolymers Via Establishing Charge Traps
6
作者 Guanghu He Huang Luo +5 位作者 Chuanfang Yan Yuting Wan Dang Wu Hang Luo Yuan Liu Sheng Chen 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期308-319,共12页
How to achieve synergistic improvement of permittivity(ε_(r))and breakdown strength(E_(b))is a huge challenge for polymer dielectrics.Here,for the first time,theπ-conjugated comonomer(MHT)can simultaneously promote ... How to achieve synergistic improvement of permittivity(ε_(r))and breakdown strength(E_(b))is a huge challenge for polymer dielectrics.Here,for the first time,theπ-conjugated comonomer(MHT)can simultaneously promote theε_(r)and E_(b)of linear poly(methyl methacrylate)(PMMA)copolymers.The PMMA-based random copolymer films(P(MMA-co-MHT)),block copolymer films(PMMA-b-PMHT),and PMMA-based blend films were prepared to investigate the effects of sequential structure,phase separation structure,and modification method on dielectric and energy storage properties of PMMA-based dielectric films.As a result,the random copolymer P(MMA-coMHT)can achieve a maximumε_(r)of 5.8 at 1 kHz owing to the enhanced orientation polarization and electron polarization.Because electron injection and charge transfer are limited by the strong electrostatic attraction ofπ-conjugated benzophenanthrene group analyzed by the density functional theory(DFT),the discharge energy density value of P(MMA-co-PMHT)containing 1 mol%MHT units with the efficiency of 80%reaches15.00 J cm^(-3)at 872 MV m^(-1),which is 165%higher than that of pure PMMA.This study provides a simple and effective way to fabricate the high performance of polymer dielectrics via copolymerization with the monomer of P-type semi-conductive polymer. 展开更多
关键词 dielectric capacitor electrical properties energy density polymer dielectric semiconductor polymer
下载PDF
Ultrahigh thermoelectric properties of p‐type Bi_(x)Sb_(2−x)Te_(3) thin films with exceptional flexibility for wearable energy harvesting
7
作者 Zhuang‐Hao Zheng Yi‐Ming Zhong +9 位作者 Yi‐Liu Li Mohammad Nisar Adil Mansoor Fu Li Shuo Chen Guang‐Xing Liang Ping Fan Dongyan Xu Meng Wei Yue‐Xing Chen 《Carbon Energy》 SCIE EI CAS CSCD 2024年第8期273-284,共12页
Use of a flexible thermoelectric source is a feasible approach to realizing selfpowered wearable electronics and the Internet of Things.Inorganic thin films are promising candidates for fabricating flexible power supp... Use of a flexible thermoelectric source is a feasible approach to realizing selfpowered wearable electronics and the Internet of Things.Inorganic thin films are promising candidates for fabricating flexible power supply,but obtaining highthermoelectric‐performance thin films remains a big challenge.In the present work,a p‐type Bi_(x)Sb_(2−x)Te_(3) thin film is designed with a high figure of merit of 1.11 at 393 K and exceptional flexibility(less than 5%increase in resistance after 1000 cycles of bending at a radius of∼5 mm).The favorable comprehensive performance of the Bi_(x)Sb_(2−x)Te_(3) flexible thin film is due to its excellent crystallinity,optimized carrier concentration,and low elastic modulus,which have been verified by experiments and theoretical calculations.Further,a flexible device is fabricated using the prepared p‐type Bi_(x)Sb_(2−x)Te_(3) and n‐type Ag_(2)Se thin films.Consequently,an outstanding power density of∼1028μWcm^(−2)is achieved at a temperature difference of 25 K.This work extends a novel concept to the fabrication of highperformance flexible thin films and devices for wearable energy harvesting. 展开更多
关键词 Bi_(x)Sb_(2−x)Te_(3) electrical transport properties FLEXIBILITY THERMOelectrIC
下载PDF
Effect of SiO_2 addition on the microstructure and electrical properties of ZnO-based varistors 被引量:18
8
作者 Zhen-hong Wu Jian-hui Fang +2 位作者 Dong Xu Qin-dong Zhong Li-yi Shi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2010年第1期86-91,共6页
