We selected 18 rotten and nine healthy post- mature live standing Korean pine (Pinus koraiensis) to study the correlation between the degree of tree decay and soil physical-chemical properties in the Dialing Forest ...We selected 18 rotten and nine healthy post- mature live standing Korean pine (Pinus koraiensis) to study the correlation between the degree of tree decay and soil physical-chemical properties in the Dialing Forest District of the Xiaoxing'an Mountains, China. One trans- verse section of each sample tree at 40-50 cm height above the ground was tested by Resistograph to determine the inner decay status. We collected soil samples around the root zones (6-20 cm depth) of each sample tree to test the soil physical-chemical indicators including moisture con- tent, bulk density, total porosity, pH, organic matter con- tent, total and hydrolyzed N contents, total and available P contents, total and available K contents, and C/N ratio. The degree of decay of postmature Korean pine live standing trees was significantly and positively correlated with the C/N ratio (R = 0.838, P 〈 0.05), organic matter (R = 0.615, P = 0.007) and moisture content (R = 0.543, P = 0.020) of soil around the rodt. The contents of total N, hydrolyzed N and available P sample trees were significantly in the soil under healthy greater than those underdecayed sample trees, and larger N and P contents might inhibit the decay fungi breeding in soils of pH 4.4-6.29. The optimum multiple regression equation for degree of tree decay on soil physical-chemical indicators showed that the linear correlations between the degree of decay and soil C/N ratio and pH were significant (P 〈 0.01) and the correlation was high (R2 = 0.778). Enhancement soil C/N ratio and pH could promote the decay of tree trunks.展开更多
基金financially supported by the Introduction Program of New Tech from Overseas(20140478)the Forestry Nonprofit Special Research Project(201104007)
文摘We selected 18 rotten and nine healthy post- mature live standing Korean pine (Pinus koraiensis) to study the correlation between the degree of tree decay and soil physical-chemical properties in the Dialing Forest District of the Xiaoxing'an Mountains, China. One trans- verse section of each sample tree at 40-50 cm height above the ground was tested by Resistograph to determine the inner decay status. We collected soil samples around the root zones (6-20 cm depth) of each sample tree to test the soil physical-chemical indicators including moisture con- tent, bulk density, total porosity, pH, organic matter con- tent, total and hydrolyzed N contents, total and available P contents, total and available K contents, and C/N ratio. The degree of decay of postmature Korean pine live standing trees was significantly and positively correlated with the C/N ratio (R = 0.838, P 〈 0.05), organic matter (R = 0.615, P = 0.007) and moisture content (R = 0.543, P = 0.020) of soil around the rodt. The contents of total N, hydrolyzed N and available P sample trees were significantly in the soil under healthy greater than those underdecayed sample trees, and larger N and P contents might inhibit the decay fungi breeding in soils of pH 4.4-6.29. The optimum multiple regression equation for degree of tree decay on soil physical-chemical indicators showed that the linear correlations between the degree of decay and soil C/N ratio and pH were significant (P 〈 0.01) and the correlation was high (R2 = 0.778). Enhancement soil C/N ratio and pH could promote the decay of tree trunks.