期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Response of Contrasting Rice Genotypes to Zinc Sources under Saline Condition
1
作者 Muhammad Jan Muhammad Anwar-Ul-Haq +11 位作者 Talha Javed Sadam Hussain Ilyas Ahmad Muhammad Ashraf Sumrah Javed Iqbal Babar Hussain Babar Aqsa Hafeez Muhammad Aslam Muhammad Tahir Akbar Marjan Aziz Khadiga Alharbi Izhar Ullah 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第5期1361-1375,共15页
Abiotic stresses are among the major limiting factors for plant growth and crop productivity.Among these,salinity is one of the major risk factors for plant growth and development in arid to semi-arid regions.Cultivat... Abiotic stresses are among the major limiting factors for plant growth and crop productivity.Among these,salinity is one of the major risk factors for plant growth and development in arid to semi-arid regions.Cultivation of salt tolerant crop genotypes is one of the imperative approaches to meet the food demand for increasing population.The current experiment was carried out to access the performance of different rice genotypes under salinity stress and Zinc(Zn)sources.Four rice genotypes were grown in a pot experiment and were exposed to salinity stress(7 dS m^(−1)),and Zn(15 mg kg^(-1)soil)was applied from two sources,ZnSO4 and Zn-EDTA.A control of both salinity and Zn was kept for comparison.Results showed that based on the biomass accumulation and K^(+)/Na^(+)ratio,KSK-133 and BAS-198 emerged as salt tolerant and salt sensitive,respectively.Similarly,based on the Zn concentration,BAS-2000 was reported as Zn-in-efficient while IR-6 was a Zn-efficient genotype.Our results also revealed that plant growth,relative water content(RWC),physiological attributes including chlorophyll contents,ionic concentrations in straw and grains of all rice genotypes were decreased under salinity stress.However,salt tolerant and Zn-in-efficient rice genotypes showed significantly higher shoot K^(+)and Zn concentrations under saline conditions.Zinc application significantly alleviates the harmful effects of salinity by improving morpho-physiological attributes and enhancing antioxidant enzyme activities,and the uptake of K and Zn.The beneficial effect of Zn was more pronounced in salt-tolerant and Zn in-efficient rice genotypes as compared with salt-sensitive and Zn-efficient genotypes.In sum,our results confirmed that Zn application increased overall plant’s performance under saline conditions,particularly in Zn in-efficient and tolerant genotypes as compared with salt-sensitive and Zn efficient rice genotypes. 展开更多
关键词 Agronomic efficiency antioxidant enzymes:physiology Oryza sativa SALINITY Zn efficient
下载PDF
Biochemical and microbial soil functioning after application of the insecticide imidacloprid 被引量:2
2
作者 Mariusz Cycoń Zofia Piotrowska-Seget 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第1期147-158,共12页
Imidacloprid is one of the most commonly used insecticides in agricultural practice, and its application poses a potential risk for soil microorganisms. The objective of this study was to assess whether changes in the... Imidacloprid is one of the most commonly used insecticides in agricultural practice, and its application poses a potential risk for soil microorganisms. The objective of this study was to assess whether changes in the structure of the soil microbial community after imidacloprid application at the field rate(FR, 1 mg/kg soil) and 10 times the FR(10 × FR, 10 mg/kg soil)may also have an impact on biochemical and microbial soil functioning. The obtained data showed a negative effect by imidacloprid applied at the FR dosage for substrate-induced respiration(SIR), the number of total bacteria, dehydrogenase(DHA), both phosphatases(PHOS-H and PHOS-OH), and urease(URE) at the beginning of the experiment. In 10 × FR treated soil, decreased activity of SIR, DHA, PHOS-OH and PHOS-H was observed over the experimental period. Nitrifying and N2-fixing bacteria were the most sensitive to imidacloprid. The concentration of NO3-decreased in both imidacloprid-treated soils,whereas the concentration of NH4+in soil with 10 × FR was higher than in the control.Analysis of the bacterial growth strategy revealed that imidacloprid affected the r- or K-type bacterial classes as indicated also by the decreased eco-physiological(EP) index.Imidacloprid affected the physiological state of culturable bacteria and caused a reduction in the rate of colony formation as well as a prolonged time for growth. Principal component analysis showed that imidacloprid application significantly shifted the measured parameters, and the application of imidacloprid may pose a potential risk to the biochemical and microbial activity of soils. 展开更多
关键词 Imidacloprid enzyme activities Nitrogen transformation physiological state Soil microorganisms
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部