The microstructure and electrical properties of ZnO-based varistors with the SiO2 content in the range of 0-1.00mol% were prepared by a solid reaction route. The varistors were characterized by scanning electron micro... The microstructure and electrical properties of ZnO-based varistors with the SiO2 content in the range of 0-1.00mol% were prepared by a solid reaction route. The varistors were characterized by scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectrometry, inductively coupled plasma-atomic emission spectrometry, and X-ray photoelectron spectroscopy. The results indicate that the average grain size of ZnO decreases with the SiO2 content increasing. A new second phase (Zn2SiO4) and a glass phase (Bi2SiO5) are found. Element Si mainly exists in the grain boundary and plays an important role in controlling the Bi2O3 vaporization. The electric measurement shows that the incorporation of SiO2 can significantly improve the nonlinear properties of ZnO-based varistors, and the nonlinear coefficients of the varistors with SiO2 are in the range of 36.8-69.5. The varistor voltage reaches the maximum value of 463 V/mm and the leakage current reaches the minimum value of 0.11 μA at the SiO2 content of 0.75mol%. 展开更多
关键词 inorganic materials VARISTOR silicon dioxide electrical properties
下载PDF
Effect of annealing treatment on the structural, optical, and electrical properties of Al-doped ZnO thin films 被引量:11
9
作者 LI Li FANG Liang +5 位作者 CHEN Ximing LIU Gaobin LIU Jun YANG Fengfan FU Guangzong KONG Chunyang 《Rare Metals》 SCIE EI CAS CSCD 2007年第3期247-253,共7页
Highly conductive and transparent Al-doped ZnO (AZO) thin films were prepared from a zinc target containing Al (1.5 wt.%) by direct current (DC) and radio frequency (RF) reactive magnetron sputtering. The stru... Highly conductive and transparent Al-doped ZnO (AZO) thin films were prepared from a zinc target containing Al (1.5 wt.%) by direct current (DC) and radio frequency (RF) reactive magnetron sputtering. The structural, optical, and electrical properties of AZO films as-deposited and submitted to annealing treatment (at 300 and 400℃, respectively) were characterized using various techniques. The experimental results show that the properties of AZO thin films can be further improved by annealing treatment. The crystallinity of ZnO films improves after annealing treatment. The transmittances of the AZO thin films prepared by DC and RF reactive magnetron sputtering are up to 80% and 85% in the visible region, respectively. The electrical resistivity of AZO thin films prepared by DC reactive magnetron sputtering can be as low as 8.06 x 10-4 Ωcm after annealing treatment. It was also found that AZO thin films prepared by RF reactive magnetron sputtering have better structural and optical properties than that prepared by DC reactive magnetron sputtering. 展开更多
关键词 AZO thin films structure optical and electrical properties ANNEALING transmittance spectra electrical resistivity
下载PDF
Effect of sintering temperature on the physical properties and electrical contact properties of doped AgSnO_2 contact materials 被引量:7
10
作者 Hai-tao Wang Zi-xiang Wang +2 位作者 Lian-zheng Wang Jing-qin Wang Yan-cai Zhu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第11期1275-1285,共11页
AgSnO_ 2 electrical contact materials doped with Bi_2O_3,La_2O_3,and TiO_2 were successfully fabricated by the powder metallurgy method under different initial sintering temperatures.The electrical conductivity,densit... AgSnO_ 2 electrical contact materials doped with Bi_2O_3,La_2O_3,and TiO_2 were successfully fabricated by the powder metallurgy method under different initial sintering temperatures.The electrical conductivity,density,hardness,and contact resistance of the Ag Sn O_2/Bi_2O_3,AgSnO_2/La_2O_3,and AgSnO_2/Ti O_2 contact materials were measured and analyzed.The arc-eroded surface morphologies of the doped AgSnO_2 contact materials were investigated by scanning electron microscopy(SEM).The effects of the initial sintering temperature on the physical properties and electrical contact properties of the doped AgSnO_2 contact materials were discussed.The results indicate that the physical properties can be improved and the contact resistance of the AgSnO_2 contact materials can be substantially reduced when the materials are sintered under their optimal initial sintering temperatures. 展开更多
关键词 SINTERING TEMPERATURE CONTACT materials PHYSICAL properties electrical CONTACT properties
下载PDF
Responses of microbial activities and soil physical-chemical properties to the successional process of biological soil crusts in the Gurbantunggut Desert,Xinjiang 被引量:29
