期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Aquaphotomics determination of nutrient biomarker for spectrophotometric parameterization of crop growth primary macronutrients using genetic programming 被引量:1
1
作者 Ronnie Concepcion II Sandy Lauguico +3 位作者 Jonnel Alejandrino Elmer Dadios Edwin Sybingco Argel Bandala 《Information Processing in Agriculture》 EI 2022年第4期497-513,共17页
Water quality assessment is currently based on time-consuming and costly laboratory pro-cedures and numerous expensive physicochemical sensors deployment.In response to the trend of device minimization and reduced out... Water quality assessment is currently based on time-consuming and costly laboratory pro-cedures and numerous expensive physicochemical sensors deployment.In response to the trend of device minimization and reduced outlays in sustainable aquaponic water monitoring,the integration of aquaphotomics and computational intelligence is presented in this paper.This study used the combination of temperature,pH,and electrical conductivity sensors in predicting crop growth primary macronutrient concentration(nitrate,phos-phate,and potassium(NPK)),thus,limiting the number of deployed sensors.A total of 220 water samples collected from an outdoor artificial aquaponic pond were temperature perturbed from 16 to 36℃ with 2℃ increments to mimic ambient range,which varies water compositional structure.Aquaphotomics was applied on ultraviolet,visible light,and near-infrared spectral regions,100 to 1000 nm,to determine NPK compounds.Princi-pal component analysis emphasized nutrient dynamics through selecting the highly corre-lated water absorption bands resulting in 250 nm,840 nm,and 765 nm for nitrate,phosphate,and potassium respectively.These activated water bands were used as wave-length protocols to spectrophotometrically measure macronutrient concentrations.Exper-iments have shown that multigene symbolic regression genetic programming(MSRGP)obtained the optimal performance in parameterizing and predicting nitrate,phosphate,and potassium concentrations based on water physical properties with an accuracy of 87.63%,88.73%,and 99.91%,respectively.The results have shown the established 4-dimensional nutrient dynamics map reveals that temperature significantly strengthens nitrate and potassium above 30℃ and phosphate below 25℃ with pH and electrical con-ductivity ranging between 7 and 8 and 0.1 to 0.2 mS cm^(-1) respectively.This novel approach of developing a physicochemical estimation model predicted macronutrient concentra-tions in real-time using physical limnological sensors with a 50%reduction of energy consumption.This same approach can be extended to measure secondary macronutrients and micronutrients. 展开更多
关键词 Aquaphotomics Genetic programming Plant nutrients physicochemical composition SPECTROPHOTOMETRY Water quality monitoring
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部