11
作者 BingChang ZHANG XiaoBing ZHOU YuanMing ZHANG 《Journal of Arid Land》 SCIE CSCD 2015年第1期101-109,共9页
Biological soil crusts (BSCs) are capable of modifying nutrient availability to favor the establishment of biogeochemical cycles. Microbial activities serve as critical roles for both carbon and nutrient transformat... Biological soil crusts (BSCs) are capable of modifying nutrient availability to favor the establishment of biogeochemical cycles. Microbial activities serve as critical roles for both carbon and nutrient transformation in BSCs. However, little is known about microbial activities and physical-chemical properties of BSCs in the Gurbantunggut Desert, Xinjiang, China. In the present research, a sampling line with 1-m wide and 20-m long was set up in each of five typical interdune areas selected randomly in the Gurbantunggut Desert. Within each sampling line, samples of bare sand sheet, algal crusts, lichen crusts and moss crusts were randomly collected at the depth of 0-2 cm. Varia- tions of microalgal biomass, microbial biomass, enzyme activities and soil physical-chemical properties in different succession of BSCs were analyzed. The relationships between microalgal biomass, microbial biomass, enzymatic activities and soil physical-chemical properties were explored by stepwise regression. Our results indicate that micro- algal biomass, microbial biomass and most of enzyme activities increased as the BSCs developed and their highest values occurred in lichen or moss crusts. Except for total K, the contents of most soil nutrients (organic C, total N, total P, available N, available P and available K) were the lowest in the bare sand sheet and significantly increased with the BSCs development, reaching their highest values in moss crusts. However, pH values significantly decreased as the BSCs developed. Significant and positive correlations were observed between chlorophyll a and microbial biomass C. Total P and N were positively associated with chlorophyll a and microbial biomass C, whereas there was a significant and negative correlation between microbial biomass and available P. The growth of cyanobacteria and microorganism contributed C and N in the soil, which offered substrates for enzyme activities thus increasing enzyme activities. Probably, improvement in enzyme activities increased soil fertility and promoted the growth of cyanobacteria, eukary- otic algae and heterotrophic microorganism, with the accelerating succession of BSCs. The present research found that microalgal-microbial biomass and enzyme activities played important roles on the contents of nutrients in the successional stages of BSCs and helped us to understand developmental mechanism in the succession of BSCs. 展开更多
关键词 chlorophyll a microbial biomass C soil enzyme physical-chemical properties biological soil crusts
下载PDF
Effects of silver powder particle size on the microstructure and properties of Ag-Yb_2O_3 electrical contact materials prepared by spark plasma sintering 被引量:6
12
作者 CHEN Xiaohua,JIA Chengchang,and LIU Xiangbing School of Materials Science and Engineering,University of Science and Technology Beijing,Beijing 100083,China 《Rare Metals》 SCIE EI CAS CSCD 2010年第4期366-370,共5页
mg-Yb203 electrical contact materials were fabricated by spark plasma sintefing (SPS). The effects of silver powder particle size on the microstructure and properties of the samples were investigated. The surface mo... mg-Yb203 electrical contact materials were fabricated by spark plasma sintefing (SPS). The effects of silver powder particle size on the microstructure and properties of the samples were investigated. The surface morphologies of the sintered samples were examined by optical microscope (OM), and the fracture morphologies were observed by scanning electron microscopy (SEM). The physical and mechanical properties such as density, electrical resistivity, microhardness, and tensile strength were also tested. The results show that the silver powder particle size has evident effects on the sintered materials. Comparing with coarse silver powder (5 ktm), homogeneous and fme microstmcture was obtained by fine silver powder (_〈0.5-1am). At the same time, the electrical conductivity, microhardness, and tensile strength of the sin- tered samples with fine silver powder were higher than those of the samples with coarse silver powder. However, silver powder particle size has little influence on the relative densities, which of all samples (both by free and coarse silver powders) is more than 95%. The fracture characteristics are ductile. 展开更多
关键词 COMPOSITES electrical contact materials spark plasma sintering particle size microstructure physical properties mechanical properties
下载PDF
Microstructure and Electrical Properties of Er_2O_3-Doped ZnO-Based Varistor Ceramics Prepared by High-Energy Ball Milling 被引量:7
13
作者 刘宏玉 孔慧 +2 位作者 蒋冬梅 石旺舟 马学鸣 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第1期120-123,共4页
The microstructure, electrical properties and density of ZnO-based varistor ceramics with different Er2O3 content prepared by high-energy ball milling (HEBM) and sintered at 800℃ were investigated. With increasing ... The microstructure, electrical properties and density of ZnO-based varistor ceramics with different Er2O3 content prepared by high-energy ball milling (HEBM) and sintered at 800℃ were investigated. With increasing Er2O3 content, the ZnO grain size decreases due to the Er-rich phases inhibiting grain growth ; and nonlinear coefficient ( α ) decreases because of the decrease of barrier height (φB) The breakdown voltage (Eb) and density increase, whereas leakage current (IL) decreases with increasing Er2O3 content. The barrier height (φB), donor concentration (Nd), density of interface states (Ns) decrease and barrier width (ω) increases with increasing Er2O3 content due to acceptor effect of Er2O3 in varistor ceramics. 展开更多
关键词 VARISTOR Er2O3 MICROSTRUCTURE electrical property high-energy ball milling low-temperature sintering rare earths
下载PDF
Microstructure and electrical properties of Y_2O_3-doped ZnO-based varistor ceramics prepared by high-energy ball milling 被引量:14
14
作者 Hongyu Liu Xueming Ma +1 位作者 Dongmei Jiang Wangzhou Shi 《Journal of University of Science and Technology Beijing》 CSCD 2007年第3期266-270,共5页
Y2O3-doped ZnO-based varistor ceramics were prepared using high-energy ball milling (HEBM) and low-temperature sin- tering technique, with voltage-gradient of 1934-2197 V/mm, non-linear coefficients of 20.8-21.8, le... Y2O3-doped ZnO-based varistor ceramics were prepared using high-energy ball milling (HEBM) and low-temperature sin- tering technique, with voltage-gradient of 1934-2197 V/mm, non-linear coefficients of 20.8-21.8, leakage currents of 0.59-1.04 μA, and densities of 5.46-5.57 g/cm3. With increasing Y2O3 content, the voltage-gradient increases because of the decrease of ZnO grain size; the non-linear coefficient and the leakage current improve but the density decreases because of more porosity; the donor con- centration and density of interface states decrease, whereas the barrier height and width increase because of the acceptor effect of Y2O3 in varistor ceramics. 展开更多
关键词 inorganic materials electrical properties high-energy ball milling VARISTOR MICROSTRUCTURE low-temperature sintering zinc oxide yttrium oxide
下载PDF
Effects of Rare-Earth La_2O_3 Addition on Microstructures and Electrical Properties of SrTiO_3 Varistor-Capacitor Dual Functional Ceramics 被引量:6
15
作者 季惠明 李翠霞 +2 位作者 孟辉 甘国友 严继康 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第1期55-58,共4页
The effects of rare-earth La_2O_3 addition on microstructures and electrical properties of SrTiO_3 ceramics were investigated. Semiconductor SrTiO_3-based voltage-sensing and dielectric dual functional ceramics was pr... The effects of rare-earth La_2O_3 addition on microstructures and electrical properties of SrTiO_3 ceramics were investigated. Semiconductor SrTiO_3-based voltage-sensing and dielectric dual functional ceramics was prepared by a single step sintering technology in this study, and the effects of the content of La_2O_3 on characteristics of the product were discussed in terms of microstructures and electrical properties of materials. The results show that SrTiO_3-based ceramics doped with La_2O_3 exhibits more homogeneous grain distribution, greater grain size, and excellent voltage sensing and dielectric characteristics than those without La_2O_3 doping. The samples doped with 1 1% La_2O_3 were sintered at 1420 ℃ in N_2+C weak reducing atmosphere. The average grain size of the samples doped with La_2O_3 is 40 μm, the breakdown voltage of 19.7 V·mm^(-1), the nonlinear exponent of 7.2, and dielectric constant of 22500. The results reveal that final products are suitable to use in low operating voltage. 展开更多
关键词 inorganic nonmetallic materials SrTiO_3 VARISTOR La_2O_3 microstructure electrical property rare earths
下载PDF
Effects of Annealing on Microstructure, Mechanical and Electrical Properties of AlCrCuFeMnTi High Entropy Alloy 被引量:5
16
作者 NONG Zldsheng NONG Zldsheng +3 位作者 ZHU Jingchuan YANG Xiawei YU Hailing LAI Zhonghong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第6期1196-1200,共5页
The multi-component A1CrCuFeMnTi high entropy alloy was prepared using a vacuum arc melting process. Serial annealing processes were subsequently performed at 590 ℃, 750 ℃, 955 ℃ and 1 100 ℃ respectively with a ho... The multi-component A1CrCuFeMnTi high entropy alloy was prepared using a vacuum arc melting process. Serial annealing processes were subsequently performed at 590 ℃, 750 ℃, 955 ℃ and 1 100 ℃ respectively with a holding time of 4 h at each temperature. The effects of annealing on microstructure, mechanical and electrical properties of as-cast alloy were investigated by using differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The experimental results show that two C14 hexagonal structures remain unchanged after annealing the as-cast A1CrCuFeMnTi alloy specimens being heated to 1 100℃. Both annealed and as-cast microstructures show typical cast-dendrite morphology and similar elemental segregation. The hardness of alloys declines as the annealing temperature increases while the strength of as-cast alloy improves obviously by the annealing treatment. The electrical conductivities of annealed and as-cast alloys are influenced by the distribution of interdendrite re^ions which is rich in Cu element. 展开更多
关键词 high entropy alloy ANNEALING MICROSTRUCTURE mechanical properties electrical conductivity
下载PDF
Effect of Boron Content on the Microstructure and Magnetic Properties of Non-oriented Electrical Steels 被引量:5
17
作者 万勇 CHEN Weiqing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第3期574-579,共6页
The effects of boron content in the range of 0-0.0082 wt%, on the inclusion type, microstructurc, texture and magnetic properties of non-oriented electrical steels have been studied. After final annealing, the additio... The effects of boron content in the range of 0-0.0082 wt%, on the inclusion type, microstructurc, texture and magnetic properties of non-oriented electrical steels have been studied. After final annealing, the addition of excess boron(w(B0〉0.004 1 wt%) led to the formation of Fe2B particles. As boron content increased, grain size increased and reached a maximum in steel with 0.004 1 wt% boron. Furthermore, steel containing 0.004 1 wt% boron had the strongest { 100} fiber texture, Goss texture and the weakest { 111 } fiber texture among the five tested steels. Flux density firstly rapidly increased and then suddenly decreased with increasing boron content and reached a maximum in steel with 0.004 1 wt% boron. Conversely, core loss first sharply decreased and then abruptly increased with the increase of boron content and reached a minimum in steel containing 0.004 1 wt% boron. Steel containing 0.004 1 wt% boron obtained the best magnetic properties, predominantly through the development of optimum grain size and favorable texture. 展开更多
关键词 BORON non-oriented electrical steel grain size TEXTURE magnetic property
下载PDF
Effects of (LiCe) co-substitution on the structural and electrical properties of CaBi2Nb209 ceramics 被引量:3
18
《Chinese Physics B》 SCIE EI CAS CSCD 2012年第3期448-452,共5页
The piezoelectric, dielectric, and ferroelectric properties of the (LiCe) co-substituted calcium bismuth niobate (CaBi2Nb209, CBNO) are investigated. The piezoelectric properties of CBNO ceramics are significantly... The piezoelectric, dielectric, and ferroelectric properties of the (LiCe) co-substituted calcium bismuth niobate (CaBi2Nb209, CBNO) are investigated. The piezoelectric properties of CBNO ceramics are significantly enhanced and the dielectric loss tan 5 decreased. This makes poling using (LiCe) co-substitution easier. The ceramics (where represents A-site Ca2+ vacancies, possess a pure layered structure phase and no other phases can be found. The Cao.ss(LiCe)0.04[]0.04Bi2Nb209 ceramics possess optimal piezoelectric properties, with piezoelectric coefficient (d33) and Curie temperature (Tc) found to be 13.3 pC/N and 960 ℃ respectively. The dielectric and piezoelectric properties of the (LiCe) co-substituted CBNO ceramics exhibit very stable temperature behaviours. This demonstrates that the CBNO ceramics are a promising candidate for ultrahigh temperature applications. 展开更多
关键词 co-substitution structural properties electrical properties CaBi2Nb209
下载PDF
Effects of cooling rate on the microstructure and electrical properties of Dy_2O_3-doped ZnO-based varistor ceramics 被引量:4
19
作者 LIU Hongyu KONG Hui +3 位作者 JIANG Dongmei SHI Wangzhou MA Xueming ZHANG Huining 《Rare Metals》 SCIE EI CAS CSCD 2007年第1期39-44,共6页
The microstructure, electrical properties, and density of Dy2O3-doped ZnO-based varistor ceramics, prepared using high-energy ball milling (HEBM) and sintered at 800℃, were investigated by increasing the cooling ra... The microstructure, electrical properties, and density of Dy2O3-doped ZnO-based varistor ceramics, prepared using high-energy ball milling (HEBM) and sintered at 800℃, were investigated by increasing the cooling rate in the order of H (slow cooling in furnace) → L (cooling in furnace) → K (cooling in air). With the increase in cooling rate, the grain size and density decreased, the breakdown voltage (VImA/mm) increased, and the nonlinear coefficient (α) and leakage current (IL) exhibited extremum. The sample with the cooling type L showed the best properties with the breakdown voltage of 2650 V/ram, o:of 20.3, IL of 5.2 laA, and density of 5.42 g/cm^3. The barrier height (ФB), donor concentration (Nd), density of the interface states (Nd), and barrier width (ω) all exhibited extremum during the alteration in cooling rate. The different relative amount of Bi-rich phase and its distribution as well as the characteristic parameters of grain boundary, resulting from the alteration of cooling rate, led to the changes in the properties of varistor ceramics. 展开更多
关键词 VARISTOR ZNO Dy2O3 MICROSTRUCTURE electrical properties high-energy ball milling low-temperature sintering
下载PDF
Electrical properties of fly ash and its decarbonization by electrostatic separation 被引量:10
20
作者 Tao Youjun Ding Qingqing +3 位作者 Deng Mingrui Tao Dongping Wang Xu Zhang Jie 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第4期629-633,共5页
The basic principle of fly ash triboelectrification is analysed. The mineral electrical index and test method are introduced. The electric difference of different mineral composition of fly ash is discussed by analysi... The basic principle of fly ash triboelectrification is analysed. The mineral electrical index and test method are introduced. The electric difference of different mineral composition of fly ash is discussed by analysis of chemical and mineral composition of fly ash in Xinwen power plant. The dielectric constant and charge-mass ratio of carbon and ash of fly ash are tested. Combined with the experimental study on rotary triboelectrostatic separation, the charged characteristic of fly ash particles with different size is gained. The results show that the dielectric constant of fly ash with different grain size decreased with the decrease of particle size, which lead to the poor electrical conductivity, Thus it can be seen that par- ticle size plays a leading role in conductivity, The charge of carbon and ash with each size increased with the decreased of particle size; and the charge-mass ratio between carbon and ash with the same size lar- ger with the decrease of size, which indicated that the finer particle size, the more favorable for triboelec- trification separation. In the same conditions, the best decarburization effect is realized when the particle size ranges from 0.038 to 0.074 ram, whose decarbonization rate and efficiency index reached 38.93% and 120.83% respectively. 展开更多
关键词 Fly ash Rotary triboelectrostatic separation electrical property Decarbonization emciency
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部